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Abstract

We describe a general framework for modeling and stochastic simulation of epidemics in realistic 

dynamic social networks, which incorporates heterogeneity in the types of individuals, types of 

interconnecting risk-bearing relationships, and types of pathogens transmitted across them. 

Dynamism is supported through arrival and departure processes, continuous restructuring of risk 

relationships, and changes to pathogen infectiousness, as mandated by natural history; dynamism 

is regulated through constraints on the local agency of individual nodes and their risk behaviors, 

while simulation trajectories are validated using system-wide metrics. To illustrate its utility, we 

present a case study that applies the proposed framework towards a simulation of HIV in artificial 

networks of intravenous drug users (IDUs) modeled using data collected in the Social Factors for 

HIV Risk survey.

1 Introduction

Modeling the propagation of pathogens through risk-bearing interactions of actors in a social 

network is an emerging perspective in epidemiology, particularly in HIV research [Goforth 

and Berleant, 1994, Bell et al., 2002, Goodreau, 2006]. Approaches such as these shift our 

view of risk away from individuals to collective social bodies as the carriers and transmitters 

of infection. The subject of study here then is “risk networks”, comprised of populations 

whose social interconnections signify particular “risk behaviors” that bear a potential for 

pathogen transmission. In the context of HIV, some examples of risk behaviors include 

social relationships which result in drug injection equipment sharing, and sexual 

relationships in the context of drug use. Although HIV will be used as a case study, the 

model presented in this paper is general enough to be applied towards the simulation of any 

epidemiological scenario in which disease transmission is driven by pairwise risk behaviors 

across a speci able set of relationship types. Risk networks are now widely recognized as 

critical factors in understanding infection patterns, as they define the natural environment in 

which risk behaviors occur, and through which the propagation of infection proceeds 
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[Friedman et al., 1997, Bachanas et al., 2002]. The value of network-based simulation then, 

is that it can make the dynamic structures of risk visible and compelling [Hsieh et al., 2006], 

and help further a change in perspective to one that sees collectivities (and their respective 

forms and dynamics) as health actors with specific and identifiable structures of risk.

For reasons of cost, most risk network studies are relatively small in scale compared to the 

size of the overall communities they seek to understand. Even large-scale network studies 

manage to interview only a small portion of the ambient risk network; e.g. the study of 

Social Factors for HIV Risk (SFHR) conducted in Brooklyn, New York, in the early 1990s 

involved interviews with several hundred people [Friedman, 1999] out of the 30,000-80,000 

IDUs in Brooklyn at the time. In contrast, simulation allows researchers to operate at the 

scale of the phenomenon of interest. While simulation is necessarily far from perfect and not 

a substitute for direct research, when based on detailed data and constructed to conform 

closely to known, short-term social dynamics, it can potentially provide suggestions and 

even tentative conclusions about critical health phenomenon at a time depth and social scale 

not possible in direct empirical research. Considerable prior work exists in which agent 

based modeling (ABM) is applied to questions of infectious disease epidemiology (see e.g. 

Nikolai and Madey [2009] for a recent review of ABM toolkits).

Most previous ABM efforts consider spatial models [Bian, 2004, Dunham, 2005, Lopez-

Paredes et al., 2012, Luke et al., 2005] wherein social networks are implicit through spatial 

proximity; networks restructure themselves dynamically as actors move (coming in and out 

of pairwise contact). The EpiSimS system [Stroud et al., 2007], for example, considers 

social contact to define a network over which the spread of pandemics may be explored via 

simulation. Spatial contact-based stochastic agent models have also been used to study 

problems of infectious disease, including Enzootic Bovine Leukemia [Bagni et al., 2002], 

smallpox [Eidelson and Lustick, 2004], SARS [Huang et al., 2004], and influenza 

[Yoneyama and Krishnamoorthy, 2012]. ABM has even been used to evaluate the impact of 

the adoption of health care innovations [Dunn and Gallego, 2010], and intervention strategy 

efficacies [Huang et al., 2010]. One strength of explicitly spatial approaches is that the 

micro-level movements/behaviors of individuals drive the simulation trajectory forward over 

time, and the parameters specifying these behaviors can be drawn from distributions that 

have been calibrated to behavioral profile data collected from the population modeled. A 

weakness of spatial models, however, is that macro-level network characteristics—e.g. 

degree distribution, and triangle prevalence or “transitivity” (the latter not preserved in 

Markov movement paradigms)—cannot be easily controlled through the course of the 

simulation without impinging on actor agency (though for recent progress relating spatial 

models with small-world network structure see Huang et al. [2005, 2009]).

Exemplary of research efforts to generate networks having specified macro-level 

characteristics include the work of Hamill and Gilbert [2009], wherein artificial networks 

are generated to mimic structural characteristics observed in real-world social networks (e.g. 

sparseness, short distances, searchability, fat tails, assortativeness, transitivity, and 

clustering). Such efforts are part of a long line of inquiry concerning the problem of 

generating random networks having characteristics of social networks seen “in the wild”—

see Watts and Strogatz [1998], Barabasi and Albert [1999] and Dorogovtsev and Mendes 
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[2003] for example. The problem of generating random k-regular graphs (i.e. thefficase 

where the degree distribution is uniform) has been the subject of a sequence of results 

starting with the work of Bender and Canfield [1978], the switching process of McKay and 

Wormald [1990], and the configuration model [Bollobas, 1980, Bollobas, 2001]. The more 

difficult problem of generating random graphs satisfying a specified univariate degree 

distribution (over all nodes), or bivariate degree distribution (over all edges) remains a 

subject of ongoing inquiry. General speaking, the unbalanced (power-law) degree sequences 

of social networks mandate the development of inhomogeneous random graph models 

[Bollob as and Riordan, 2008]. The problem of efficiently generating networks with a 

specific non-uniform degree sequence (across all nodes) is a well-known difficult problem 

that has received considerable attention in recent years [Bayati et al., 2010, Blitzstein and 

Diaconis, 2011, Chatterjee et al., 2011], and the problem of generating graphs with a 

prescribed joint degree distribution has only been recently addressed by Stanton and Pinar 

[2011] using Markov chain techniques.

Complicating matters further is the fact that the plausibility of an artificially generated social 

network rests on more than merely the extent to which its univariate and bivariate degree 

distributions reflect those observed in the real-world population being modeled. Many other 

aspects of network structure might influence the likelihood of edge formation. One such 

example arises when individual nodes are assumed to have associated attributes (e.g. 

gender), since then attribute homophily may exert a bias on edge likelihoods (e.g. if same 

gender or opposite gender links are more predominant in the population/relationship being 

modeled). Another example arises in the presence of small scale structural effects like 

transitivity (the bias to edges forming between two individuals who share a network 

neighbor). To determine the extent to which edge formation is influenced by phenomena 

such as attribute homophily or relation transitivity, one may employ the techniques of 

Exponential Random Graph Modeling (ERGM), which were originally put forth by Holland 

and Leinhardt [1981] and Frank and Strauss [1986], with estimation questions settled 

recently by Snijders et al. [2006]. ERGM models of networks can be used to generate 

artificial networks [Goodreau, 2007, Goodreau et al., 2009, Kolaczyk, 2010, Lieberman, 

2012]. As described by Goodreau, such studies can also create dynamic networks where the 

connections between node actors are periodically reassigned according to a given 

distribution of pair-wise likelihoods [Goodreau, 2011]. As such, ERGM networks can be 

made to “evolve” over time, though at the cost of readily controllable actor agency. One 

strength of ERGM simulation models then is that macro-level network characteristics (e.g. 

the network's instantaneous degree distribution) drive the simulation trajectory over time, 

and these characteristics may be calibrated against measurements of the actual population 

being modeled. A weakness of ERGM simulation models, on the other hand, is that the 

micro-level behaviors of individuals (implicit in edge restructuring) cannot be readily 

controlled and made to reflect the known behavioral profiles exhibited in the population 

being modeled. Indeed, when discussing their future efforts, Snijders et all refer to the need 

for “stochastic actor-based models for network dynamics” [Snijders et al., 2010]. As 

Snijders describes it, networks gain their dynamism as actors come and go from the 

network, and when they change their mutual connections due to:
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... the structural positions of the actors within the network—e.g., when friends of 

friends become friends—characteristics of the actors (“actor covariates”), 

characteristics of pairs of actors (“dyadic covariates”), and residual random 

influences representing unexplained influences [Snijders et al., 2010, p. 44].

