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Haemodynamic forces appear to play an influential role in the evolution of

aneurysms. This has led to numerous studies, usually based on compu-

tational fluid dynamics. Their focus is predominantly on the wall shear

stress (WSS) and associated derived parameters, attempting to find corre-

lations between particular patterns of haemodynamic indices and regions

subjected to disease formation and progression. The indices are generally

determined by integration of flow properties over a single cardiac cycle. In

this study, we illustrate that in some cases the transitional flow in aneurysms

can lead to significantly different WSS distributions in consecutive cardiac

cycles. Accurate determination of time-averaged haemodynamic indices

may thus require simulation of a large number of cycles, which contrasts

with the common approach to determine parameters using data from a

single cycle. To demonstrate the role of transitional flow, two exemplary

cases are considered: flow in an abdominal aortic aneurysm and in an intra-

cranial aneurysm. The key differences that are observed between these cases

are explained in terms of the integral timescale of the transitional flows in

comparison with the cardiac cycle duration: for relatively small geometries,

transients will decay before the next cardiac cycle. In larger geometries, tran-

sients are still present when the systolic phase produces new instabilities.

These residual fluctuations serve as random initial conditions and thus

seed different flow patterns in each cycle. To judge whether statistics are con-

verged, the derived indices from at least two successive cardiac cycles

should be compared.
1. Introduction
Aneurysms, i.e. pathological localized blood vessel dilatations, pose a consider-

able health risk. Their most common occurrence is in the cerebral arterial

system (e.g. carotid artery, circle of Willis [1]) and in the aorta [2]. Examples

of both types are shown in figures 1 and 2. While aneurysms can remain

unsymptomatic for years, they may grow and eventually rupture, which is

often lethal [1,2]. The formation and subsequent growth of an aneurysm is

not only caused by systemic risk factors, but a significant role is also attributed

to the local haemodynamic environment [3]. Blood flow patterns cause a non-

uniform mechanical load on the vessel wall which may lead to deleterious

remodelling [4–6].

Rather than using the entire time-dependent flow field and the associated

stress tensor on the vessel wall, derived parameters are introduced to quantify

a particular aspect of the effect of the haemodynamics on the vessel wall. These

parameters can not only serve as input for fundamental studies that try to

model the biomechanical progression of aneurysms [5,7,8], but could also

lead to improved clinical decision-making tools [9] via statistically significant

correlation where possible. Most of the parameters that have been introduced

are based on the spatio-temporal distribution of the wall shear stress (WSS),

the tangential shear force—normalized by surface area—acting on the
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Figure 1. (a) An example of an abdominal aortic aneurysm. This geometry is used for the flow simulations, using the inlet and outlets as shown. Also indicated are
the yz-midplane and the midline. (b) The boundary conditions used for the inflow. (Online version in colour.)
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Figure 2. (a) Geometry of the intracranial aneurysm used for this study. Note that the feeding artery extends approximately 10 diameters proximally beyond the
region shown here. (b) Inflow boundary conditions used for the simulations. (Online version in colour.)
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endothelial cells that line the blood vessel walls. Examples

include the oscillatory shear index (OSI) [10], the aneurysm

formation index (AFI) [11] and the gradient oscillatory

number [12]. These haemodynamic indices try to capture

the effects of the complex flow patterns into a single metric.

It is envisaged that such metrics may enable identification

of regions prone to disease formation and/or progression.

Direct in vivo determination of the WSSs to obtain the

haemodynamic parameters remains very challenging

[13,14]. The common approach is based on patient-specific

computational fluid dynamics (CFD) [15–18]. In these

studies, the Navier–Stokes equations, which describe fluid

motion, are solved numerically. In order to solve the

equations within a reasonable time frame, a series of
simplifications are usually needed, e.g. regarding the rheolo-

gical properties of blood and the properties of the wall,

i.e. rigid or deformable [19]. The highly pulsatile nature of

the flow necessitates a transient simulation. Typically, two

to five cycles are simulated, but only the final cycle is

analysed to avoid the influence of initialization effects

[16–18,20]. The same approach is common in more funda-

mental studies using simplified aneurysm geometries [21].

In contrast, it should be noted that experimental studies gener-

ally use many cycles [22,23], as this is usually required to

improve the signal-to-noise ratio.

The purpose of this study is to highlight that the nature of

the flow in aneurysms can lead to much more demanding

simulations than the current approaches reported in the
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literature. In particular, the common assumption that a single

cardiac cycle is sufficient to determine the aforementioned

haemodynamic parameters can introduce an error in the

quantification of integral metrics. We demonstrate this by

simulating the flow in two exemplary aneurysm geometries:

an abdominal aortic aneurysm (AAA) and an intracranial

aneurysm (IA). It is shown that chaotic flow patterns can

exist during parts of the cardiac cycle. Owing to the aperiodic

nature of such flows, haemodynamic parameters can be

significantly different from cardiac cycle to cardiac cycle.
J.R.Soc.Interface
12:20141394
2. Theoretical background
2.1. Pulsatile flows
From a fluid dynamics point of view, flows in aneurysms are

particularly complex: they consist of a highly pulsatile, non-

Newtonian fluid in a complex geometry with flexible walls.

Furthermore, peak velocities can bring the flow into the tran-

sitional regime where the onset of turbulent flow can be

expected. Here, we summarize the relevant terminology

and parameters that describe the flow. For a more extensive

discussion of flow in arteries and aneurysms, we refer to

reviews elsewhere [24,25].

