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Hiroshi Ashikaga1, José Aguilar-Rodrı́guez2,3, Shai Gorsky4, Elizabeth Lusczek5,
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Electrical communication between cardiomyocytes can be perturbed during

arrhythmia, but these perturbations are not captured by conventional electro-

cardiographic metrics. We developed a theoretical framework to quantify

electrical communication using information theory metrics in two-dimensional

cell lattice models of cardiac excitation propagation. The time series generated

by each cell was coarse-grained to 1 when excited or 0 when resting. The Shan-

non entropy for each cell was calculated from the time series during four

clinically important heart rhythms: normal heartbeat, anatomical reentry,

spiral reentry and multiple reentry. We also used mutual information to per-

form spatial profiling of communication during these cardiac arrhythmias.

We found that information sharing between cells was spatially heterogeneous.

In addition, cardiac arrhythmia significantly impacted information sharing

within the heart. Entropy localized the path of the drifting core of spiral reen-

try, which could be an optimal target of therapeutic ablation. We conclude that

information theory metrics can quantitatively assess electrical communication

among cardiomyocytes. The traditional concept of the heart as a functional

syncytium sharing electrical information cannot predict altered entropy and

information sharing during complex arrhythmia. Information theory metrics

may find clinical application in the identification of rhythm-specific treatments

which are currently unmet by traditional electrocardiographic techniques.
1. Introduction
The human heart consists of 5 billion autonomous cardiomyocytes [1] with

simple rules of operation and minimal central control. The behaviours of indi-

vidual cardiomyocytes are orchestrated by electrical conduction between

adjacent cells connected by specialized cell-to-cell junctions called intercalated

discs [2]. The intercalated discs contain gap junctions with large non-selective

connexin channels that allow ions and other small molecules to diffuse freely

in the cytosol of adjacent cells and reduce internal electrical resistance [3]. By

providing low-resistance connections between cardiomyocytes, gap junction

channels allow cardiac excitation to propagate rapidly throughout the heart [4].

However, this task can be perturbed during abnormal heart rhythm (cardiac
arrhythmia). Cardiac excitation is an electrical wave spatially spanning from a

region of action potential depolarization (wavefront) to a region of action potential

repolarization (wavetail) [5]. When a wavefront meets a wavetail, the electrical

wave breaks at the intersection, and the electrical information flow can be
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Figure 1. Conceptual overview of the methods. (a) The heart as a communication system. The heart can be considered as a communication system where cardiomyocytes
act as an information source/transmitter and a receiver/destination with channels being intercalated discs/intervening cardiomyocytes. H(X ) and H(Y ) are the entropies of
time series X and Y, respectively; H(X, Y ) is the joint entropy of X and Y; H(XjY) is the conditional entropy of X given Y; H(YjX ) is conditional entropy of Y given X; I(X; Y ) is
the mutual information of X and Y. Figure modified from [10]. (b) Two-dimensional lattice model of cardiac tissue. For both the RD and the cellular automata models, the
cardiac tissue was simulated as a 128 � 128 cell lattice, which was assumed to be isotropic. (c) Coarse-graining of the time series. In each cell, the time series of cardiac
excitation was computed for 10 s during four different heart rhythms (normal heartbeat, anatomical reentry, spiral reentry and multiple reentry) at a sampling rate of
500 per second. The time series was coarse-grained to 1 when excited (during action potential duration at 90% repolarization APD90,) or 0 when resting. (d ) Mutual
information. To understand the spatial characteristics of information sharing among cardiomyocytes, mutual information was computed between five representative cells
(green circles) and all the other cells in the two-dimensional lattice. These representative cells included cells in the left-upper quadrant (32,32), the right-upper
quadrant (32,96), the centre (64,64), the left-lower quadrant (96,32) and the right-lower quadrant (96,96).
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interrupted at the wavebreak [6]. Furthermore, a completely

different output can be generated by arrhythmic circuits where

the wave rotates around the wavebreak. Therefore, cardiac

arrhythmia can lead to loss of information about the input. Con-

ventional electrocardiographic metrics can measure the sequence

of electrical excitation [7–9], but cannot quantify how arrhythmia

impacts the communication between individual cardiomyocytes.

Information theory is a mathematical theory of communi-

cation to quantify information [10]. Information theory has

been successfully used to evaluate biological communication in

computational neuroscience [11], transcriptional regulation

[12,13], bacterial quorum sensing [14], chemotaxis [15], biochemi-

cal signalling networks [16] and evolutionary biology [17].

Information theory metrics such as mutual information can

quantify the sharing of information in the presence of arrhythmia.