What is needed is a framework in which macro-level network characteristics and individual 

micro-level behavioral profiles both play a role. Such a framework is developed and 

presented here, specifically for application towards the study of disease epidemiology. The 

framework is designed with the following guiding principles in mind:

• like ABM-based simulations, we want to maintain an actor-based environment, 

where actions which determine network dynamism originate in characteristics of 

the nodes themselves. Such actor-based dynamism should include risk behaviors, 

length of network participation, and when and how to establish new network 

connections or get rid of prior ones.

• like ERGM-based simulations, we want link creation to reflect node-specific 

attributes (such as gender, age, ethnicity/race), and local structural tendencies (e.g. 

network transitivity), so that our dynamic network remains “real-world viable” over 

long simulation trajectories, even while individual nodes/actors enter or leave the 

network.

• like ABM-based simulations, we want our actors to exhibit individual behavior 

patterns (beyond node-specific characteristics such as age, or gender) parametrized 

from a distribution of possibilities, and to allow for different modalities of 

participation (such as one might see from two very different classes of network 

actors who are otherwise indistinguishable on the basis node characteristics).

• like ERGM-based models, we want to be able to control for network-level factors 

affecting overall network dynamism, such as bounded deviation from a specific 

network-wide degree distribution. And finally,

• like ABM-based simulations, we want to be able to simulate large networks, to 

determine whether factors of scale influence network dynamics and infection 

trajectories over simulation time, and to examine simulation results on a scale of 

the phenomena of interest.

Towards this, Marshall et al. [2012] have recently made progress by demonstrating an ABM 

approach that considers both macro-level network characteristics and individual micro-level 

behavioral profiles, in the context of their work on HIV interventions in IDU risk networks. 

In this paper we present a case study that extends the approach of Marshall et al., providing 

an illustrative application of our general-purpose framework for epidemiological modeling 

which considers multi-pathogen multi-layer networks by synthesizing both ERGM and 

ABM approaches. A more detailed comparison of features is given as part of the case study 

(see Section 5, pp.20).

The framework is presented in stages. We begin, in Section 2, by considering static risk 

networks. First, in Subsection 2.1, we describe how a population survey can be used to 

obtain a description of a concrete real-world risk network, and how from this one may 
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determine which attributes (of individuals) exert the greatest influence on the formation of 

risk relationships. In Subsection 2.2, we present the derivation of an (m, l, p) statistical 

network model — in effect, a distribution over the space of all static networks, which 

reflects the properties of the concrete risk network being modeled. In Subsection 2.3, we 

discuss how one may use a statistical network model to generate new (static) artificial risk 

networks. Finally, in Subsection 2.4, we address the need to validate generated artificial risk 

networks against the original real-world risk network from which the generative model was 

distilled. To simulate infection across these networks, the framework is extended in Section 

3 to permit each of p distinct types of pathogens to flow between individuals via any of the l 

different types of risk relationships. Lastly, in Section 4, network dynamism is captured via 

node arrival and departure processes, incremental changes to individual risk relationship 

structures, and node aging. Fifinally, to illustrate the efficacy of the proposed framework, we 

apply it towards a case study of HIV in injection drug user (IDU) communities where drug 

equipment sharing and sex in the context of drug use are the principal risk events underlying 

the transmission of HIV, the case study and associated simulation results are presented in 

Section 5.

Throughout this exposition, we adhere to certain notational conventions. Sets will be 

denoted by capital letters, A, B, C, etc., and will be indexed by integer variables i, j, k, etc. 

Elements within sets will be written in lower case Roman letters, a, b, c, etc. Distributions 

will usually be expressed as α, β, γ, etc. Types or proper names will be represented in script 

, etc. In an exposition where a set or function, (e.g. the actors V ) must be 

considered time-dependent, the temporal index will appear as a superscript, (causing us to 

write Vt for the set of actors at time t). In situations where a set or function (e.g. the 

infectiousness curve I) is being seen in the context of a particular layer, attribute, or 

pathogen type, this dependency will be made clear in the subscript of the variable, (e.g. Ij,k 

is the infectiousness curve of pathogen k via risk acts in layer j). Both superscripts (for time) 

and subscripts (for context) will be employed simultaneously when referencing sets or 

functions that are both time and context dependent (e.g.  is the set of neighbors of 

actor v within network layer j at time t). A function f whose domain is D and range is R will 

be declared so by the statement f : D → R. Set differences are indicated using the \ operator.

2 Modeling network structure

We view a risk network as an l-layer combinatorial fabric, weaving together a set of n 

individuals, each of whom has m attributes, and may host one or more of p distinct types of 

pathogens. In what follows, we present how a real-world risk network is described (2.1), 

modeled statistically (2.2), and how the statistical network model can be subsequently used 

to sample new artificial risk networks (2.3) that can be validated against the original real-

world network (2.4).

2.1 Obtaining data on real-world risk networks

In a survey of a population V, each constituent individual v is interrogated regarding a fixed 

set of m attributes X = {x1,. . . xm}, e.g., x1 could be gender, while x2 might be age, etc. We 

assume that each variable xi (for i = 1,. . ., m) is categorical, taking values from a nite set Ui 
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that is known in advance (e.g. U1 could be {Male, Female}, while U2 might be 

21AndUnder, Over21}). Each node attribute xi (i = 1,. . ., m) is seen as a function xi : V → 

Ui.

Yet to model a risk network, the survey must go beyond individual attributes and collect 

data on the risk relationships between them. The relationships of interest might be of several 

concrete types . For example,  might be the relationship of “sharing 

injection equipment with”, while  relationships could embody “sexual partnership”, etc. 

In practice, during the survey, each individual v from V is questioned about their risk 

relationships for each type  (for j = 1,. . ., l), and is asked to provide sufficient information 

with which to identify the individuals Nj(v) ⊆ V with whom v enjoys a type  relationship. 

In other words, the survey must be capable of capturing ego network data that, in turn, can 

be aggregated to produce a network whose structural features are representative of the 

topological characteristics of the risk network as a whole. The data thus collected is used to 

define a degree  for each individual v, the value of this quantity is the 

number of  relationships that v has. The set of all pairwise relationships, at each network 

layer j = 1,. . ., l is then expressible as .

Finally, the survey must produce data on the prevalence and distribution of the pathogens of 

interest, which may be of several distinct types . Specifying the 

instantaneous state of a risk network thus requires a collection of p concrete sets of 

individuals A1, A2,. . ., Ap ⊆ V where Ak is the set of individuals who are positive for 

pathogen type  (k = 1, 2,. . ., p).

Collecting the above elements, we define a risk network to be an (m + 2l + p + 1) tuple 

 where i = 1,. . ., m, j = 1,. . ., l, k = 1,. . ., p.

2.2 Defining a statistical network model

In modeling a risk network , the question arises as to the contents of the model, and 

particularly, which m attributes X = {x1,. . . xm} to consider. Questions of determinate 

variables (and their relative importance), are of paramount importance to our modeling 

process. In particular, we need to determine which individual attributes were important to 

the formation of the network, and to know how these attributes rank relative to one another.

