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Abstract

Dietary self-monitoring has been shown to be an effective method for weight-loss, but it remains 

an onerous task despite recent advances in food journaling systems. Semi-automated food 

journaling can reduce the effort of logging, but often requires that eating activities be detected 

automatically. In this work we describe results from a feasibility study conducted in-the-wild 

where eating activities were inferred from ambient sounds captured with a wrist-mounted device; 

twenty participants wore the device during one day for an average of 5 hours while performing 

normal everyday activities. Our system was able to identify meal eating with an F-score of 79.8% 

in a person-dependent evaluation, and with 86.6% accuracy in a person-independent evaluation. 

Our approach is intended to be practical, leveraging off-the-shelf devices with audio sensing 

capabilities in contrast to systems for automated dietary assessment based on specialized sensors.
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Introduction

Food journaling has been demonstrated to encourage individual to adopt healthier eating 

habits since the self-reflection that occurs when people keep track of what they eat plays an 

important role in behavior change [3]. Unfortunately, despite its benefits, food journaling 

remains a difficult undertaking; individuals must remember to log meals and snacks 
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throughout the day, and then manually record eating activities on a food diary, a tedious and 

time-consuming task.

Over the years researchers have suggested various approaches towards automatically 

recording eating activities. Although promising, they have often required individuals to wear 

specialized devices such as swallow-detecting neck collars and other sensors that have made 

many of these systems impractical for everyday use. Additionally, most approaches have 

focused on fully automating the food tracking process, a direction that is not only highly 

challenging from a technical perspective, but also misguided from a behavior one since it 

eliminates the self-reflective benefits brought forth by journaling.

An emerging form of behavior journaling called semi-automated journaling aims to 

minimize the effort associated with manual logging while still keeping individuals directly 

involved in the activity of interest. One of the keystones required for the implementation of 

semi-automated or automated food journaling systems is identifying when individuals are 

engaged in an eating activity. Inferring the moment or time window when individuals are 

consuming food supports a number of scenarios that ultimately help individuals reflect on 

their diet. For instance, the recognition that eating is taking place could automatically trigger 

a reminder to capture a relevant food photo. Moreover, if eating moments can be recognized 

in real time, adaptive systems supporting just-in-time dietary interventions can be realized.

To address the challenge of automatic eating activity detection, we present a system that 

identifies meal eating moments from ambient sounds using acoustic sensors. Our aim is to 

improve the practicality of current approaches associated with food journaling by leveraging 

devices available and in use by individuals. This approach, referred to as opportunistic 

sensing [11], contrasts to methods that require more specialized forms of sensing modalities 

(e.g., electromyography for swallow detection). Microphones are simple sensors and 

virtually ubiquitous; they are guaranteed to be present in mobile handsets across the board, 

from top of the line smartphones to more basic feature phones. Additionally, audio data is 

contextually very rich, and has been successfully used in health-focused applications [9].

The two contributions of this work are (1) a practical system for the recognition of meal 

eating activities in the wild from ambient sounds and (2) a system evaluation using over 100 

hours of audio collected in-the-wild from 20 participants.

Related Work

Efforts focused on eating recognition date back to the 1980s when researchers tried to detect 

chews and swallows using oral sensors in order to measure the palatability and satiating 

value of foods [21]. Ongoing research work in this area ranges from the use of 

crowdsourcing techniques [15], wearables [8, 4], and instrumented objects [6]. Sound is a 

contextually-rich source of information that can be easily recorded using one of the simplest 

and most ubiquitous sensors; a microphone. Hence, a large body of work at the intersection 

of acoustic sensing and activity recognition has emerged over the last decade [22, 17, 10].

One of the most explored applications of sound-based activity recognition has been dietary 

intake tracking, realized through wearable devices. Sazonov et al. proposed a system for 
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monitoring swallowing and chewing through the combination of a piezoelectric strain gauge 

positioned below the ear and a small microphone located over the laryngopharynx [18]. A 

promising and comprehensive approach to automated dietary monitoring was proposed by 

Amft et al. [1]. It involves having individuals wear sensors in the wrists, head and neck and 

automatically detect food intake gestures, chewing, and swallowing from accelerometer and 

acoustic sensor data.