Steady flow in an artery is described by the Reynolds

number, Remean ¼ UDr/h, with U and D the mean velocity

and the diameter and r and h are the density and dynamic

viscosity of blood. We follow the approach of most studies

and ignore any non-Newtonian behaviour and assume a

constant viscosity for blood, i.e. we ignore shear-thinning

behaviour [19]. Remean describes the ratio of inertial to viscous

forces; for low values, the viscous forces dominate, ensuring

that the flow remains laminar. For higher values of Remean

instabilities may grow, leading to turbulence.

Pulsatile flows introduce a timescale into the problem as

well as a new velocity scale. The former is the cardiac cycle

duration (T ), whereas the latter describes the excursion of

the velocity from the mean velocity; this can be characterized

by the maximum or peak velocity, Upeak. This leads to two

additional dimensionless groups: a second Reynolds number

(Repeak¼ UpeakDr/h) and the Womersley number [25]:

a ¼ D
ffiffiffiffiffiffiffiffiffi
pr

2hT

r
: (2:1)

This dimensionless number reflects the ratio of the transi-

ent inertial and viscous forces. For low a, viscous forces

dominate, and flow in a cylindrical geometry will be charac-

terized by an oscillating parabolic profile. For a . 1, transient

inertial forces lead to flattening of the profile as well as a

phase lag with respect to the driving pressure force.

2.2. Transitional flow
With a typical abdominal aorta diameter of 2 cm, a Newto-

nian dynamic viscosity of 3.5 mPa s21 and a mean velocity

of 0.10 m s21, a Reynolds number Remean � 600 can be esti-

mated [25]. This is well below the established empirical

threshold for transition to turbulence in pipe flow (2000–

2300), suggesting that the flow will be laminar. During

peak systole, the velocity can rise to 0.4 m s21, leading to

Repeak � 2400. This is only slightly above the aforementioned

threshold, indicating that it is in the transitional regime

(i.e. transition can occur if there are disturbances). Note that
the pulsatile nature of the flow can have an influence on

the threshold [26]. In particular, the decelerating phase of

the cardiac cycle is known to be a destabilizing factor [27],

so that transition can be promoted. In contrast, acceleration

of a flow is a stabilizing factor, so that flows can (partially)

relaminarize. Two regimes can be identified: bursts and

modulated turbulence. In the former, occasional short-lived

localized patches of turbulent flow appear. Their appearance

and survival rate is a stochastic process, with survival rates

rapidly increasing with Reynolds number [28]. In pulsatile

flow, these structures are usually observed during or just

after the decelerating phase of the cardiac cycle [26,27]. If

the flow does not (fully) relaminarize during the cardiac

cycle, a continuous modulation in the intensity of turbulent

flow can be observed [26].

Apart from the natural transition of the flow to turbulence

(i.e. the Reynolds number is sufficiently high), geometry can

also play a critical role. For instance, the sudden significant

increase in diameter in an AAA will lead to deceleration of

the flow, which, in turn, leads to a rise in pressure. If this

pressure increase is large compared with the driving pressure

gradient (i.e. an adverse pressure gradient), flow separation is

likely to occur [29]. Hydrodynamic instabilities can break

down the separated shear layers, leading to stochastic behav-

iour. A similar process can occur in the case of a saccular

aneurysm [30,31]. Note that here the flow is generally not

considered to be ‘turbulent’ in the conventional sense (see

also §5), but its aperiodic nature makes it distinct from the

laminar regime.

The aperiodic nature of the (partially) turbulent flow is key

to the issue highlighted by this study. For low Reynolds

number flows, each cardiac cycle will be exactly the same, no

matter how complex the flow patterns may appear. For (par-

tially) turbulent flows, each cardiac cycle will be different: at

a given point, the local blood velocity will be (slightly) different

compared with the value during the previous cycle. To identify

this behaviour, we make use of the triple-decomposition

[26,32], an extension of the conventional Reynolds decompo-

sition. An instantaneous velocity vector is decomposed into a

steady, periodic and fluctuating component:

u(x, t) ¼ �u(x)þ ũ(x, F)þ u0(x, t): (2:2)

The first term on the right-hand side is a function of the

location vector x only, as it represents the long-time mean vel-

ocity vector, i.e. averaged over many cycles. The second term,

the periodic component, is a function of the time within the

cycle. We here introduce the phase to describe the instance

within the cycle: F ¼mod(t/T, 1), with T the total length of

one cycle. The last term represents aperiodic (‘turbulent’)

fluctuations in the flow. Similar definitions can be introduced

for other quantities of interest, e.g. pressure, WSS or vorticity.

The main advantage of introducing this decomposition is

that it allows a quantification of cycle-to-cycle variations.

In particular, we can define the turbulent kinetic energy,

i.e. the energy per unit mass contained in the eddies that

are different each cycle

TKE(x, t) ¼ 1

2
jju0(x, t)jj2

¼ 1

2
(u0(x, t)2 þ v0(x, t)2 þ w0(x, t)2), (2:3)

with u‘, v‘ and w‘ representing the Cartesian components of

the vector u’. This TKE can be compared with the total
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energy or the energy contained in the steady and/or purely

periodic components, which follow from a similar definition

(e.g. by replacing u’ with u, �u or ũ).
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3. Simulation details
The two representative vascular geometries that are used for

the simulations were obtained using computed tomography

angiography in previous studies [6,8]. The focus of the

study will be on the flow in the AAA, whereas the IA

serves as illustrative counterexample.