Recently, the statistical analysis of network data has been advanced considerably by the 

introduction of Exponential Random Graph Modeling (ERGM), which provides researchers 

with an alternative to the simple cross-tabulation of network link data. ERGM is a statistical 

technique aimed at determining the extent to which the likelihood of network linkages 

appears to be biased towards (or against) the creation of specified network substructures, 

above and beyond what is expected by chance occurrence. Such substructures can be as 

simple as the tendency of “like” nodes to be connected (at a greater rate than expected by a 

random distribution of connections), or as complex as specific structures of connection 

between several individuals [Bearman et al., 2004]. The theoretical basis for ERGM analysis 

was laid down by Holland and Leinhardt [1981] and Frank and Strauss [1986], with 
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estimation questions finally settled only recently [Snijders et al., 2006]. Readers can find a 

detailed exposition of ERGM in Goodreau [2007], Goodreau et al. [2009], Kolaczyk [2010].

To begin the process of parameterizing the models, we apply ERGM analysis to the data set 

 obtained from the survey. The outcome of such analysis is the m most influential 

attributes X = {x1,. . . xm}, together with weights that quantify their relative influence. In 

addition, we use ERGM to evaluate the influence of significant network substructures. 

These can be as simple as edge reciprocity or network transitivity, or as complex as those 

discussed by Bearman and colleagues [Bearman et al., 2004]. Here we consider only the 

influence of triadic closure (i.e. transitivity) on link formation in each of the l network 

layers, these l weights are denoted  (for j = 1,. . ., l). Triadic closure was found to be in 

the SFHR network data on which the case study of our framework is based. SFHR 

considered risk relationships between intravenous drug users which were based on 

equipment co-use, and the stigmatized nature of the pairwise relationships clearly leads to a 

bias towards triad formation (if A co-uses with B and C, then B and C are more likely to co-

use together). In other networks, such as those where the edge relation signifies sexual 

intercourse, no bias towards transitivity is seen. 1

Attribute Distributions. Given a risk network  where i = 1,. . ., m; j = 

1,. . ., l, k = 1,. . ., p, we can from each of the attributes xi (i = 1,. . ., m), determine a 

univariate attribute distribution αi : Ui → [0, 1] for i = 1, 2,. . ., m, where for u ∈ Ui,

If a chi-squared test reveals a significant level of association to be present between αi and αi′ 

(for i ≠ i′), then the categorical attribute variables xi and xi′ are coalesced into a new joint 

variable x* defined over the Cartesian product of categorical spaces Ui × Ui′. The joint 

distribution α* over a suitably binned Ui × Ui′ is used whenever we need to sample a pairs 

of values (xi, xi′). In this manner, we may inductively coalesce all attributes which show 

significant pairwise dependencies. Given this strategy, in what follows we simplify the 

exposition by assuming that {αi | i = 1,. . ., m} is a set of pairwise independent distributions.

Next, each set of type-  relationships Ej (for j = 1, 2,. . ., l) is used to define a bivariate 
attribute distribution βi,j : Ui × Ui → [0, 1] for i = 1, 2,. . ., m, where for each u1, u2 ∈ Ui,

1In general, social network analysis has revealed the importance of both link reciprocity (where an edge in a single direction is likely 
to be matched by a return edge at a higher rate than expected at random) and network transitivity (where structural holes between two 
vertices, each with an edge to a common third party but who are not themselves connected by by an edge, occur at a lesser rate than 
expected at random). In the case of risk networks, where relationships and the events they facilitate are necessarily bi-directed, 
reciprocity is assumed for all edges. As such, only transitivity is considered here, though we note that ERGM analysis is capable of 
providing model weights for any network substructure of interest.
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Degree Distributions. Next, we model the layer-j degree distribution for the population, 

taking care to account for the fact that individual attributes and degrees are often related.2 

To capture this, we determine a suitable partition of the Cartesian product of the categorical 

spaces Ui (i = 1,. . ., m)

Informally, each of the  represents a distinct class of individuals, where 

classes are differentiated from one another because they exhibit different “ideal layer-j 

degree” distributions. In practice, the value of Sj and the definition of each class 

 is determined by performing a statistical analysis to discover which 

univariate attributes appear to significantly influence vertex degree (in layer j). From the 

results of such an analysis, classes are suitably defined so that the individuals within a single 

class can be assumed to draw their ideal layer-j degree from a distribution that is 

independent of their individual attribute values.

Since the set  is a partition of , and every v ∈ V has attributes 

(x1(v), x2(v),. . ., xm(v)) which lie in exactly one of the Sj classes, we obtain a natural 

classification function . Given such a classification function, the 

individuals V in a risk network can be naturally partitioned by class:

where .

Each layer-j degree class  exhibits its own univariate degree distribution 

 where for every pair of integers a < b, and s ∈ {1,. . ., Sj}:

In general, the layer-j degree distributions χj;s(a, b) for different classes s may differ from 

one another, and may differ from the overall “class-neutral” layer-j degree distribution

2For example, maybe 20 year old Caucasian males consistently exhibit higher degrees than 40 year old African-American females.
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If a chi-squared test reveals a significant level of association to be present between the class-

neutral degree distributions of two layers, say χj;* and χj′;*, (for j ≠ j′), then the degree 

distributions of the two layers j and j′ must be coalesced into a new joint variable χ* over the 

Cartesian product , using a common refinement of the classification schemes 

 and . The distribution χ* is used to simultaneously 

sample a pair of degrees (for network layers j and j′). In this manner, we may (for the 

purpose of degree sampling) inductively coalesce all network layers which show significant 

pairwise dependency in their degree distributions. Given this strategy, without loss of 

generality, in what follows we simplify the exposition by assuming that the set {χj;* | j = 

1,. . ., l} consists of pairwise independent distributions. The degree distribution in layer j is 

captured by the set of pairs

which functiofinally specifies a distribution for each of the classes in .

For each j = 1,. . ., l we also define a bivariate degree distribution 

where for every 4-tuple of integers a < b, a′ < b′

Pathogen Distributions. For each of the p pathogen types  (k = 1, 2,. . ., p), we model its 

prevalence, taking care to account for the fact that individual attributes and pathogen 

prevalences are often related.3 To capture this, we determine a suitable partition of the 

cartesian product of the categorical spaces Ui (i = 1,. . ., m)

Informally, each of the  represents a distinct class of individuals, where 

classes are differentiated from one another because they exhibit different“pathogen-k 

prevalence” levels. In practice, the value of Rk and the definition of each class 

 is determined by performing a statistical analysis to discover which 

univariate attributes appear to significantly influence pathogen prevalence (with respect to 

pathogen k). From the results of such an analysis, classes are suitably defined so that the 

individuals in a single class can be assumed to draw their pathogen-k infection status via a 

Bernoulli trial whose outcome is positive with a constant probability that is independent of 

the individual's attributes.

3For example, maybe 20 year old Caucasian males consistently exhibit lower HIV prevalence than 40 year old African-American 
females.
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Since the set  is a partition of , and every v ∈ V has attributes 

(x1(v), x2(v),. . ., xm(v)) which lie in exactly one of the Rk classes, we obtain a natural 

classification function . Given such a classifying function, the 

individuals V in a risk network may be partitioned by class:

where .

Each pathogen-k prevalence class  exhibits its own pathogen prevalence 

 where for every k = 1, 2,. . ., p, and r ∈ {1,. . ., Rk}:

where

The prevalence of pathogen k is captured by the set of pairs

which functionally specifies a distribution for each of the classes in .

The statistical network model  of risk network  is the (m + (m + 2)l + p)-tuple:

2.3 Generating networks from a statistical network model

Given a statistical network model , procedure MakeNetwork (Listing 1) instantiates a 

new artificial risk network of size n, using  as a statistical guideline.