The aim of this work was to propose a novel paradigm that

the heart is a communication system where information is

shared by electrical wave propagation between cardiomyocytes

(figure 1a). Under this paradigm, cardiac arrhythmia can be

viewed as a state of abnormal production and transmission of

information that can be quantified by information theory

measures. The specific objective of this work was to develop a

framework to quantify cardiac electrical communication

during action potential propagation in normal and abnormal

heart rhythms. Three major mechanisms of clinically important

arrhythmias that could lead to sudden death were considered:

anatomical reentry (reentry around an anatomically defined circuit

[18]), spiral reentry (functional reentry without an anatomically

defined circuit [19]) and multiple reentry (multiple functional

reentry circuits in the presence of ongoing wavebreak [20]).

2. Material and methods
2.1. Models of action potential propagation
To develop the information theory framework, we employed two

commonly used mathematical models of cardiac action potential
propagation. The first model was a monodomain reaction–

diffusion (RD) model that was originally derived by Fitzhugh

[21] and Nagumo et al. [22] as a simplification of the biophysi-

cally based Hodgkin–Huxley equations describing current

carrying properties of nerve membranes [23] which was later

modified by Rogers & McCulloch [24] to represent cardiac

action potential. This model reproduces several physiological

properties known to be important in arrhythmogenesis, includ-

ing slowed conduction velocity (CV) and unidirectional block

owing to wavefront curvature [24]. This model was used

widely in previous studies [25–31].

@v
@t
¼ 0:26v(v� 0:13)(1� v)� 0:1vrþ Iex þGx

@2v
@x2
þGy

@2v
@y2

: (2:1)

@r
@t
¼ 0:013(v� r) (2:2)

Here, v is the excitation variable that can be identified with

transmembrane potential, r is the recovery variable, Iex is the

external current [6], and Gx and Gy are the conductance in

x- and y-directions on the lattice, respectively. In this study, the

lattice was assumed to be isotropic (i.e. Gx ¼ Gy). The model

equations were solved using a finite difference method for spatial

derivatives and explicit Euler integration for time derivatives

assuming Neumann boundary conditions.

Cellular automata (CA) models have been used to study car-

diac action potential propagation in several previous studies

[32,33]. The model we used was developed by Alonso Atienza

et al. [34] who employed realistic restitution properties and the

curvature phenomenon. Each cell in the CA can adopt one of

the following three states: resting, refractory1 and refractory2.

Cells in the resting state are relaxed and can be excited, whereas

cells in both refractory states are excited. Cells in refractory1 can

excite neighbouring cells, whereas cells in refractory2 cannot. All

three states have physiological relevance. The depolarization (or

excitation) of a cell i is the transition from the resting state into

the refractory1 state and occurs according to a probabilistic

update rule Pexc
i based on two influences [34]: (i) the intrinsic

cell excitability (E) of i that gets higher with the time in the
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resting state and (ii) the amount of excitation in the neighbouring

cells (Q):

Pexc
i ¼ EQ ¼ E

X

i=j

Aj

d2
ij

, (2:3)

where Aj is the excitation state of cell j (adjacent to i) with a value

of 0 for the resting state and a value of 1 for either of the two

refractory states, and dij is the distance in the lattice between

the centre of both cells i and j. The transitions from refractory1

to refractory2 (partial repolarization) and from refractory2 to rest-

ing (total repolarization) are deterministic. The total time spent in

the two refractory states matches the total duration of the action

potential (APD). The period in the refractory1 state is equal to

10% of the APD. The parameters E and APD were estimated

from restitution curves of the CV and APD, respectively, which

depend on the period of the preceding DI [34]. In addition to

APD and CV restitution properties, equation (2.3) also repro-

duces CV slowing in areas with a pronounced wavefront

curvature because of the decreased probability of excitation.
0141201
2.2. Cardiac simulation
For the RD and CA models, the cardiac tissue was simulated as a

two-dimensional 128 � 128 isotropic lattice of cells (figure 1b). In

each cell, the time series of cardiac excitation was computed for

10 s with a sampling frequency of 500 Hz (temporal resolution

Dt ¼ 2 ms, figure 1c). The sampling frequency and duration of

the time series were determined to reflect realistic measurements

in human clinical electrophysiology studies [35].

We simulated four different heart rhythms in both models:

normal heartbeat, anatomical reentry, spiral reentry and multiple

reentry. The latter two are considered to be important mechan-

isms of cardiac fibrillation, including atrial fibrillation (AF) and

ventricular fibrillation (VF) [19,20]. Cardiac simulation was

performed using Matlab R2014a (Mathworks, Inc.).

Normal heartbeat was simulated as regular point stimu-

lations (60 beats min21) originating from the top middle region

of the lattice. This pattern of stimulation caused a regular train

of curved excitation wavefronts travelling from top to bottom

along the vertical axis in both the RD (electronic supplementary

material, video S1) and CA models (electronic supplementary

material, video S2).