The choice of mesh parameters and solver options can have

an effect on simulation results. In some instances, this effect

can be relatively minor, e.g. the exact point of transition and

turbulence intensity can vary somewhat. However, certain

phenomena can be completely lost with inappropriate simu-

lation details. For instance, Valen-Sendstad et al. show that

high-frequency flow stabilities can occur in an IA, but that

these only appear when a sufficiently small timestep is used

for the simulations [33,34]. In appendix A, we show in more

detail that the present simulation details are sufficient to capture

the underlying physical phenomena (i.e. flow instabilities). The

simulation details—such as mesh size and timestep—reflect

common practice in applied haemodynamics studies.

3.1. Geometry and mesh
The infrarenal part of the abdominal aorta—containing an

AAA—is cleaned up and segmented using ScanIP (Simple-

ware Ltd, Exeter, UK). Smaller arteries are removed, so that

only the aorta, aneurysm and the iliac arteries remain

(figure 1). Tests with the full geometry (i.e. including smaller

branching arteries) led to slightly different quantitative

results, but the qualitative outcome was the same. For the

IA, a similar approach is followed, except this geometry has

one inflow and three outflow vessels (figure 2).

An unstructured mesh is generated in the geometries

using ICEM CFD 13.0 (ANSYS, Canonsburg, PA). For the

near-wall region, three layers of hexahedral cells aligned

with the wall are used, whereas the remainder of the lumen

is meshed with tetrahedral elements. The total number of

elements for the AAA is 5.65 million, which leads to a typical

edge length of 0.65 mm for the tetrahedral elements and

0.4 mm for the hexahedral cells near the wall. A simulation

with a mesh double in size (approx. 14 million elements)

was performed to investigate grid independence. This simu-

lation gave similar results: a local variation, expressed as

standard deviation, in the OSI of 0.0348 (equivalent to 3.5%

of the full range of the OSI; see appendix A for details).

The IA mesh consists of 1.2 million elements, with a typical

element edge length of 0.3 mm in the interior, decreasing to

0.05 mm near the wall. An additional simulation was also

performed using a mesh with four times as many elements.

This gave very similar results, indicating that this mesh was

also sufficiently fine (see also appendix A).

3.2. Boundary conditions
The artery walls are assumed to be rigid and serve as no-slip

boundary conditions. This assumption of rigid wall is found

in the majority of published studies. While neglecting the com-

pliance of the geometry will have an effect on the velocity and

WSS fields [35], it can be expected that the essential features of
the flow are similar. For the inlet and outlet, physiologically rea-

listic boundary conditions are obtained using @neufuse (www.

aneurist.org), a software toolkit based on a one-dimensional

flow model of the circulation [36].

For the inlet, a time-dependent flow rate Q(t) is specified;

see the right-hand sides of figures 1 and 2 for the AAA and

IA, respectively. The mean and maximum Reynolds numbers

at the inlet of the AAA are 560 and 2080, respectively. Instead

of a parabolic velocity profile a flattened profile is used, U(t) ¼
Umax(t)(1 2 (r/R)10), to better represent the pulsatile flow in

the aorta. This simple expression gives a good approximation

of the theoretical Womersley profile for a � 15. The short dis-

tance between inlet and AAA was sufficient to develop

retrograde flow near the walls, as is observed in the theoretical

Womersley profile under these conditions (figure 3).

For the IA, a time-dependent parabolic velocity profile

is specified, again based on realistic physiological flow

measurements. Inflow velocities here ranged from 0.18

(mean) to 0.5 m s21 (peak), corresponding to Reynolds

numbers of 283 and 811. These apply to the inlet artery

(i.e. proximal to the IA), with a radius of 2.8 mm. The corre-

sponding Womersley number (a) is approximately 4,

justifying a parabolic flow profile. Note that the flow can still

develop from the simplified profile before it encounters the

aneurysm. For all cases, a heart rate of 75 beats per minute

was used, leading to a cardiac cycle duration (T ) of 0.8 s.

At the outlets, transient pressures are specified with values

again taken from @neufuse. As the walls are rigid, the speci-

fied outflow pressures only determine the (instantaneous)

split between outflows.
3.3. Solver and post-processing
Transient flow simulations are performed using CFX 5 (R13

and R15, ANSYS, Canonsburg, PA). A fixed timestep is

used to facilitate post-processing and comparison without

the need for interpolation. A timestep of 5 ms is used based

on earlier studies, and data are stored every eighth step (as

a check, shorter runs with timesteps of 2.5 and 1 ms were per-

formed, which gave similar results). A total simulation time

of 24 s is used, corresponding to 30 heart beats.

Blood is modelled as an incompressible, Newtonian fluid

with a dynamic viscosity (h) of 3.5 mPa s21 and a density (r)

of 1066 kg m23. The value used for the dynamic viscosity

was based on initial tests that showed that the shear rates

exceeded 100 s– 1 at systole (with peaks above 2000 s– 1 in

the boundary layers), suggesting that the low-viscosity

plateau will be reached [29]. The transient solver uses a

second-order backward Euler scheme and second-order cen-

tral differencing scheme for the spatial derivatives. Five

internal iterations are used at each timestep, with a conver-

gence criterion for the residuals of 0.005. Tests with stricter

convergence criteria, and more iterations gave similar results.