In the first phase (line 1 of Listing 1), the MakePopulation procedure is called (Listing 2), 

which in turn, creates n individuals, assigning each of their m attributes independently at 

random, using the univariate distributions α1,. . ., αm (lines 4,5). Then (lines 7-10) the 

degree distributions  are used to assign each individual an ideal ego network size, or ideal 
degree, dj(v), based on v's ideal layer-j degree class s, for each of the layers j = 1,. . ., l. 

Justification for individuals having an intrinsic ideal degree comes from prior work on the 
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emergence of “roles” within risk networks [Friedman et al., 1998, Curtis et al., 1995, 

Romero-Severson et al., 2012].

In the second phase (line 2 of Listing 1), the MakePathogens procedure is called (see 

Listing 3), which in turn, distributes each of the p types of pathogens (line 2) to each of the 

individuals in V (line 3), in a manner that reflects the specified prevalence levels for the 

particular pathogen type (lines 4-7), based on v's pathogen-k prevalence class t, for each of 

the pathogen k = 1,. . ., p.

In the third phase (line 3 of Listing 1), the MakeRelations procedure creates risk 

relationships between individuals (see Listing 4). To do this, it initializes the layer j 

neighbors (line 3) of each node vi (line 2) to be the empty set (line 4), and then schedules 

dj(vi) executions of AddEdge for each node vi at each layer j (lines 5-6). Because all calls to 

AddEdge are at times < 1, MakeRelations need only wait until time 1 before aggregating 

the set of all edges (line 8).

Each execution of AddEdge is in the context of a given vertex v, layer j, and time t (Listing 

5). The procedure first computes the set  of candidate new layer-j neighbors of v (line 

2), proceeding only if this is nonempty (line 3). It then (i) computes the layer j edge deficit 

for each candidate vertex c (line 5), taking this to be the difference between v's ideal degree 

dj(v) and actual degree , rescaled into the interval [0, 1] by composing with the 

smooth squashing function . The squashing function approaches 1 as x → ∞ and 0 as x 

→ 0+. The quantity aδ(c) is thus close to 1 whenever  and becomes 0 once 

c's actual degree  attains its ideal value dj(c). The selection of candidate c is also 

influenced by (ii) the actual degrees of v and c (line 6), with respect to the bivariate degree 

distribution  (suitably binned to 2∊-sized buckets). Likewise (iii) the joint attributes of v 

and c influence the candidate selection (line 7), reflecting the bivariate attribute distributions 

βi,j. Finally, (iv) each new triangle arising from the addition of edge (v, c) contributes 

 to the total triadic bias (line 8) which is accumulated in . The factors (i)-(iv) 

are used to construct a probability distribution  over the set of candidate new layer-j 

neighbors (lines 9,10), using which one of the candidates w is selected (line 11). The edge 

(v, w) is then added to network layer j by augmenting the set of layer j edges emanating from 

v (line 13).

2.4 Validating generated networks

We have shown how, from a network survey, one may specify a real-world risk network 

(see Section 2.1), and from  derive a statistical network model  (see Section 2.2), and 

then use the model  to sample new artificial risk networks  (see Section 

2.3). We now present techniques to quantify the divergence between the original real risk 

network  and a generated artificial risk network(s) . These techniques shall be 

particularly relevant to assessing the possible degeneracy of model , i.e. its potential 

inability to generate networks that reflect characteristics of the network from which the 

model was derived.
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We begin by considering how one may measure the similarity or difference between two (m, 

l, p) statistical network models

Because  and  each consist of a set of distributions, the two models are readily 

comparable only if the domains of these distributions agree. In particular, for two models to 

be comparable it is necessary that

for all i = 1,. . ., m, j = 1,. . ., l. Likewise, the set of ideal layer-j degree classes (referred to 

via  and ), and pathogen-k prevalence classes (referred to via  and ) must be 

compatible:

for all j = 1,. . ., l, k = 1,. . ., p. The above conditions can be met by any pair of (m, l, p) 

statistical network models by using a suitable common refinement of the categorical spaces 

Ui and  (for i = 1,. . ., m), classifications  (for j = 1,. . ., l), and  (for k = 1,. . ., 

p).

Given two comparable models how might one quantify their similarity or difference?

Since statistical network models are tuples of distributions, we begin by considering how 

one may assess the similarity between two probability distributions f, f′ over a common set 

X. Many approaches exist, including histogram intersection [Barla et al., 2003], Chi-square 

statistic [Read, 1993], quadratic form distance, match distance, Kolmogorov-Smirnov 

distance [Stephens, 1974], earth mover's distance, Kullback-Leibler divergence—sometimes 

now called information divergence, information gain, relative entropy—see Kullback and 

Leibler [1951], and Jensen-Shannon divergence—also known as information radius or IRad. 

Here we shall chose to measure the difference between two probability distributions as

because by doing so, we obtain a metric space on the set of all probability distributions over 

an underlying set [Endres and Schindelin, 2003, Österreicher and Vajda, 2003]. The IRad of 
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two distributions is defined to be their mean Kullback-Leibler divergence from their average 

(as distributions). Applying this to the constituent distributions in the two models, we get

where  is the average of αi and  (as a distribution over Ui), and  is the average of βi,j 

and  (as a distribution over Ui × Ui). Analogous distance measures may be defined 

between the two models’ bivariate degree distributions  and , as well as between 

corresponding in-class univariate degree distributions χj;s and  (taken from  and , 

respectively). Because these distributions are defined over identical partitions 

 of  we can aggregate the distances by summing the divergences 

between corresponding class distributions:

Having defined the distance between corresponding distributions in the two models, we use 

the L∞ norm to extend to a de nition of distance between statistical network models:

(1)

By considering the worst-case divergences of all constituent distributions within the two 

models, we hope to produce a holistic assessment of the relative validity of each model 

against the other [Bharathy and Silverman, 2013].

The distance between two risk networks  and  (which have comparable models), is 

now taken as

(2)

Note that by not incorporating divergences of pathogen prevalence rates pk (interpreted as 

Bernoulli distribution parameters) into the de nition of Δ*, we ensure that 

measures the extent to which  differ as networks, the pathogen prevalence rates in the 

two risk networks  may diverge arbitrarily without influencing the value of .

We have thus transformed the set of all risk networks generated from comparable statistical 

network models into a metric space in which distance is inverse to similarity in network 
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structure. In practice, the metric Δ (on risk networks) will allow us to detect when an 

(artificial) generated network  is very different from the surveyed (real-world) risk 

network  from which the generative statistical network model  was defined. By 

using rejection sampling techniques [Robert and Casella, 2005] we may ensure that the 

artificial networks which are used as starting points of our simulation are not exceptionally 

different from the real-world networks from which our statistical network models are 

derived.

In the context of dynamic network simulation (to be described), Δ will allow us to keep track 

of the extent of structural divergence between the initial artificial risk network  and its 

instantaneous evolute  at time t (over the course of the simulation trajectory). If at some 

point (in time) in the simulation trajectory, we discover that  and  are significantly 

different (i.e.  exceeds some prescribed threshold), the de nition of Δ permits us 

to dissect the contributions of the constituent distributions in  and  to 

determine what aspects of the models are most responsible for the divergence. In such 

circumstances, either the trajectory can be discarded (because it has produced an exceptional 

network)—a form of rejection sampling from the space of all system trajectories, or, 

alternatively, the dynamism model parameters (to be described) may be altered to allow less 

drift in the risk network's structure over time.

Next, in Section 3, we shall extend the model to support pathogen dynamics. Then, in 

Section 4, we extend it further to capture the dynamic evolution of network topologies.