More recently, Yatani and Truong presented BodyScope, a wearable acoustic sensor 

attached to the user's neck [24]. The system was able to recognize twelve activities at 79.5% 

F-measure accuracy in a lab study and four activities (eating, drinking, speaking, and 

laughing) in a in-the-wild study at 71.5% F-measure accuracy.

There are two elements that distinguish our work from previous initiatives around audio-

based dietary monitoring. Firstly, our implementation is meant to be practical; our system 

recognizes eating moments from ambient sounds without the need for specialized sensors. 

Instead, our approach leverages devices such as smartphones, that individuals have already 

adopted into their lives. Secondly, the feasibility of our system was tested in-the-wild with 

twenty participants. Efforts like BodyScope [24] were also evaluated in real world 

conditions, but in smaller studies.

Implementation

Our system was designed to learn to recognize sounds that are associated with eating 

activities, such as the background noise in a restaurant environment, and the softer but 

highly distinguishable sounds generated by the mouth when chewing and biting. This sound 

identification task presents two technical challenges: the extraction of information-rich 

features from ambient audio collected with a microphone, and the design of a binary 

classifier with the ability to distinguish eating sounds from non-eating sounds from audio 

features.

Practicality was of utmost priority in the design of our system, therefore it does not rely on 

any specialized sensors. The implementation we propose could run on a smartphone device 

and was evaluated on the wrist in an effort to simulate a smart watch device or some other 

wearable piece of technology designed for everyday use.

Audio Frames and Features

Audio was recorded at a sample rate of 11,025Hz (16 bits per sample), and audio frames 

with size 50ms were extracted using a Hanning-filtered sliding window with an overlap of 

50% (block size=552, step size=276). This audio frame size is larger than what is typically 

chosen for speech recognition applications but adequate to capture environmental sounds.

We extracted 50 features from each frame, using the Python-based Yaafe tool [13]. Based 

on previous work that also attempted to recognize human activities from audio [10, 17], we 

chose the following time and frequency domain features: Zero-Crossing Rate [19], Loudness 

[14], Energy, Envelope Shape Statistics, LPC [12], LSF [2, 20], Spectral Flatness, Spectral 

Flux, Spectral Rolloff [19], Spectral Shape Statistics [5], and Spectral Variation.
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Clustering and Classification

Because many ambient sounds that characterize eating activities are often much longer than 

a single audio frame, we clustered 400 consecutive frames and calculated the mean and 

variance of each feature across these frames (Figure 1). This step also reduced feature 

“noise” that could be introduced if we had accounted for the acoustic characteristics of every 

single audio frame. For clustering, we applied a sliding window over the audio frame 

stream, also with 50% overlap. This resulted in a frame cluster vector of size 100 (mean and 

variance of 50 features). We chose 400 frames for each cluster because that is equivalent to 

a total of 10 seconds of audio, a duration that can encapsulate sounds of interest that are both 

short (e.g., the clicking sound of utensils hitting plates or bowls), and long (e.g., background 

noise in a restaurant). We performed classification with the Random Forest classifier 

available in the Scikit-learn Python package [16].

User Study

To evaluate our system, we conducted an IRB-approved in-the-wild study, where we 

recruited participants and examined how our system performed when classifying ambient 

sounds collected in the real-world, as individuals performed their normal everyday activities. 

We recruited 21 participants (15 males and 6 females) between the ages of 21 and 55 

through our social network, word-of-mouth, flyers and mailing lists. For joining the study, 

they received $20 as compensation. Participants included students, research scientists, 

designers, entrepreneurs and other professionals.

The study lasted between 4 and 7 hours on a single day; for 17 participants, the study began 

in the morning sometime between 8AM and 11AM and ended between 3PM and 4PM, 

while for 3 participants it began between 4PM and 7PM and ended before 10PM. This time 

period was enough to guarantee that all study participants had at least one meal (lunch or 

dinner).