The 24-second run of the AAA (30 cardiac cycles) requires

approximately one week of computational time on a desktop

with an Intel Xeon (3.5 GHz); parallel processing on four

nodes was performed using Platform MPI.

Velocity and WSS data are exported to MATLAB 7.14 (The

Mathworks, Inc., Natick, MA) for further processing. The

data, in the form of a series of velocity fields, are rearranged

from a single time series, u(t) into a structure reflecting the

cyclic nature of the data: u(F, i). Here, F is the phase

within the cycle and i represents the number of the cycle.

http://www.aneurist.org
http://www.aneurist.org
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References to a specific phase (e.g. ‘F ¼ 0.1’) imply data aver-

aged over all cycles (ignoring the first two cycles to avoid

start-up effects), unless stated otherwise.

The simulations provide the spatio-temporal WSS distri-

bution, from which a number of haemodynamic parameters

can be determined. In particular, we here determine the

OSI following Ku et al. [10]:

OSI(x) ¼ 1

2
1�
j
Ð T

0 tw(x, t)dtjÐ T
0 jtw(x, t)jdt

 !
, (3:1)

and the AFI [11]:

AFI(x, t) ; cos(u) ¼ tw(x, t) � �tw(x)

jtw(x, t)j � j�tw(x)j (3:2)

Both these expressions describe the oscillatory nature of

the local WSS tw at wall location x and time t. The OSI com-

pares the mean WSS vector with the mean of the magnitude

of the same vector: a value of zero indicates that the vector

does not change direction during the cardiac cycle. Higher

values indicate a more prominent change in direction and

are linked to formation regions of the artery prone to athero-

sclerosis [10]. The AFI describes the difference between the

local orientation of the instantaneous WSS compared with

the direction of the mean WSS �tw(x), ignoring its magnitude.

An AFI of 1 indicates that at that instance the WSS vector is
aligned with the time-averaged wall shear vector at that

location; a value of 21 indicates complete flow reversal.

Note that the value of �tw(x) in equation (3.2) follows from

1

T

ðT

0

tw(x, t)dt, similar to the integrals in equation (3.1).

In most studies, these integrals are evaluated from t ¼ 0 to

t ¼ T, the duration of one cardiac cycle. This implicitly

assumes that one cycle is sufficient for the statistical

convergence of the estimation of the mean of this quantity.
4. Results
4.1. General description of the flow in the abdominal

aortic aneurysm
In figure 3, 10 snapshots covering one cardiac cycle are

shown of the flow in the midplane of the AAA. The false col-

ours represent the instantaneous velocity magnitude. The

location of this yz-plane, representing a sagittal cross section,

is indicated in figure 1. At t ¼ 2.64 s (phase F ¼ 0.30), the

flow in the AAA approaches its maximum (figure 1). At

this stage, a jet-like flow structure is formed owing to flow

separation at the local increase in diameter. This jet-like struc-

ture breaks down once the flow decelerates (t ¼ 2.72 and

2.80 s), leaving behind a chaotic pattern with little mean
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velocity. Note that in a truly periodic flow, the last frame

(bottom right) would be followed by the top left frame.

In figure 4, the periodic vorticity (~v, with v ;r � u; see

also equation (2.2)) and TKE distribution in the same mid-

plane are shown side by side for five phases. Vorticity

and TKE are shown as contour plots, whereas the mean

velocity field is indicated as the vector field for reference.

At F ¼ 0.35, the roll-up of the separated boundary layer

can clearly be seen. A cross section in the xz-plane showed

a similar flow pattern, with comparable magnitudes of

vorticity vy, suggesting a more or less axisymmetric jet-

like structure. The jet-like structure breaks apart during

F ¼ 0.4520.75 into smaller structures, as is evident from

the scattered vorticity. While we here show only vx, the

two other vorticity components are very similar. The jet

breakdown is accompanied by an increase in the TKE

(right-hand figure). Note how, initially, the local peaks in

TKE correspond with vortex cores in the left-hand figure

(e.g. at F ¼ 0.55). This implies that the TKE represents local
variations in vortex path and strengths in these stages:

during each cycle, a similar vortex structure is formed, but

it is slightly different in each cycle (recall that the periodic

components are subtracted before calculating the TKE).

Later on in the cycle, higher levels in TKE are also obser-

ved once the periodic vorticity has decreased significantly

(F ¼ 0.75). In this case, the initial vortical structure

breaks down in smaller eddies that are different in each

cycle—they will cancel out during averaging of the vorticity.

The energy that is contained in the AAA can be estimated

by calculating the average kinetic energy in a region of inter-

est covering the bulk of the AAA. This region is indicated by

dashed lines in figure 4 at F ¼ 0.35. Note that the exact shape

of this region naturally will have an influence, but for the

qualitative arguments that follow this is not relevant. The

evolution of the total kinetic energy (TKE), the periodic con-

tribution and the turbulent kinetic energy in the AAA during

two (identical) cardiac cycles is shown in figure 5. For clarity,

the long-time mean (�u) has here been incorporated into the



0 0.05 0.10 0.15 0.20
−700

−600

−500

−400

−300

−200

−100

0

100

200

300

0.00

0.15

0.20

0.25

0.30

0.35
0.50

0.65

F = 0 F = 1

z¢ (m)

P
(P

a)

Figure 6. The instantaneous pressure along the centreline of the AAA. Note
the transition from a favourable (e.g. at F ¼ 0.20) to an adverse pressure
gradient (F ¼ 0.35). The pressure is expressed with respect to the inlet
value. The inset shows the mean flow throughout the cardiac flow as a refer-
ence. (Online version in colour.)