Anatomical reentry is characterized by an electrical wave-

front that travels along a preformed anatomical obstacle, most

commonly a scar resulting from healed myocardial infarction,

and re-excites previously excited tissue. We simulated a cardiac

impulse that can rotate around the obstacle, leading to repetitive,

rapid excitation of the heart. Anatomical reentry was reproduced

in the RD (electronic supplementary material, video S3) and the

CA models (electronic supplementary material, video S4) by

simulating a non-excitable circular region in the centre of the

lattice occupying 20% of the total surface area.

For spiral reentry [19], we simulated a two-dimensional wave

of excitation emitted by an organizing source (or rotor) of func-

tional reentry whose front is an involute spiral with increasing

convex curvature towards the rotation centre [36]. The spiral reen-

try was generated by a cross-field stimulation protocol [6] in both

the RD (electronic supplementary material, video S5) and the CA

models (electronic supplementary material, video S6).

Multiple reentry is characterized by multiple independent

circuits of functional reentry occurring simultaneously and

propagating randomly throughout the cardiac tissue [37]. Wave-

fronts continuously undergo wavefront–wavetail interactions

resulting in wavebreak and generation of new wavefronts

[38]. Multiple reentry was reproduced in the RD (electronic

supplementary material, video S7) and the CA models

(electronic supplementary material, video S8) by a train of
random point stimulations in the substrate where the APD is

shortened by 40%.

2.3. Information measures
For each cell, the time series of cardiac excitation was coarse-

grained to 1 when excited (during the APD at 90% repolarization,

or APD90) or 0 when resting (figure 1c). We treated each cell on the

lattice as a time-series process X, where at any observation time t
the process X is either excited or resting in that case we define

Xt ¼ 1 or Xt ¼ 0, respectively.

Using this framework, we can compute the Shannon entropy

H of each time-series process X

H(X) ¼ �
X

x
p(x) log2 p(x)

¼ �p(X ¼ 0) log2 p(X ¼ 0)� p(X ¼ 1) log2 p(X ¼ 1),

where p(x) denotes the probability density function of the time

series generated by X. This quantifies the average uncertainty

of whether a single cell is excited (x ¼ 1) or resting (x ¼ 0) over

each cell’s time history [39].

Mutual information I(X; Y ) is a measure of the reduction in

uncertainty of the time-series process X owing to the informa-

tion gained from knowing the time-series process Y; hence, this

quantity is commonly viewed as the information shared between

X and Y [39]. Therefore, by computing the mutual information,

we can receive insights into which cells share information and

how much. Formally, the mutual information between the

time-series processes, in this case cells, X and Y is

I(X; Y) ¼
X

x,y
p(x, y) log2

p(x, y)

p(x)p(y)
, (2:4)

¼ H(X)þH(Y)�H(X, Y), (2:5)

where p(x, y) and H(X, Y ) denote the joint probability den-

sity function and the joint entropy of X and Y, respectively

(figure 1a).

H(X, Y) ¼ �
X

x

X

y
p(x, y) log2 p(x, y) (2:6)

¼ �p(X ¼ 1, Y ¼ 0) log2 p(X ¼ 1, Y ¼ 0)

� p(X ¼ 0, Y ¼ 1) log2 p(X ¼ 0, Y ¼ 1)

� p(X ¼ 1, Y ¼ 1) log2 p(X ¼ 1, Y ¼ 1)

� p(X ¼ 0, Y ¼ 0) log2 p(X ¼ 0, Y ¼ 0): (2:7)

To understand the spatial profiles of information sharing between

cardiomyocytes, mutual information was computed between each

of five representative cells (green circles in figure 1d and all other

cells in the two-dimensional lattice taken individually). These

representative cells were defined to be in the left-upper quadrant

(32,32), the right-upper quadrant (32,96), the centre (64,64),

the left-lower quadrant (96,32) and the right-lower quadrant

(96,96). These points were chosen to avoid artefacts generated

by the boundary conditions and point stimulation in the RD

model as discussed in the Results section. Custom programs in

PYTHON were used to compute information measures.
3. Results
3.1. Normal heartbeat
In the RD model, electrical wavefronts regularly swept the

lattice from top to bottom (electronic supplementary material,

video S1 and figure 2a, top row). The entropy was relatively

lower at the lattice borders and higher at the site of stimu-

lation, but these were artefacts of the boundary conditions

and point stimulation, respectively (figure 2b, top row).
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Figure 2. Normal heartbeat. The top row represents the deterministic reaction – diffusion (RD) model and the bottom row represents the probabilistic cellular
automata (CA) model. (a) Representative snapshot of an electrical wave from electronic supplementary material, videos S1 (top) and S2 (bottom). (b) Entropy
of each cell in the cardiac tissue shows a heat map of the entropy in bits over the cell lattice. (c) Mutual information between two cells in the cardiac tissue
shows a heat map of mutual information in bits over the cell lattice. Mutual information was computed between a specific cell (green circle) and all the
other cells in the same cardiac tissue. (d ) Profiles of entropy (blue line) and mutual information (red line) through the cell lattice along the vertical broken
line shown in 2b and 2c3, centre, respectively.
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Otherwise, entropy was homogeneous across the lattice [0.68