Subjects wore an audio recording device on the wrist. We chose this placement for the 

collection of ambient sounds because we anticipate that smart watch-type devices will 

become popular in the near future. It is very likely that these devices will be capable of 

recording and even analyzing audio, despite their compact size.

The audio recorder registered sounds continuously throughout the study. At the end of the 

study, participants were given the opportunity to review their audio file, and delete any 

audio segment that they did not want to share with us. After this initial step, we performed a 

walkthrough of the 4-7 hour study period with participants using the Day Reconstruction 

Method (DRM) [7]. At the end of this process, we were able to discover when individuals 

ate during the study interval and segmented and labeled their audio clips accordingly.

Ground Truth

To obtain ambient audio ground truth for the eating activities, we asked participants to recall 

their activities for the day and list them in order, indicating an estimated beginning and end 

time for each activity. This activity list in chronological order allowed us to discover if and 

when the participant had a meal. To make sure that time periods indicated by participants 
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were in fact eating activities, two of the authors coded the audio files independently after 

agreeing on a guideline and then compared results. Disagreements beyond a range of 5 

minutes at the beginning or end of an eating activity audio segment were discussed; there 

were 5 disagreements in total. The final set of ground truth data for each participant included 

the audio clip referring to the reported eating activity, and another clip with all the audio 

except for the eating activity segment. As expected, the eating activity audio clip was always 

much shorter in duration than the audio clip of non-eating activities.

Results

To reiterate, our high-level goal is to develop and evaluate a practical approach to detect 

when meals are being consumed in the wild. In this work, the primary performance metric 

we wished to assess was whether the system could identify meal eating activities from 

ambient sounds. This assessment was driven by collecting data in real situations and 

learning models from the data to test our approach.

We evaluated our models using a person-dependent technique and reported results in terms 

of precision, recall and F-score metrics (Table 1); we performed 10-fold cross-validation on 

each study participant's data and then averaged the results across all participants to obtain an 

overall result. For comparison, we tested three different classifiers: Support Vector 

Machines (SVM), Nearest Neighbors (n=5), and Random Forest. The Random Forest 

classifier proved to be vastly superior to the other two classifiers, yielding an F-score of 

79.8%. As a means of comparison, this result is equivalent to what Yatani et al. achieved 

with BodyScope [24]. On one hand, BodyScope was able to recognize multiple activities. 

On the other hand, our system does not require any specialized sensor, and can run in any 

off-the-shelf device that is capable of recording and processing audio, such as smartphones 

and smart watches.

A LOPO (leave-one-participant-out) cross-validation resulted in an F-score of 28.7%, 

suggesting that this approach would greatly benefit from personalization. It is important to 

note that F-measures below 50% are not uncommon in LOPO evaluations, particularly in the 

context of free-living studies [24].

Discussion

Our ambient audio dataset included meal eating activities in a wide variety of contexts. 

Participants ate alone and with friends; they ate at home, at work, at school and in the 

classroom. Although desirable, this level of variety in the data made the classification task 

particularly challenging.

One factor that hampered the classifier's ability to identify meal eating was the short 

duration of meal events, which were shorter than 12 minutes in some cases. This resulted in 

a small number of frame clusters for the classifier to examine, and a misclassification proved 

very costly. Another difficulty was that some of the participants had their meals while 

performing other activities such as attending a class or working in the computer, which were 

not labeled as meal eating activities. It is likely that additional examples would help with 

activity class separation in this case. Finally, classifying meal-eating in quiet environments, 
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such as one's office or home, has obvious challenges. This suggests a design rationale for 

training the classifier while emphasizing the specific characteristics of different sounds 

environments (e.g. home, school, restaurant).

Despite these difficulties, it is worth noting that it would have been impractical to evaluate 

our system in a controlled lab setting, since it would have been devoid of most of the natural 

environmental sounds that individuals are enveloped in when in real world settings and 

conditions.