3 Modeling pathogens: the risk process

An individual v's infection status may change with respect to a pathogen  (for some k in 

1,. . ., p) when v engages in risk behaviors (via layer j relationships, j = 1,. . ., l) with a risk 

partner w who is positive for . We refer to aspects of the framework which speak to such 

events, as the risk process for pathogen , the details of which are described in what 

follows. While the description is from the vantage point of a fixed layer j and time t, it 

applies to all layers j = 1,. . ., l at all times t > 1. At a given time t, each individual is 

represented as a node v ∈ Vt within a network

The set  represents the potential layer j risk partners for v within a fixed 

temporal window of duration Θj, i.e. during the time [t, t + Θj). Typically, Θj is related to the 

definition of edge relation in the survey, e.g. in SFHR, subjects were asked for the number 

of risk behavior partners they had in the past 30 days so Θ1 would be taken as 1 month.

Individual v has the propensity to sporadically engage in risk acts across layer j of their 

network, with a partner randomly chosen from . In anticipation of this, when a node v 

first enters the network, we assign it a propensity  for risk activities in layer j. This 
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number is assumed to be time-invariant for each individual, and is randomly chosen from 

the positive reals using a truncated Gaussian [Robert, 1995] with (time-invariant) mean 

and (time-invariant) standard deviation . A Gaussian distribution was adopted in order to 

allow for controllable variation (across individuals) in the appetite for risk acts (per network 

layer j). The selection of  occurs independently for all individuals v and layers j. The 

quantity  represents the expected time between successive layer j risk 

impulses experienced by v. Statistically speaking, one may say that on average, every 

months, individual v is expected to have engaged in roughly  risk events via 

layer j edges. Following previous work on the outcomes of HIV transmission in the context 

of unsafe sex, risk impulse streams are generated by independent Poisson processes 

operating at each individual v [Barta et al., 2010, Xia et al., 2012]. To achieve the above 

characteristics (regarding mean times between impulses) in a memoryless fashion, the time 

between successive risk impulses follows an exponential distribution with rate 

. Upon experiencing a layer j risk impulse at time t, node v selects a partner w 

uniformly atj random from its layer j neighbors , and engages in a mutual layer j risk 

act with w. In applications where Poisson processes are not good models of risk impulse 

streams, a different class of stochastic processes could be instrumented at each node, with 

 serving as an parameter regulating the process’ intensity.

During a layer j risk act involving v and w, one or more of the pathogens  (for k = 1,. . ., 

p) may propagate. The likelihood of this is taken to be 0 if both individuals have the same 

infection status, i.e. when both  or when both . If the individuals are 

serodiscordant with respect to pathogen  (i.e. precisely one of them is infected), then the 

probability of transmission is modeled using an infectiousness curve Ij,k. For concreteness of 

exposition, let's assume v is positive for pathogen  while w is not. The infectiousness 

curve Ij,k then maps the age of v's infection (with respect to ) to the probability of the 

pathogen's transmission during a layer j risk act. To support this within the model, it is 

necessary for the risk network representation to be augmented so as to maintain information 

about the time when individuals first become positive for each pathogen . We record this 

information via p functions  (for k = 1,. . ., p). Fifinally, the susceptibility of w to 

becoming infected by pathogen k may be impacted by the infection status of w with respect 

to another pathogen k′ ∈ {1,. . ., p} where k′ ≠ k. We capture this via a scalar susceptibility 

multiplier γk,k′ ∈ [0, + ∞) which amplifies or dimishes the transmission likelihood mandated 

the infectiousness curve. 4 Aggregating these factors, we get that the probability of w 

becoming infected by v during a single layer j risk act involving the pair (v, w) is

4For simplicity, we take γk,k′ = 1 whenever k = k′.
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While it is easy to update  during the course of a trajectory (i.e. as previously uninfected 

nodes acquire the pathogen), we must also specify the infection times for individuals who 

were chosen to be infected at the very outset of the simulation, i.e. in the MakePathogens 

procedure (see Listing 3). We do this for each v in V1 by initializing  to a value 

selected uniformly at random from the interval , the values  are new model 

parameters (k = 1,. . ., p).

The 2l parameters  and  (for j = 1,. . ., l) are added to the model, as are the p 

initialization parameters  (k = 1,. . ., p) and the lp infectiousness curves Ij,k (for j = 1,. . ., l 

and k = 1,. . ., p) that capture the time dependencies of transmission risks of pathogen  via 

layer j risk acts. The model is thus augmented to support the risk process via the parameters 

below.

4 Modeling network dynamism

In the next section, we extend the model to include additional parameters that specify the 

mechanisms governing network evolution over time, capturing the fact that:

1. An individual's risk partnerships may change if and when they decide to abandon 

an existing risk partner (or when the risk partner decides to abandon them). Loss of 

risk partners may cause individual social instability, inducing the individual to seek 

new risk partners. We refer to the losing and gaining risk partners as the churn 

process, it is the subject of Section 4.1.

2. The population may change because an individual enters or leaves the risk network. 

We refer to this as the population process, it is the subject of Section 4.2.

3. As individuals age over time, this may alter their risk partner preferences. We refer 

to this as the aging process, it is the subject of Section 4.3.

Each of the three processes are described below. While the narrative is written from the 

vantage point of a single layer j of the risk network the processes described are replicated 

and operate concurrently at each of the j = 1,. . ., l layers.

4.1 The churn process

While the set  represents the potential layer j risk partners for v at time t, it is possible 

for individuals to abandon (or be abandoned by) their risk partners over time. Social 

instability due to a loss of layer j risk partners may induce individuals to seek new risk 

partners to compensate for loss of social context. The central premise of our model 

concerning partner “churn” is the idea that each individual v has an ideal degree dj(v), which 

is the ideal size of v's ego network in layer j, based on v's stable personality. This is reflected 

in the fact that the ideal degree at layer j is selected using the degree distribution  in 

procedure MakePopulation (lines 8-10 of Listing 2). While dj is permitted to vary over the 

population, here it is assumed to be fixed over time. 5
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On the other hand, the actual membership (and cardinality) of v's layer j risk partners 

is permitted to vary with time, albeit in a controlled fashion to be described in what follows.

Each individual v has the propensity to change the membership of , in an act we refer 

to as “churn”. At creation time, each node v is assigned propensity for churn . In the 

current model, this number is assumed to be time-invariant for each individual, and is 

randomly chosen from the positive reals using a truncated Gaussian [Robert, 1995] with 

(time invariant) mean  and

Param Description Units/Range

μj
R Mean time between inter layer j risk impulses Months

σj
R Inter layer j risk impulse std. dev. Months

Tk
+ Age interval for initial Pk  infections. Months

I j,k
+ Infectiousness curve for Pk  via layer j. Fcn. of age

γk,k′ Multiplier for susceptibility to pathogen k given prior infection by k′ ∈ {1,...,p}; k′ ≠ k. Scalar

(time invariant) standard deviation . A Gaussian distribution was used to allow for 

controlled variation (across individuals) in their appetite for churn acts (per network layer j). 

In the present model, the selection of  occurs independently, for all individuals v and 

layers j.

The quantity  represents the mean time between successive churn impulses 

experienced by v. Statistically speaking, on average every  months, individual v is 

expected to have engaged in  churn events at layer j. The churn impulse 

stream is generated by independent Poisson processes operating at each individual. To 

achieve the desired characteristics (regarding mean times between impulses) in a 

memoryless fashion, the time between successive churn impulses in the Poisson process 

must follow an exponential distribution with rate .

Upon experiencing a layer j churn impulse at time t, node v engages in a Bernoulli trial, 

responding to the impulse by adding a partner with probability

5We note that making an individual's ideal layer-j degree dj vary over time would not be complicated, it would simply require re-
sampling the ideal degrees periodically (as per Procedure MakePopulation, lines 7-10). This could be implemented easily within the 
aging process, for example, see Section 4.3.
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or abandoning an existing partner with probability .

Note that  whenever , and that

In short, edge loss becomes ever more likely the more actual degree exceeds ideal degree, 

while edge gain becomes ever more likely the more ideal degree exceeds actual degree. 