0 0.5 1.0 1.5 2.0

0.04

0.08

0.12

0.16

0.20

cardiac phase  F (−)

K
E

1/
2 ,

 P
K

E
1/

2 ,
 T

K
E

1/
2

(m
s–1

)

KE

PKE

TKE

Qin (arb. units)

Figure 5. The total kinetic energy (KE), the periodic contribution to the kin-
etic energy (PKE) and the turbulent kinetic energy (TKE) in the AAA during
the cardiac cycle. The flow rate at the inlet, Qin(t), is shown as reference at
the top of the figure. (Online version in colour.)

0.5

0.4

0.3

0.2

0.1

0

0.2

0.1

0

–0.1

–0.2

OSI

(a) (b)

difference
in
OSI

z

x
y

Figure 7. (a) The oscillatory shear index (OSI) distribution in the AAA using
data from 28 cardiac cycles (i ¼ 3 . . . 30). (b) The local difference in OSI
using either only cardiac cycle 3 or using cycles 3 – 30.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141394

7

periodic contribution; the total kinetic energy (KE) is the sum

of a periodic component (PKE) and a turbulent component

(TKE). Note that the square-root values of the energies are

shown. The inflow boundary condition Qin(t) is shown at

the top for reference.

Figure 5 confirms the earlier observation that the TKE

peaks later in the cycle than the mean flow; the former

peaks around F ¼ 0.60–0.65, whereas the latter peaks

at F ¼ 0.25 (a delay of 0.28 s). The mean TKE within

the AAA reaches a maximum value of 1.9 � 1023 m2 s22,

which is equivalent to a typical velocity fluctuation

u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
TKE

r
� 3:5 cm s21. This is approximately 6% of the

peak systolic velocity magnitude. Locally, the TKE can

reach levels of 3.1 � 1022 m2 s22, an order of magnitude

higher than the mean value. The TKE does not decay to

zero during the cycle: note that even at F ¼ 0.35 in figure 4

the region of interest is filled with remnants of the previous

cycle. A minimal value of the TKE of 0.92 � 1023 m2 s22 is

observed when the mean flow approaches the diastolic

phase (F ¼ 0.45).

As a final description of the flow field, we evaluate the

pressure along the midline of the AAA (figure 1). The instan-

taneous pressure—relative to the pressure at the inlet—along

the midline is shown in figure 6. At F ¼ 0, the flow is at rest,

and the pressure is nearly constant throughout the AAA.

During F ¼ 0.1520.20, the flow is accelerating, corresponding

to a strong negative pressure gradient (dP/dz’ , 0, with z’ the

coordinate along the centreline). ForF ¼ 0.3020.35, the flow is

decelerating, leading to an increase in pressure along z’. The

presence of the AAA has an interesting consequence for the

pressure gradient: at the start of the AAA, the local diameter

increases dramatically (z’ . 0.05). This will slow down the

flow, as the flow is incompressible. This deceleration leads to

an increase in pressure—this can be predicted qualitatively

using the Bernoulli equation at the centreline or more quanti-

tatively using, e.g. the one-dimensional Euler equation [10].

This increase in pressure augments or counteracts the pressure

gradient owing to the acceleration or deceleration of the mean

flow. Depending on the magnitude of the gradient owing to the

mean flow, this local increase in pressure can lead to a local
adverse pressure gradient (F ¼ 0.25 in figure 6 for approx.

0.05 . z’ . 0.10). This local pressure minimum corresponds

to the moment and location where the flow separates (see

e.g. t ¼ 2.64 s in figure 3).
4.2. Haemodynamic parameters in the abdominal aortic
aneurysm

Using the velocity and WSS results from the simulation,

haemodynamic parameters can be determined to characterize

the flow in the AAA. In figure 7a, we show the distribution of

the OSI, using the data from cardiac cycles i ¼ 3 . . . 30, i.e. 28

cycles equivalent to 22.4 s of simulated flow data. Note how

the top part of the AAA has a relatively low OSI, which may

seem surprising at first. However, in this part of the AAA, the

flow near the bottom wall is mostly retrograde owing to the
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separation zone (figure 4a). In the bottom part of the AAA,

the flow is much more chaotic, as is evident from high

values of the OSI. In the two iliac arteries, the flow recovers

its unidirectional nature throughout the cycle, leading to

low values of the OSI.

A similar analysis can be performed using data from only a

single cardiac cycle. In this case, we use the third cycle, to be

consistent with the common practice in the literature. In

figure 7b, we show the difference in OSI when either just a

single or all 28 cycles are used. The colour coding in figure 7b
shows the local difference, OSI(x)3230 2 OSI(x)3. As can be

seen in figure 7, local differences up to 0.2 can be observed,

which are of the same order of magnitude as the OSI itself.