(mean)+0.03 (s.d.) bits]. Mutual information showed a

spatially heterogeneous information sharing between cells

(figure 2c, top row) despite the assumed isotropic structure

and homogeneous electrical properties of the lattice. For

example, figure 2c3 (top row) shows that the cell in the

centre of the lattice shares a high amount of information

with the cells on the same electrical wavefront (yellow

band) generated by the heartbeats. It also shows little infor-

mation sharing with the cells preceding and following the

wavefront (light blue bands surrounding the yellow band).

This is clearly shown in the profile of mutual informa-

tion (figure 2d, top row) along the vertical broken line in

figure 2c3 (top row). Mutual information (red line) reached

its peak (0.69 bits) at the centre (profile position 64), where

mutual information is equal to entropy, because the mutual

information of an entity with itself is equal to entropy

(equation (2.5)). Mutual information fell off sharply from

the centre and reached the minimum (0 bits) on both sides

(profile position 41 and 86) before slightly rising to approxi-

mately 0.06 bits on both ends. These findings indicate that the

cells share a high amount of information when they are in

phase with the cardiac excitation and share little information

when they are out of phase. We formed an analytical frame-

work which corroborates these numerical results (electronic

supplementary material, appendix S1).

In the CA model (electronic supplementary material, video

S2 and figure 2a, bottom row), the electrical wavefront was

more irregular and unstable than that of the RD model. Entropy

was homogeneous across the lattice, but was lower (0.52+0.00

bits) than that of the RD model (figure 2b, bottom row). This

difference results from the fact that the CA model had a longer

resting state (electronic supplementary material, video S2),

making it more biased towards the resting state than the RD

model (electronic supplementary material, video S1). There

was no qualitative difference in information sharing between

the RD model (figure 2, top row) and the CA model (figure 2,

bottom row). However, information sharing was lower in the

CA model, because the CA model is inherently probabilistic

and less reproducible than the RD model. The profile of

mutual information (figure 2d) along the vertical broken line

in figure 2c3 also shows a qualitatively similar but lower

mutual information in the CA model (figure 2d) relative to the

RD model (figure 2d).
3.2. Anatomical reentry
In both the RD (electronic supplementary material, video S3)

and the CA models (electronic supplementary material, video

S4), the entropy of the cells within the circular non-excitable

region was zero, because these cells were always in the

resting state (figure 3a,b). The entropy was roughly homo-

geneous in other regions of the lattice. The average entropy

was 0.32+0.17 bits in the RD model and 0.69+ 0.33 bits in

the CA model (figure 3b). The difference resulted from the

longer wavelength in the CA model owing to the more

convex curvature than the RD model.

Overall, both models showed a similar spatial pattern of

mutual information (figure 3c). Information sharing between

cells was spatially heterogeneous, but showed rotational sym-

metry about the non-excitable region in the centre. For

example, figure 3c1 shows that the cell in the left upper quad-

rant of the lattice shares a high amount of information with

the cells on the same electrical wavefront (the orange band

in the RD model and the yellow band in the CA model).

Information sharing in the cells on the three other quadrants

(figures 3c2, 4 and 5) was rotationally symmetric with that of

figure 3c1. Importantly, there is no information sharing

between the cell within the circular non-excitable region and

any other cells in the lattice (figure 3c3). This is logical from

both the standpoints of electrophysiology and information

theory. Of note, similar to normal heartbeat (figure 2c), both

models also showed little information sharing with the cells

that preceded and followed the region of a high amount of

shared information (light blue bands before and after the

yellow band). These findings indicate that, similar to normal

heartbeat, the cells share a high amount of information when

they are in phase with cardiac excitation, and share little

information when they are out of phase.

3.3. Spiral reentry
In the RD model (electronic supplementary material, video S5

and figure 4a, top row), a single rotor with a resultant spiral

reentry was simulated in the lattice. The entropy of each indi-

vidual cell in this simulation shows an important finding

with potential clinical significance. The left lower quadrant

and both upper quadrants of the lattice exhibited homo-

geneous entropy (0.74+0.04 bits), except for the borders of

the lattice which is an artefact of boundary conditions
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Figure 3. Anatomical reentry. The black circular region in (a,b) represents a non-excitable tissue that serves as an anatomical obstacle around which cardiac exci-
tation rotates perpetually. The top row represents the deterministic reaction – diffusion (RD) model and the bottom row represents the probabilistic cellular automata
(CA) model. (a) Representative snapshot of an electrical wave from electronic supplementary material, videos S5 (top) and S6 (bottom). (b) Entropy of each cell in
the cardiac tissue shows a heat map of the entropy in bits over the cell lattice. (c) Mutual information between two cells in the cardiac tissue shows a heat map of
mutual information in bits over the cell lattice. Mutual information was computed between a specific cell (green circle) and all the other cells in the same cardiac
tissue. (d ) Profile of entropy (blue line) through the cell lattice along the vertical broken line shown in 4b. The profile of mutual information (red line) in 4d is from
4c1, left upper quadrant.
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(figure 4b, top row). The red region in the right lower quad-