When ideal degree equals actual degree, edge loss and edge gain are equally likely choices 

in response to a churn event. The parameter  controls the rate at which  approaches 

the limits asserted above, and so determines how closely individual nodes adhere to their 

ideal degree over the course of their network lifetimes. Justification for an individual 

seeking to maintain an intrinsic ideal degree comes from prior work on network “roles” and 

the correlations between role and ego network size [Friedman et al., 1998, Curtis et al., 

1995, Romero-Severson et al., 2012].

If the Bernoulli trial due to a churn impulse at v triggers abandonment of a risk partner, the 

partner to be abandoned is selected uniformly at random from . If the Bernoulli trial 

triggers adding a partner, the new partner is selected by calling a modi ed version of 

AddEdge in which the bias due to degree constraints has been modi ed (compare with line 5 

of Listing 2) as follows:

Note that aδ (c) = 1/2 whenever , and that

implying that a candidate c which is experiencing a layer j degree deficit is more likely to be 

chosen as the terminus of the new edge from v, compared to a candidate c′ who is 

experiencing a layer j degree surplus.
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The 3l parameters added to the model in support of the churn process are summarized 

below.

Param Description Units/Range

μj
C Layer j churn interval mean Months

σj
C Layer j churn interval std. dev. Months

wj
S Layer j degree stability bias Positive real

In practice, setting the churn propensity parameters aboveffican be tricky for modelers. 

Setting these parameters empirically requires data on the distribution of the duration of risk 

relationships. Given that subjects are more able to describe existing risk relationships than 

ones that have ended, the age of existing risk relationships can be used as a proxy for this. In 

the case study presented later, for example, we determined that risk partners were held as 

such for an average of 5 years (with a standard deviation 3 years). Accordingly, we took 

 and , this ensured that actors chose their individual churn behavior from a 

distribution that allowed for a turnover (for their entire personal network) ranging from less 

than 2 years to 8 years or more.

4.2 The population process

The population of the risk network is controlled by both aggregate-level and individual-level 

processes. We refer to these respectively, as macroscopic and microscopic controls, each is 

treated separately below.

Macroscopic population controls—To support population growth/decline over time, 

we extend the dynamism model to include a new parameter rp which captures the growth/

decline of the population every 10 years (120 months). Taking rp = 100, for example, 

indicates that the population should double every decade. Taking rp = –25, on the other 

hand, specifies that a quarter of the population is lost every ten years. The parameter rp is a 

new addition to the model. Suppose the initial population is n1, and the population at time t 

is nt. If rp > 0, the population process creates

new individuals in each month interval (t, t + 1]. If rp < 0, then the population process 

removes

existing individuals in each month interval (t, t + 1].
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Microscopic population controls—In addition to the macroscopic trends in population 

represented by the rp parameter, the individual agency of nodes may drive them to leave the 

network. Each node v has an associated “lifetime” (within the risk network), which we 

denote as L(v) months. The value of L(v) is set when node v is created (i.e. enters the risk 

network), and is selected by randomly drawing a positive real from a truncated distribution 

[Robert, 1995] that is the weighted sum of two Gaussians:

In effect, a bimodal distribution is used to model a population consisting of two types of 

nodes: transient nodes (which occur with relative frequency ftr), and steady nodes (which 

occur with relative frequency 1 – ftr). Transient nodes have lifetimes which are derived from 

a Gaussian distribution with mean σtr and standard deviation σtr, steady nodes have lifetimes 

which are derived from a Gaussian distribution with mean μst and standard deviation σst. 

Typically, μst > > μtr. An individual v who was created at time b(v) removes themself from 

all layers of the network at time b(v) + L(v), v is replaced if/when mandated by the 

macroscopic population process described in the previous section. The parameters μtr, σtr, 

μst, σst are assumed to be time-invariant, and are new additions to the model. Such a model 

enables one to confirm through simulation emerging understanding of the impact of episodic 

risk behaviors on epidemics (see Alam et al. [2012], Zhang et al. [2012]).

The 6 parameters added to the model in support of the population process, are summarized 

in the table that follows.

Param Description Units/Range

rp Population growth rate every 10 years Percentage (real)

ftr Fraction that are “transient” Between 0 and 1

μtr Mean duration of transients' lifetimes Months

σtr Std. dev. of transients' lifetimes Months

μst Mean duration of steadies' lifetimes Months

σst Std. dev. of steadies' lifetimes Months

4.3 The aging process

Each individual, when created, is assigned values for attributes xi (for i = 1,. . ., m) by 

random sampling from the corresponding distribution αi. Of these attributes, some may be 

time dependent. In particular, if one of the xi variables represents categorical age, then it 

would be incorrect for the model to assume that an individual remains the same age over the 

course of the network trajectory. The resulting inaccuracy is of potential consequence, since 

age plays a role in edge formation through the corresponding bivariate distributions βi,j, 

which contribute to the propensities of layer j edges being created in the course of a 

network's evolution. It is therefore important to update any age-related attributes (from 
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among the xi) over time, so that they accurately change as time passes. We refer to this 

continuous updating of time-varying attributes as the aging process.

5 A case study: HIV in IDU networks

Having developed a general framework for modeling dynamic risk networks, here we apply 

it to network data collected in the Social Factors and HIV Risk (SFHR) survey, using this as 

a test case for the framework presented above. We are interested in the extent to which 

simulations within this context yield realistic approximations of what is known about 

historical HIV infection rates among Injecting Drug User (IDU) networks in New York City 

in the earlier years of the epidemic. Conducted between 1990 and 1993, SFHR was a cross-

sectional, mixed methods project that asked 767 out-of-treatment injecting drug users 

(IDUs) about their risk networks and HIV risk behaviors in the prior 30 days. Interested in 

both individuals’ network composition (namely, the presence of high-risk partners) and 

sociometric risk position, the SFHR study produced major findings relevant to risk 

populations with high HIV prevalence [Friedman et al., 1998, 2007, Goldstein et al., 1995, 

Des Jarlais et al., 1998, Jose et al., 1993, Kottiri et al., 2002, Neaigus et al., 1994, 1995]. 

SFHR documented 92 connected components among 767 subjects (connected by 662 

edges), including a 105-member 2-core within a large connected component of 230 

individuals. Subjects located within the 2-core were more likely to be infected with HIV 

[Friedman et al., 1997], causing study authors to emphasized the importance of HIV 

prevention within densely-connected portions of the network. The SFHR study was also 

among the first studies of IDU communities to document network substructures and their 

relationship to HIV infection/transmission [Friedman et al., 2010].

In the case study presented here, artificial networks of 1000, 5000, 10,000 and 25,000 nodes 

are generated using a model derived from the SFHR network survey, and these artificial 

networks are simulated over 15 year periods. We note that the risk network modeled on this 

data necessarily consists of just l = 1 layers, wherein edges represent equipment-sharing 

during drug co-use during the last 1 = 30 days. In addition, this model only considers p = 1 

pathogens, namely .

As described above, ERGM analysis of the SFHR data was used to isolate actor attributes 

that contributed most significantly to the network topology as a whole, and produced the 

following multivariate model for the network (see also [Dombrowski et al., 2013a].

Attribute θ p-value

Transitive closure 3.592
***

Gender homophily (all) 0.058 0.566

Race/Ethnic homophily (all) 1.205
***

Age homophily (all) 0.367
**

Number of injection partners 0.460
***

***
(p < 0.001)

**
(p < 0.01)
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Beyond the selection of attributes, the θ coefficients in the table above represent log-odds 

exponents that allow the weighting of model factors in the edge formation process. Thus 

raceffican be seen as e1.205–0.460 (or, 2.11) times more important than number of injection 

partners in determining risk partners. We note here that transitive closure turned out to be 

the most significant factor in determining the given patterns of edge formation, followed by 

race/ethnic homophily, degree homophily, and age homophily. The ERGM analysis 

provided the value  to capture the influence of triadic closure on link formation. 