The difference in OSI for the two cases (1 versus 28 cycles)

can be quantified by calculating the standard deviation of the

differences along the entire surface. When normalized with

the mean OSI, this difference is approximately 22%. Locally,

differences up to 0.2 (or 40% of the maximum possible OSI

value) can be observed. We assume here that the results

from the long simulation are more converged statistically

and thus closer to the ‘true’ values, which will be discussed

in more detail later on.

As a second example of a haemodynamic parameter, we

calculate the AFI in the AAA. This is again done for the case

using data from a single cardiac cycle and using all available

cycles. The local differences along the geometry are quanti-

fied by calculating the standard deviation, i.e. at each wall

location, the difference is determined between the two

cases. Subsequently, the standard deviation is determined

of these differences. The results are shown in figure 8 as a

function of the cardiac cycle phase. As a reference, the

mean flow is also shown (using arbitrary units). Again,

the differences in AFI are quite significant throughout the

cycle. A minimum is observed during the accelerational

phase (F � 0.20), which represents the most stable and thus

reproducible flow condition. Once the flow decelerates and

vortical structures are formed and subsequently break

down the variation in AFI increases. During this phase, the

lack in convergence becomes more and more apparent

owing to the more aperiodic nature of the flow. An illus-

tration of the cycle-to-cycle variations of the WSS is given

in appendix B (figure 17).

4.3. Flow and haemodynamic parameters in the
intracranial aneurysm

As mentioned earlier, the flow simulations in the IA serve as

counterexample for the main aim of this study. We therefore

only briefly discuss this flow. In figure 2, the complex three-

dimensional flow pattern in the IA is shown during peak

systole. The flow field has been visualized here using instan-

taneous streamlines. Note that interpretation of streamlines in

transient flows generally has to be done with care, but here

the variation in direction of the velocity field during the

cycle is relatively small. Flow can be seen entering the saccu-

lar aneurysm and forming a jet-like structure that impinges

on the opposing wall. A series of velocity field snapshots in

a cross section (aligned with the axis of the blood vessel

midline) is shown in figure 9.

To quantify the TKE and its constituents in the IA, we

plot the periodic, turbulent and TKE during the cycle in

figure 10. The turbulent contribution is very small and has

been multiplied by a factor of 10 for clarity. The TKE is
dominated by the periodic component, and the data for KE

and PKE collapse in figure 10. There is also no time lag

between the maximum in TKE and the maximum of the

flow in the artery (Qin, shown with arbitrary scaling and

offset in figure 10).

Again, the OSI can be determined for the cases of a single

or 28 cardiac cycles. The difference between these two cases is

shown in figure 11; note that the geometry has been rotated

by 908 with respect to figure 2. As can be seen in the

graph, there is hardly any difference (the maximum of the

scale is five orders of magnitudes smaller than typical OSI

values) between the two cases. This indicates that each car-

diac cycle is practically identical to the previous cycle. As

can be expected, the AFI results are also virtually identical for

both cases. When comparing the results for a single cycle and

for 28 cycles, the maximum discrepancy is found at F ¼ 0.25,

but these differences are of the order of 1 � 1024—a fraction

of the typical values of the AFI observed throughout the cycle

(0.25–1).
5. Discussion
As discussed in §4.1, the flow in the AAA is complex and can

be considered to be weakly turbulent. Note that we use ‘tur-

bulent’ here in its narrowest definition of chaotic vorticity;

turbulence in the classical definition requires more character-

istics [37]. This chaotic nature means that the flow field will

be different in each cardiac cycle. The cycle-to-cycle vari-

ations of the interior flow will cause a slightly different

WSS distribution in subsequent cycles. However, the flow

in the IA appeared to be (nearly) completely reproducible,

despite its complex structure: the OSI comparison analysis

showed negligible differences. To explain the difference in be-

haviour, it is worthwhile to investigate the scales that are

involved in the two exemplary flows.

The TKE contains contributions from the mean flow, per-

iodic vortices and random vortices. In the AAA, once the

flow has slowed down after systole, the remaining kinetic

energy is only a result of periodic and random vortices

(F ¼ 0.35–1.1 for the AAA). We can model the dynamics of

the decay of these vortical structures using a simple scaling
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argument. We assume that the typical decay time of the

largest vortical structures scales as t � L=u0 (i.e. the eddy

turn-over time [37]). For the length scale L, we use the local

diameter of the AAA, L ¼ 3 cm, as the flow separation

creates a vortex structure that fills the entire AAA (see

figure 4 at F ¼ 0.35). For the typical velocity fluctuation,

we use u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3KE

p
, see equation (2.3). At F ¼ 0.35, this

gives u0 ¼ 0:159 m s21 and a turn-over time t ¼ 0:19 s:
The decay of the energy contained in the vortical structures

can be approximated by a power-law decay, so that

KE(t0) ¼ KE0exp(�t0=t). The time t0 represents the time that

has passed since the initial conditions of the TKE (at F ¼

0.35, t ¼ 0.28). This simple model describes the observations

qualitatively very well, as shown in figure 12. Note that the

estimated turn-over time corresponds to the observed lag of
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0.28 s between the peak in the mean flow and the peak in

TKE (§4.1).