rant represents the higher entropy near the spiral tip (rotor)

caused by the CV slowing near the rotor owing to a pro-

nounced wavefront curvature (figure 4b, top row). This

slowing of CV effectively caused longer cardiac excitations,

making the cells in this region more biased towards the

excited state than the rest of the cells in the lattice not directly

affected by the rotor, boosting the entropy in this region.

Within the red region is an L-shaped, light green, bead-like

structure representing the lower entropy in the path of the

drifting core of the spiral reentry around which the rotor

revolved. This result suggests that the entropy of individual

cells may be used to aid in localizing the core of spiral reentry

for therapeutic purposes. Of note, the L-shaped path of the

drifting core in this model was artificially determined by

the boundary condition of the model.

While the entropy of individual cells provided very impor-

tant findings, the average entropy over all cells was less

informative. In fact, the average entropy between normal

heartbeat and spiral reentry in the RD model was very similar

(0.68+0.03 versus 0.74+0.04 bits, respectively). This suggests
that the spatial profiles of entropy are more useful in highlight-

ing the difference in dynamics than the aggregate information

over the entire tissue, as averaging effectively filters out the

important features of the entropy landscape.

Mutual information was far more spatially heterogeneous

than anticipated from the electrical wave propagation. For

example, figure 4c3 (top row) shows that the high level of

information sharing in the central region of the lattice quickly

faded as distance between cells increased. This reflects the

fact that the cells lying along the same electrical wavefront

changed over time owing to the drifting core. This resulted

in the smaller region of high information sharing in the

spiral reentry than in the normal heartbeat. This finding indi-

cates that mutual information can sensitively detect regional

heterogeneity of cardiac excitation in spiral reentry, which

is not apparent from electrical wave propagation. Of note,

information sharing in the right lower quadrant was limited

to a focal region without a spiral tail (figure 4c5, top row).

This is because the cell in the right lower quadrant (green

circle) happened to lie on the path of the drifting core,

which coincided with a void of cardiac excitation.
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In the CA model (electronic supplementary material,

video S6 and figure 4a, bottom row), the electrical wavefront

was inherently more irregular than that of the RD model. The

entropy was roughly homogeneous across the lattice and

close to 1 (0.97+0.00 bits; figure 4b, bottom row). The

higher entropy of the CA model compared with the RD

model was, as in the anatomical reentry, caused by the

longer wavelength in the CA model owing to the more

convex curvature than the RD model (figure 4a, bottom

row). Unlike the RD model, the entropy in the CA model

did not show the path of the drifting core, indicating that

the drift trajectory was much more random compared with

that of the RD model with respect to the time frame (10 s)

of data acquisition. Information sharing between cells was

spatially heterogeneous (figure 4c,d ) because of the regional

heterogeneity of cardiac excitation in spiral reentry. Overall,

the CA model showed lower information sharing than the

RD model owing to the probabilistic nature of the model.
3.4. Multiple reentry
In both the RD (electronic supplementary material, video S7)

and the CA models (electronic supplementary material, video

S8), the entropy was homogeneous across the cell lattice

(figure 5a). The average entropy was 0.88+0.03 bits in the

RD model and 0.97+0.00 bits in the CA model (figure 5b).

This indicates that excited and resting states are almost

equally distributed throughout the time series of all the

cells, yielding a high uncertainty and homogeneous entropy.

The spatial profiles of information sharing for both the RD

and the CA models were similar to that of spiral reentry

(figure 5c), except the fact that the underlying structure was

much less organized owing to the random nature of multiple

reentry. Information sharing was low except for a small

region in the immediate neighbourhood of the cell in which

mutual information was measured. Outside this small

region information sharing steeply fell off to near zero

(figure 5d ). The near-zero mutual information indicates that

the cells almost completely lost synchrony during multiple

reentry; that is, individual cardiomyocytes got excited inde-

pendently from each other and did not share information

with cells beyond their immediate neighbourhood.
4. Discussion
4.1. Summary of the findings
By treating the heart as an electrical communication system,

we demonstrated quantitatively that information sharing

between cardiomyocytes on an isotropic lattice structure is

spatially heterogeneous. This finding was unexpected from

the traditional concept of the heart as a functional syncytium

sharing electrical information via gap junctions, where one

might mistakenly assume that information sharing would

be homogeneous along the electrical wavefront. We also

found that entropy can be significantly different between

heart rhythms with electrically similar spatial patterns

(figures 2b, 4b and 3b). These findings indicate that metrics

from information theory can quantitatively assess the com-

munication processes within the heart which are not

obvious from conventional electrocardiographic metrics

such as sequences of electrical excitation. In addition, our

results show that cardiac arrhythmia significantly impacts

electrical communication within the heart.
4.2. Mutual information to quantify communication
within the heart