Gender homophily—which appeared significant when examined in univariate analysis of the 

data—failed to be significant in the multivariate model. The remaining parameterization of 

the model from the SFHR study using the above attributes is presented in detail in the 

Appendix (section 7).

The simulations in this case study share several features in common with the concurrent 

work of Marshall et al. [2012], who apply an ABM approach to model HIV transmission in 

IDU networks, towards understanding the historical impact of various HIV interventions. 

Where Marshall et al. consider just five discrete classes of individuals in constructing their 

networks (IDU, Non-IDU, Non-User MSM, Non-User WSW, and the “general population”), 

the case study here allows edge formation to be biased in ways that reflect fine-grained 

pairwise distributions of gender, age, race, and the degrees of the endpoints { precisely the 

set of individual attributes determined by ERGM analysis to be significant influencers of 

edge formation likelihood. In addition, we take into account network-structural factors, in 

particular triadic closure, which ERGM also frequently shows to exert a significant 

influence on edge formation. In short, we have sought to reach beyond evident limitations 

which arise when “social norms and the network and individual properties that shape who 

forms a relationship with whom are not considered” (see [Marshall et al., 2012, p.12]). 

Although Marshall et. al consider the transmission of HIV via two different types of risk 

behavior (syringe sharing and unprotected intercourse), these risk behaviors appear to take 

place along edges in the same network layer. In our case study, we too consider a single 

pathogen (HIV) and just one network layer (where the edge relation represents injection 

drug equipment co-use), however, multi-layer multi-pathogen aspects of the general 

framework are exercised using artificial scenarios derived from this “Baseline Scenario” 

(see Section 5.1.3). While Marshall et al. devote considerable attention to the modeling of 

HIV interventions, we do not consider the topic here, choosing to calibrate our model 

instead on the subsaturation levels at which HIV prevalence stabilized in New York City's 

IDU community in the early 1990s. Most of all, for us, the case study primarily represents a 

realistic illustration of the expressive power of the proposed general-purpose framework for 

modeling multi-pathogen epidemiology on multi-layer risk networks.

5.1 Simulation experiments

Having captured the SFHR data to create a statistical network model (hereafter referred to as 

the HIV/IDU model), new artificial networks which follow the SFHR topology were 

generated, and these networks were made the subject of stochastic simulation. We note that 

since the mean in-network lifetimes of individuals was taken to be μst = 60 months (standard 

deviation σst = 48 months), the total number of distinct individuals which participated in 

these networks over the in 15 years was far greater than the number of nodes present at any 

Khan et al. Page 22

Simulation. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



given time. For example, in the 10,000 node networks, the total number of simulated 

network participants over the duration of the simulation was closer to 10,000 × 180/60 = 

30,000. Given that 30,000 individual nodes participated in the network, each with an 

average degree of 3.4 and an average churn rate set to the duration of their participation in 

the network (i.e. 60 months) such that each node would on average churn through his/her 

entire set of connections completely over the course of their participation in the network, 

and so we estimate that (30,000 × 3.4 initial connections) + (30,000 × 3.4 churned 

connections)=204,000 total edge changes took place over the course of the 15 year 

simulation for the 10,000 nodefinetworks. Further, with a risk rate of μR =1 month, each of 

these edges was (on average) subject to a risk event monthly, from which we estimate that 

each simulation trial of 10,000 nodes entailed approximately 37 million risk events across 

which HIV infection could have taken place.

5.1.1 Validating the Simulations against “Ground Truth”—Since each simulation 

starts with an artificial network  generated via a statistical model  that is based on 

the SFHR dataset , one might ask how similar the artificial networks  generated were to 

original SFHR network  from which the model  was derived. According to the 

framework's guidelines, this similarity  may be estimated via the Shannon-Jensen 

divergence between the corresponding constituent distributions of  and , as 

indicated in expressions (1) and (2). Following this guideline, we conducted 106 

independent trials, each of which generated an artificial network  of size 1,000. In all 

these trials, the artificial network always exhibited .

Of particular interest for us was the extent to which the dynamic networks would achieve 

HIV-prevalence stabilization at rates known for New York City at the time [Des Jarlais et 

al., 2011]. In all but the smallest simulation scenario (1000 individuals), HIV prevalence in 

the simulations was found to stabilize at 40% and the rise very gradually thereafter over the 

next 15 years. This is commensurate with the history of the HIV epidemic in New York 

City's IDU networks during its early stages around 1990 [Des Jarlais et al., 2011, 2005, 

1998, 1989]. It also agrees with the ground truth of the SFHR data set itself, wherein 40% of 

the 767 subjects in the population sample were found to be HIV positive (50% in the 1-core, 

and 36% in the periphery).

To compare the quality of the artificial risk networks generated (as starting points of the 

simulation) to those that would be generated by an ERGM-based approach, we created 103 

initial networks of size 10,000 using ERGM, and 103 using the proposed ABM procedure 

MakeNetwork given in Listing 1, both parameterized by statistical network data derived 

from the SFHR study. We then computed pairwise divergences between all 106 pairs of 

networks generated by ERGM, all 106 pairs of networks generated by MakeNetwork, and 

all 106 heterogenous pairs of models (one generated by ERGM and the other by 

MakeNetwork). All three sets of 106 numbers exhibited comparable means (0.03 ± 0.005) 

and least upper bounds (0.1 ± 0.02). From this experiment, we concluded that the proposed 
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ABM procedure MakeNetwork produces networks whose quality is commensurate to 

networks generated by ERGM.

5.1.2 Continuous Model Validation—In the case study, we tracked the values of Δ 

across each simulation trajectory, finding the univariate degree distributions  to be the only 

characteristic that diverged by more than 0.0015 across the trajectory. As seen in Figures 1 / 

2, the divergence of  distributions over the course of the trajectories remained bounded by 

Δ < 0.09. In Figure 3, the left graph shows the divergence of  as a function of time for 

three trials of a 1,000 node dynamic network, the right graph shows the same quantity at a 

scale of 10,000 nodes. As can be seen, the Δ is bounded by 0.09 for both small and large 

networks, though larger networks exhibit less variance across trials (consistent with the wide 

variation shown by the 1000 nodefinetwork throughout these experiments, and shown here 

for three trials to allow for detail that is lost in aggregating large numbers of trials).

To give the reader a sense of the extent to which Δ < 0.09) acts as a control on the dynamic 

network, we note that in such a situation, the expected absolute value of the difference 

between of actual and ideal degrees is 0.3 (edges). When compared to the network model's 

expected degree of 3.4 edges (per node), we deem this to be an acceptable level of deviation.

6 These nodes will seek to return to their ideal degree at a rate dictated by the  parameter, 

but at any given time, a significant number of nodes can be expected to show this high level 

of variation. 7

5.1.3 Experiments with Derived artificial Multi-Layer Multi-Pathogen Scenarios
—Because our case study is based on a network model developed from the SFHR network 

data, which concerns the prevalence of a single pathogen (HIV) and the structure of one risk 

network layer (IDU needle co-use), the case study presented so far is less comprehensive 

than the mathematical framework. The latter is designed to support much more general 

multi-layer multi-pathogen settings. To ensure that all aspects of the mathematical 

framework are justified and sufficiently tested, multi-layer multi-pathogen case studies are 

required. However, because the results of unrelated complex multi-layer multi-pathogen 

case studies would be difficult to validate against one another, here we consider 4 artificial 

scenarios, systematically derived from the SFHR model.

For brevity, we report only on the mean HIV rate (over 10 trials) observed in each of the 

four artificial scenarios, at the end of a 60 month simulation of a network of 10,000 nodes. 

This prevalence rate is compared with the mean rate observed in the “Base Scenario” 

simulations of the true SFHR network model (see previous Section 5.1). The artificial 

scenarios use the same settings as the Base Scenario, and change only very few parameters 

related to numbers of layers and pathogen types, as specifically indicated.