The chaotic nature of the flow means that the estimation

of time-averaged haemodynamic indices, e.g. the mean

WSS, requires a certain number of realizations, i.e. an

adequately long time history. The exact number that is

required depends on the nature of the flow (the turbulence

level and timescales). To illustrate this, we study the conver-

gence of the OSI for the AAA. In figure 13, we report the

convergence when an increasing number of cardiac cycles is

used. It shows the difference (expressed as standard devi-

ation of the local differences) when j cycles are used,

compared with the case when ( j – 1) cycles are used. The

first point in the figure, for instance, represents the difference

between a single cycle (i ¼ 4) and two cycles (i ¼ 4 and 5).

Note that the standard deviation is a few per cent, but this

number may not reflect larger local discrepancies. The data

connected with solid lines refer to simulations using three

different meshes (with approx. 1, 6 and 14 million elements).

All three show the same convergence behaviour. To explore

the influence of the Reynolds number, two additional simu-

lations were performed with a Reynolds number of 0.5

and 0.8 times the original value (obtained by changing the

viscosity). As can be seen in figure 13, the slopes of the con-

vergence are similar, but the initial values are significantly

lower—nearly a factor of two for the 0.5Re case. For very

low Reynolds numbers (much below physiological con-

ditions), it is to be expected that the stochastic nature
disappears completely. The exact transition between the

two scenarios is beyond the scope of this study and is part

of ongoing research.

As is clear from figure 13, even 28 cycles will not give

completely converged results. However, one should note

that the differences become smaller and smaller. Simulating

the number of cycles used in this study may be impractical

for most studies (as they require an order of magnitude

more in computational time). However, simulation of one

additional cycle requires a relatively small computational

effort. Comparison of the haemodynamic parameters for

the last cycle and the results for the last-but-one cycle will

provide evidence if the flow is aperiodic or not. Additionally,

a comparison of the decay timescales with the cardiac cycle

duration can predict whether longer simulations are needed.

In the IA, there is a complex flow pattern (figure 2). How-

ever, the shape of this pattern remains more or less constant,

whereas the amplitude is modulated by the magnitude of the

velocity in the main artery (figure 9). As soon as the driving

force for the flow in the aneurysm decreases, the vortical

structure reduces in intensity; no significant (chaotic) fluctu-

ations are observed. This reflects the reduced role of inertia

in this flow, as quantified by the lower Reynolds number.

The magnitude of the flow velocity in the jet-like structure

in the aneurysm (figure 9, left-most figure) is approximately

1 m s21. The aneurysm is only 4–5 mm in width and

height. The decay time of a vortex generated by the jet-like

structure would thus be of order t � 4–5 ms. In other
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words, it will be dissipated nearly instantly. The flow

structure that exists at F ¼ 0.55 persists for the remainder

of the cycle and slowly decreases in intensity (it closely

follows the driving force). This is in agreement with obser-

vation that the TKE maximum coincides with the mean

flow maximum, as observed earlier (figure 10).

As a final demonstration of the difference between the

nature of the flow in the AAA and the IA, figure 14 shows

the phase portraits [38,39] of the velocity at a certain point

within the aneurysms. On the left-hand side, the temporal

evolution of a single velocity component (here vy) at a fixed

point within the aneurysm is shown as a function of time.

The first cardiac cycle is shown using dashed lines, the

three subsequent cycles with a solid line. The top shows

data for the AAA, whereas the bottom left figure shows

data for the IA. On the right-hand side, the corresponding

phase portraits are shown. These are constructed using a

standard time delay technique. Here, we have used a tem-

poral separation of dt ¼ 20 ms and again use dashed lines

for the first cardiac cycle and solid lines for the subsequent

cycles. Although higher-dimensional reconstructions are

possible, the simple two-dimensional phase portraits pre-

sented here fully demonstrate the relevant features. In the

bottom figure, it can clearly be observed that, after initializa-

tion (dashed lines, i ¼ 1), the IA system quickly reaches a

limit cycle: each trajectory overlaps with minimal variation.

In contrast, the AAA shows distinctly different behaviour.

After initialization (dashed line), the system appears to

follow some sort of limit cycle, but each trajectory deviates

significantly. Note that these phase portraits are closely

related to the triple decomposition that was used throughout

this study: the mean velocity value (�u) dictates the location of

the curves. The total width of the curves represents the ampli-

tude of the purely periodic velocity component, ũ(x, F). The

variation between trajectories (i.e. the width of the ‘bands’ is

proportional to the magnitude of the fluctuating components,

u’(x,t)). The phase portraits are here only used to distinguish

between purely periodic and transitional/turbulent flow.

However, they are a powerful tool in the study of the causes
of flow transition [40,39]. This topic is beyond the scope of

this study, and we refer to recent literature [41,18].
6. Conclusion and outlook
The nature of the pulsatile flow in aneurysms may result in

flow separation. The transitional flow that arises can signifi-

cantly affect the requirements for converged statistics of

various haemodynamic metrics, such as the OSI and AFI. If

the chaotic structures have a lifetime that is long compared

with the cardiac cycle duration (as observed for the AAA),

this implies the next cardiac cycle starts with different initial

conditions which leads to a different flow pattern and associ-

ated derived haemodynamic indices. Hence, in this scenario,

the simulation of a large number of cycles is necessary to pro-

vide reliable metrics of the flow field. However, if the decay

time of any fluctuation is small relative to the length of the

cardiac cycle (as observed for the IA), the flow will be peri-

odic and hence one cycle is sufficient to provide metrics of

the flow. Simulation of just one additional cycle can already

reveal convergence. This verification step is recommended

when deriving haemodynamic indices from pulsatile flow,

in particular when attempting to identify correlations
between haemodynamic patterns and regions of vascular dis-

ease formation and progression.