Analysis of dynamical multivariate datasets over the dimen-

sions of time and physical space is commonly encountered

in the investigation of complex systems [40]. The study of

cardiac arrhythmia, particularly cardiac fibrillation, is no

exception. For example, a number of measures to quantify

spatial complexity of VF have been proposed, including

the correlation length [41], the multiplicity index [42] and

Karhunen–Loève decomposition [43]. The main focus of

interest in these studies was to quantify the determinism

and the predictability of the time series over physical space.

Our study is different from these previous studies in

two aspects. First, our focus of interest was to quantify com-

munication within the heart. Of central importance to the

understanding of complex systems is connectivity, or

the presence of dynamical interactions between spatially

distinct locations within the system. Knowledge about connec-

tivity in a system, whether anatomical or functional, further

facilitates the fundamental understanding of the system

because it addresses an important aspect of the functional
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interdependency between each component of the system.

Our results indicate that information theory metrics can

quantitatively assess electrical communication processes

among cardiomyocytes during normal heartbeat and com-

plex arrhythmias beyond electrocardiographic measures,

conferring validity to the paradigm of the heart as a communi-

cation system. Second, we used mutual information to perform

spatial profiling of different cardiac arrhythmias. Correlations

within multivariate time series can be described by measures

such as linear and nonlinear correlation functions. However,

mutual information has attracted considerable attention

recently because it promises a very general quantification of

statistical dependence [44]. In addition, previous studies

measured the spatial profile of mutual information during

VF [45], which could include both spiral reentry and multiple

reentry, because it is challenging to distinguish one from the

other in experimental settings. Therefore, the spatial profile

of spiral reentry and multiple reentry was not clearly deli-

neated. Our result showed that the spatial profile and the

underlying structure of mutual information during each

arrhythmia are clearly different (figures 4 and 5). This suggests

that information theory metrics could help distinguish one

rhythm from another by quantifying communication within

the heart.

The underlying mechanism of perturbation of information

transfer during arrhythmia remains unclear. Information

sharing during VF seems to be directly affected by the aniso-

tropy of myofibre orientation and cell-to-cell coupling [45].

However, the spatial profile of membrane potential during

VF has no consistent relationship with that of intracellular

calcium dynamics [46]. This may suggest a contribution of

non-voltage-gated intracellular calcium release in perturba-

tion of information transfer by increasing the local complex

interactions between calcium dynamics and membrane

potential. Clearly, further studies will be needed to investi-

gate the mechanistic basis of the paradigm of the heart as a

communication system.

4.3. Clinical implications
Recently, targeted elimination of the rotor (phase singularity) of

spiral reentry has been shown to result in sustained termination

of AF [47]. As a result, spatial localization of the rotor has

attracted substantial attention in clinical cardiac electrophysi-

ology. Entropy has been quantified to identify the location of

the rotor of spiral reentry from the bipolar electrograms by creat-

ing the probability density function based on the amplitude of

the signal [48]. However, the accuracy of this metric was not

clear, because it has consistent correlation with complex fractio-

nated electrograms [49], which was found to bear no spatial

relevance to spiral reentry [50]. Therefore, the knowledge of

the spatial profile of entropy for spiral reentry was lacking.

Our result in the RD model clearly showed that the region

of rotor drift has high entropy (red region, right lower quad-

rant in figure 4b, top row), which is consistent with previous

studies [48]. Moreover, what was most striking was the fact

that entropy can localize the path of the drifting core of

spiral reentry (L-shaped, light green, bead-like structure,

right lower quadrant in figure 4b, top row) because of the

low entropy of the spiral core. This makes electrophysiologi-

cal sense, because the cardiomyocytes within the spiral core

are almost constantly depolarized [51], making the prob-

ability density-biased towards 1. Therefore, our result
showed a critically important fact that entropy can spatially

localize the core (low entropy) within a larger region of the

drifting rotor (high entropy). However, because a similar

structure of the spatial profile could not be identified in the

CA model (figure 4b, bottom row), localization of the drifting

core may require a spatially stable spiral reentry with ade-

quately slow drift. Although these preliminary findings

need to be confirmed in experimental models of cardiac

fibrillation, they illustrate the potential clinical utility of

information theory applied to cardiac electrophysiology.