Ground Truth

Estimating ground truth from the audio files proved to be a challenging undertaking. 

Individuals were asked to recall the exact time they had meals, but often could not do so 

accurately. In some cases, finding this segment proved particularly difficult, especially when 

the length of the meal was under 10 minutes. Moreover, while in some audio clips it was 

possible to hear that participants were eating or were in a restaurant environment, in other 

clips this was not clear at all. For instance, participants P9 and P14 ate in a classroom or 

classroom-like environment, whose sounds could not be easily identified as those that are 

characteristic of an eating activity. In these situations we had to rely on subtle cues, such as 

the sound of a food container coming out of a brown bag.

Another difficulty we faced in obtaining ground truth had to do with the characterization of 

an eating activity. Some participants had hour-long lunches, where they chatted with friends 

extensively before, during and after the meal. On the other hand, some participants had very 

short meals, eating uninterruptedly for 10 or 15 minutes. In the case of the long lunch, a 

question might be raised as to whether the whole meal event should be labelled as “eating” 

or only the period when individuals were actively eating.

Data Collection

Although our feasibility study represents a large ecologically-valid data collection effort, it 

is limited in two important ways. First of all, since participants joined the study for 4-6 

hours in a single day, ambient audio data was recorded for only one meal of their day. For 

most participants the recorded meal was lunch. The system was evaluated on a per-

participant basis through cross-validation, but having just one example of a meal eating 

activity per participant lowers the confidence that our results generalize over several days. In 

the future, we plan to address this weakness by collecting data for multiple days per 

participant. Additionally, the lack of multi-day audio data makes it unlikely that our system's 

capability to infer eating activities generalizes across individuals. Although we plan to 

evaluate our system using a person-independent metric in the future, we believe that most 

applications and interfaces built on top of our implementation will be personalized (e.g., a 

just-in-time intervention tailored to address an individual's specific challenges).

Secondly, snacking behavior was not the focus of this study. The duration of data collection 

per day combined with the times when the study began and ended precluded us from 

capturing ambient audio around snack-eating activities. However, there is no question that 

snacking is a highly relevant behavior, and we plan to improve our study design and 

techniques to account for it in the future. Having said this, a few of the meal eating activities 
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logged in our feasibility study were shorter than 10 minutes, which more closely matches 

snack eating duration than a “traditional” meal eating duration. The truth is that there is a 

great deal of ambiguity when it comes to characterizing an eating activity as meal eating 

versus snack eating.

One of the key issues in audio-based activity recognition is privacy. Understandably, most 

people object to the recording and analysis of audio of their everyday lives, particularly if it 

is done completely autonomously and without human input. In our implementation we did 

not address this challenge, although techniques for protecting privacy in audio streams, and 

conversational speech in particular, have been proposed [23].

Conclusion

Based on our results, and despite the limitations of our study, it is clear that acoustic sensing 

represents a promising opportunity. Our system was able to identify meal eating with 89.6% 

precision and 76.3% recall in a person-dependent evaluation. Although our focus in this 

work is on the binary presence of eating moments in an audio stream, there are many other 

dimensions of eating that are relevant from a diet and behavior change perspective. With 

audio, it might be possible to determine whether individuals are eating alone or with friends, 

and whether they are eating while working (e.g. typing in a computer) or watching 

television. We hope to extend our audio-based activity classification platform in the future 

to capture these additional contextual parameters.
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Figure 1. 
The audio processing pipeline consists of audio framing, audio feature extraction, frame 

clustering, frame clustering, and classification.
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Table 1
Person-dependent, 10-fold cross-validation results for each classified we evaluated. The 
Random Forest classifier performed significantly better that the SVM and Nearest 
Neighbors classifiers

Classifier Precision Recall F-score

SVM 47.5% 50.5% 48.9%

5-NN 53.3% 51.9% 51.4%

Random Forest 89.6% 76.3% 79.8%

IUI. Author manuscript; available in PMC 2015 April 07.