This study purposely shows just two exemplary cases, as

it serves to illustrate that chaotic behaviour can occur and to

highlight the implications. The observed behaviour can also

be expected in other aneurysms of comparable size. A more

fundamental study to classify and predict the behaviour is

part of ongoing research.
Appendix A
A.1. Temporal resolution
As documented by Valen-Sendstad et al. simulations using an

insufficient temporal resolution can miss important physical

phenomena, in their case high-frequency instabilities in an

IA [33,34]. To check whether our numerical approach was

capable of observing such high-frequency phenomena, we

performed an additional test, following Valen-Sendstad’s

approach: the IA was simulated with a steady inflow, equival-

ent to the peak systolic conditions (V ¼ 0.5 m s21, Re ¼ 811).

Note that the IA was chosen for this test, as the AAA already

shows instabilities.

A fixed point approximately in the centre of the IA was

chosen as a monitor point. Figure 15 shows the results of

simulations with a timestep of 0.1, 1 and 5 ms, respectively.

Note that data were not stored at each computed timestep

for practical reasons. The smallest timestep is based on the

outcome of Valen-Sendstad’s work. The largest timestep

(5 ms) is used throughout this study. It is representative of

typical haemodynamics studies.

As can be seen in figure 15, after a short time (0.1–0.2 s), a

periodic oscillation sets in, with a characteristic frequency

of 20 Hz. Closer inspection of the velocity field showed

that this is owing to a meandering of the impinging

jet (figure 9, F ¼ 0.15). The results for the two smallest

timesteps coincide. The data obtain with a timestep of 5 ms

also exhibit a periodic signal; the frequency is slightly

lower, but the amplitude is comparable. The initial tran-

sient is captured, but the periodic flow pattern starts at

a different phase in the cycle. Small differences in the com-

plex transient flow field will be the most likely cause of this
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difference in phase. Nevertheless, it can be concluded that

a timestep of 5 ms is capable of picking up relatively

high-frequency instabilities.

Note that the simulations shown in figure 15 are using a

steady inflow. It takes some time for the periodic velocity pat-

terns to develop. In the transient simulations that form the core

of the main study, the peak systolic velocity (V ¼ 0.5 m s21) is

only reached for a fraction of the cardiac cycle (figure 2b).

Likely, the instabilities seen in figure 15 and found by Valen-

Sendstad et al. will not have time to develop.
A.2. Mesh independence
To check whether the mesh that was used for the AAA simu-

lations was sufficiently fine, an additional simulation was

performed to investigate mesh independence. A refined

mesh was created with approximately 14 million nodes.

Owing to the stochastic nature of the flow, it is not possible

to compare instantaneous velocity or WSS fields, as even

the smallest difference between the two meshes can lead to

different realizations. Therefore, the only option is to compare

the averaged statistics, such as e.g. the OSI; this necessitates a

simulation that is even more demanding than the one that

forms the core of this study. The results of the OSI for the

two meshes are shown in figure 16. Figure 16 shows

the OSI of the AAA, seen from the negative y-direction. The
data of the 14 million simulation are interpolated onto the

standard resolution case, and the local difference is shown

on the right-hand side.

As can be seen in figure 16, the qualitative agreement

between the OSI results is very good. There are some small

local differences, but the average agreement is acceptable:

the standard deviation of the local difference between the

two cases is 0.0348, equivalent to 7% of the maximum

value of OSI and thus 3.5% of the full range (20.5 to 0.5).

It should be noted that both simulations are not completely

converged, even after 30 cycles (figure 13). A part of the dis-

crepancy seen in figure 16 can thus be attributed to lack of

convergence. Nevertheless, both simulations show the same

behaviour with respect to cycle-to-cycle variations.

The simulation of the IA case was also repeated with a

refined mesh, in this case with 7.8 million elements (instead

of the original 1.2). Owing to the absence of stochastic vari-

ation in the IA case, it is here possible to directly compare

instantaneous values, e.g. the WSS. The instantaneous WSS

had an average local difference (expressed as standard devi-

ation) of 0.13 Pa, equivalent to 5.9% of the mean WSS and

0.65% of the maximum instantaneous WSS at a particular

representative instance. The derived quantities (e.g. AFI and

OSI) will therefore be very similar. The original mesh size

was thus found to be sufficiently fine. This is to be expected,

as the Reynolds number is lower than the AAA case, in

combination with a mesh that was slightly finer.
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Appendix B
B.1. Cycle-to-cycle variation of wall shear stress
As an illustration of the underlying cause of the differences

between the OSI and AFI using a single or many cardiac

cycles, figure 17 shows instantaneous snapshots of the WSS

(here the x component, tx) at four ‘identical’ phases in the

midplane of the AAA. The top and bottom wall of the
AAA are shown (same orientation as e.g. figures 3 and 4),

with a vertical offset for clarity. As can be seen in this

figure, the overall pattern of the WSS is similar, but there

are variations of up to 1–2 Pa locally (see the regions indi-

cated by the arrows) as a result of the chaotic nature of the

flow. These variations, integrated in the OSI and AFI defi-

nitions (equations (3.1) and (3.2)), will lead to different

values if either a single or many cardiac cycles are used.
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