4.4. Limitations
There are two limitations that should be considered before

our results can be translated to human patients. First, the car-

diac tissue was assumed to be a two-dimensional, isotropic

and homogeneous lattice, whereas real cardiac tissue is

three-dimensional, anisotropic and heterogeneous owing to

the intricately woven myofibre structure [52] and regional

heterogeneity [53]. These tissue properties may contribute cri-

tically to the generation of cardiac arrhythmia [54]. However,

the main focus of this work was to prove the concept that

quantitative analysis of electrical communication during

existing cardiac arrhythmia could yield clinically relevant

results. We used two widely accepted models of action poten-

tial propagation in cardiac tissue to reproduce a variety of

heart rhythms that captured important features of clinically

representative arrhythmias. Therefore, we believe that these

model assumptions were acceptable within the scope of this

work. Second, our computation of information theory metrics

did not incorporate conduction delay of electrical current to

travel from one cell to another, because the time series of

the entire lattice was acquired simultaneously. This is because

the conduction delay within the small two-dimensional lat-

tice would be negligibly small relative to the acquisition

period of 10 s. However, this assumption may have under-

estimated the true amount of information sharing between

heart cells, because the standard definition of mutual infor-

mation does not include shared information that is delayed

in time. This leaves open the potential for even more clinically

useful results by considering generalizations of the metric

that explicitly account for this conduction delay.
5. Conclusion
Information theory metrics can quantitatively assess electrical

communication processes among cardiomyocytes during

normal heartbeat and complex arrhythmias beyond electrocar-

diographic measures. Further, entropy may have a clinical

application in the localization and elimination of spiral reentry

cores. These results suggest that the heart as a communication

system is more complex than the traditional concept of functional

syncytium sharing electrical information via gap junctions. We

believe that this new paradigm provides a new set of tools for

the systems-approach to the heart as a complex system [55].
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Requena Carrión and Peter Hammer for generously providing the
source code for the models described in the paper. The authors
also thank Simon DeDeo and Nix Barnett for valuable input.



8
References
rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141201
1. Kapoor N, Liang W, Marbán E, Cho HC. 2013 Direct
conversion of quiescent cardiomyocytes to
pacemaker cells by expression of Tbx18. Nat.
Biotechnol. 31, 54 – 62. (doi:10.1038/nbt.2465)

2. Hall JE. 2010 Guyton and hall textbook of medical
physiology, 12th edn. Philadelphia, PA: Saunders.

3. Fishman GI, Spray DC, Leinwand LA. 1990 Molecular
characterization and functional expression of the
human cardiac gap junction channel. J. Cell Biol.
111, 589 – 598. (doi:10.1083/jcb.111.2.589)

4. Katz MD. 2010 Physiology of the heart, 5th edn.
Philadelphia, PA: Lippincott Williams and Wilkins.

5. Weiss JN, Qu Z, Chen PS, Lin SF, Karagueuzian HS,
Hayashi H, Garfinkel A, Karma A. 2005 The dynamics
of cardiac fibrillation. Circulation 112, 1232– 1240.
(doi:10.1161/CIRCULATIONAHA.104.529545)

6. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT,
Jalife J. 1993 Spiral waves of excitation underlie
reentrant activity in isolated cardiac muscle. Circ.
Res. 72, 631 – 650. (doi:10.1161/01.RES.72.3.631)

7. Ashikaga H et al. 2007 Magnetic resonance-based
anatomical analysis of scar-related ventricular
tachycardia: implications for catheter ablation. Circ.
Res. 101, 939 – 947. (doi:10.1161/CIRCRESAHA.107.
158980)

8. Stevenson WG et al. 2008 Irrigated radiofrequency
catheter ablation guided by electroanatomic
mapping for recurrent ventricular tachycardia after
myocardial infarction: the multicenter thermocool
ventricular tachycardia ablation trial. Circulation
118, 2773 – 2782. (doi:10.1161/CIRCULATIONAHA.
108.788604)

9. Wang Y et al. 2011 Noninvasive electroanatomic
mapping of human ventricular arrhythmias with
electrocardiographic imaging. Sci. Transl. Med. 3,
98ra84. (doi:10.1126/scitranslmed.3002152)

10. Shannon CE. 1948 A mathematical theory of
communication. Bell Syst. Tech. J. 27, 623 – 656.
(doi:10.1002/j.1538-7305.1948.tb00917.x)

11. de Ruyter van Steveninck RR, Lewen GD, Strong SP,
Koberle R, Bialek W. 1997 Reproducibility and
variability in neural spike trains. Science 275,
1805 – 1808. (doi:10.1126/science.275.5307.1805)

12. Ziv E, Nemenman I, Wiggins CH. 2007 Optimal
signal processing in small stochastic biochemical
networks. PLoS ONE 2, e1077. (doi:10.1371/journal.
pone.0001077)

13. Tkacik G, Callan Jr CG, Bialek W. 2008 Information
flow and optimization in transcriptional regulation.
Proc. Natl Acad. Sci. USA 105, 12 265 – 12 270.
(doi:10.1073/pnas.0806077105)

14. Mehta P, Goyal S, Long T, Bassler BL, Wingreen NS.
2009 Information processing and signal integration
in bacterial quorum sensing. Mol. Syst. Biol. 5, 325.
(doi:10.1038/msb.2009.79)

15. Fuller D, Chen W, Adler M, Groisman A, Levine H,
Rappel WJ, Loomis WF. 2010 External and internal
constraints on eukaryotic chemotaxis. Proc. Natl
Acad. Sci. USA 107, 9656 – 9659. (doi:10.1073/pnas.
0911178107)
16. Cheong R, Rhee A, Wang CJ, Nemenman I,
Levchenko A. 2011 Information transduction
capacity of noisy biochemical signaling networks.
Science 334, 354 – 358. (doi:10.1126/science.
1204553)

17. Adami C. 2012 The use of information theory in
evolutionary biology. Ann. N.Y. Acad. Sci. 1256,
49 – 65. (doi:10.1111/j.1749-6632.2011.06422.x)

18. Stevenson WG, Khan H, Sager P, Saxon LA,
Middlekauff HR, Natterson PD, Wiener I. 1993
Identification of reentry circuit sites during catheter
mapping and radiofrequency ablation of ventricular
tachycardia late after myocardial infarction.
Circulation 88, 1647 – 1670. (doi:10.1161/01.CIR.88.
4.1647)

19. Gray RA, Pertsov AM, Jalife J. 1998 Spatial and
temporal organization during cardiac fibrillation.
Nature 392, 75 – 78. (doi:10.1038/32164)

20. Moe GK, Rheinboldt WC, Abildskov JA. 1964
A computer model of atrial fibrillation. Am. Heart J.
67, 200 – 220. (doi:10.1016/0002-8703(64)90371-0)

21. Fitzhugh R. 1961 Impulses and physiological states in
theoretical models of nerve membrane. Biophys. J. 1,
445 – 466. (doi:10.1016/S0006-3495(61)86902-6)

22. Nagumo J, Animoto S, Yoshizawa S. 1962 An active
pulse transmission line simulating nerve axon. Proc.
Inst. Radio Eng. 50, 2061 – 2070.

23. Hodgkin AL, Huxley AF. 1952 A quantitative
description of membrane current and its application
to conduction and excitation in nerve. J. Physiol.
117, 500 – 544. (doi:10.1113/jphysiol.1952.
sp004764)

24. Rogers JM, McCulloch AD. 1994 A collocation –
Galerkin finite element model of cardiac action
potential propagation. IEEE Trans. Biomed. Eng. 41,
743 – 757. (doi:10.1109/10.310090)

25. Plank G, Zhou L, Greenstein JL, Cortassa S, Winslow
RL, O’Rourke B, Trayanova NA. 2008 From
mitochondrial ion channels to arrhythmias in the
heart: computational techniques to bridge the
spatio-temporal scales. Phil. Trans. R. Soc. A 366,
3381 – 3409. (doi:10.1098/rsta.2008.0112)

26. Campbell SG, Howard E, Aguado-Sierra J, Coppola
BA, Omens JH, Mulligan LJ, McCulloch AD,
Kerckhoffs RCP. 2009 Effect of transmurally
heterogeneous myocyte excitation – contraction
coupling on canine left ventricular electromechanics.
Exp. Physiol. 94, 541 – 552. (doi:10.1113/expphysiol.
2008.044057)

27. Bourgeois EB, Fast VG, Collins RL, Gladden JD,
Rogers JM. 2009 Change in conduction velocity due
to fiber curvature in cultured neonatal rat
ventricular myocytes. IEEE Trans. Biomed. Eng. 56,
855 – 861. (doi:10.1109/TBME.2008.2007501).

28. Plank G et al. 2009 Generation of histoanatomically
representative models of the individual heart:
tools and application. Phil. Trans. R. Soc. A 367,
2257 – 2292. (doi:10.1098/rsta.2009.0056)

29. Chamakuri N, Kunisch K, Plank G. 2013 On
boundary stimulation and optimal boundary control
of the bidomain equations. Math. Biosci. 245,
206 – 215. (doi:10.1016/j.mbs.2013.07.004)

30. Le TB, Sotiropoulos F. 2013 Fluid – structure
interaction of an aortic heart valve prosthesis
driven by an animated anatomic left ventricle.
J. Comput. Phys. 244, 41 – 62. (doi:10.1016/j.jcp.
2012.08.036)
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