6This deviation is understandable when one considers that nodes with very low ideal degree (i.e. 1 or even 0, which make up 
approximately 1/3 of the total network) are consistently forced up or down by either their own or others “churn” actions, resulting in a 
significant but predictable minority of actors who consistently are o by 1 from their ideal degree.
7We note that a closer relationship between the model and the generated networks can be enforced by increasing the sociality 

sensitivity parameter , which would, in turn, result in a lower Δ.
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Base Scenario: Here there is a single (l = 1) risk network layer based on the SFHR model 

and a single (p = 1) type of pathogen (HIV) which uses this network layer to propagate. As 

can be seen from the bottom right graph of Figure 1, the average prevalence rate of HIV in a 

10,000 nodefinetwork after 60 months was seen to be approximately 42%.

Artificial Scenario 1: Here there are multiple (l > 1) risk network layers each with structure 

based on the SFHR network model, but constructed independently of one another following 

procedure MakeRelations (see Listing 1). There is a single (p = 1) type of pathogen which 

behaves like HIV in terms of infectiousness curves. This pathogen simultaneously uses all l 

> 1 network layers to propagate. The mean time between risk acts in each layer is taken to 

be 1/l of the value in the Base Scenario, implying that although the pathogen uses all l layers 

to propagate, its rate of propagation within each layer is reduced in inverse proportion to l.

To interpret the outcomes for artificial Scenario 1 (see table above), we begin by noting that 

in the Base Scenario, 42% of the population is infected, while 58% is uninfected. When the 

second network layer is added, an additional 28% becomes infected (that is, 48% of the 

previously uninfected 58%), leaving just 30% now uninfected. When the third network layer 

is added, an additional 11% becomes infected (that is, 36% of the previously uninfected 

30%), leaving just 19% now uninfected. When the fourth network layer is added, an 

additional 8% becomes infected (that is, 42% of the previously uninfected 19%). Thus we 

observe that with each additional network layer roughly 40% (between 36% and 48%) of the 

previously uninfected nodes become reachable to the pathogen. This is expected, since each 

of the network layers is structured independently, and with just one layer, roughly 40% of 

the network was infected. Slowing down the risk act rate does not retard pathogen 

transmission because even with 4 layers and each layer operating at 1/4 of the Base 

Scenario's risk rate, we expect the pathogen's progress through each layer to be comparable 

to what is experienced in the Base Scenario at month 60/4=15—but as the bottom right 

graph of Figure 1 shows, the Base Scenario has already stabilized to roughly 40% 

prevalence by month 15.

Artificial Scenario 2: Here there is a single (l = 1) risk network layer with structure based 

on the SFHR network model. There are multiple (p “> 1) types of pathogens, all of which 

individually behave like HIV, but must share the single risk network layer to propagate. 

Cross-pathogen susceptability multipliers γk,k′ are all taken as 1, meaning that prior infection 

by k′ neither enhances nor reduces susceptibility to pathogen k (k ≠ k′). The mean time 

between risk acts in the layer is taken to be the same as that in the Base Scenario, meaning 

that every time a risk event occurs between two vertices, upto p > 1 types of pathogens may 

be simultaneously and independently transmitted between the two parties.

The outcomes for artificial Scenario 2 (see table above) show that all pathogens reach 

roughly the same prevalence levels in 60 months as was manifested in the Base Scenario. 

Also listed is the correlation coefficient r(k, k′) between infection status for pathogen k 

versus k′ (for k ≠ k′), we see that the average value of the correlation (across all distinct pairs 

k, k′) is quite high (though it decreases slightly as the number of pathogens increases). This 

indicates that network structural features are at play which cause “clumping” of all pathogen 

infections (independent of type).
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Artificial Scenario 3: Here there are multiple (l > 1) risk network layers each with structure 

based on the SFHR network model, but constructed independently of one another following 

procedure MakeRelations (see Listing 1). There are multiple (p > 1) types of pathogens, all 

of which individually behave like HIV, but with each having its own dedicated mode of 

propagation (embodied in a separate risk network layer), i.e. p = l. Cross-pathogen 

susceptability multipliers γk,k′ are all taken as 1, meaning that prior infection by k′ neither 

enhances nor reduces susceptibility to pathogen k (k ≠ k′). The mean time between risk acts 

for each layer is taken to be the same as that in the Base Scenario. Since each risk event 

occurs in a layer, and each layer is devoted to a single pathogen type, when a risk event 

occurs between two vertices, at most one type of pathogen may be transmitted. However, 

since all l = p layers are operating independently, all p pathogens propagate concurrently 

through the population, albeit with each pathogen making use of its own dedicated risk 

network layer.

The outcomes for artificial Scenario 3 (see table above) show that all pathogens reach 

roughly the same prevalence levels in 60 months as was observed in the Base Scenario. 

However, in examining the correlation r(k, k′) between infection status for pathogen k versus 

k′ (for k ≠ k′), we see that the average value of the correlation (across all distinct pairs k, k′) 

is now quite low. This indicates that shared network structural features that were at play in 

artificial Scenario 2 are disrupted when the pathogens are forced to travel across multiple 

independently constructed risk network layers.

Artificial Scenario 4: This scenario is identical to scenario 3, except that cross-pathogen 

susceptability multipliers γk,k′ are all taken as 0. This means that prior infection by pathogen 

k′ makes an individual immune to pathogen k (k ≠ k′).

The outcomes for artificial Scenario 4 (see table above) show that the pathogens considered 

collectively, reach roughly the same prevalence levels in 60 months as was observed in the 

Base Scenario. That is, 2 21% ≈ 3 × 15% ≈ 4 × 12% ≈ 42%. This is expected, since cross-

pathogen susceptability multipliers force the p pathogens to share host infection 

opportunities between them.

Taken together, these four artificial scenarios, and the plausible explanations for the 

outcomes observed in each of them, provide us with a measure of confidence in our 

framework's general applicability to epidemiological modeling involving multi-pathogen 

multi-layer risk networks.

6 Conclusions

Simulations of artificial risk networks generated by the HIV/IDU model exhibited 

stabilization of HIV prevalence to sub-saturation levels similar to those observed historically 

in IDU networks in New York City during the early stages of the HIV epidemic [Des Jarlais 

et al., 2011, 2005, 1998, 1989]. Simulations in which the virulence of the pathogen was 

raised (modeled as an overall increase in the likelihood of transmission in any given risk 

event) showed little change to overall stabilization levels for networks of 5000+ nodes—a 

truly counter-intuitive finding, given that so much public health effort is directed to lowering 
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individual risk in stemming the spread of HIV. Of interest is that stabilization manifests in 

networks of 5000 to 25,000 nodes, but is not clear in smaller networks, the 1000 node 

network shows little evidence of HIV stabilization, and a wide range of prevalence rates at 

any given time when examined across independent simulation trials. The framework 

developed here was able to reveal historical HIV prevalence trajectories through the 

simulation of dynamic risk networks which reflected both known (micro) IDU behavioral 

profiles and (macro) structural characteristics of a real-world risk network, as recorded in 

the SFHR survey, as such, it represents a significant step forward in our ability to model and 

simulate the dynamics of infectious disease.

More generally, we note that while traditional social network research continues to produce 

considerable data on infection profiles, and equally detailed data on the broad demographic 

and behavioral profiles of at-risk communities and their risk behaviors, such research has 

not—and for reasons of cost often cannot—produce long-term, dynamic data on these same 

populations. At best, it provides snapshots of social processes within risk networks that are 

otherwise known to be in a state of flux. The general framework presented here—

demonstrated through a real case study of HIV in IDU networks—shows that simulation 

provides an opportunity to understand the long-term dynamics of risk networks themselves. 

Looking to the future, the framework opens the door to understanding how the specific 

patterns of risk-bearing relationships came to be the way they are, how infections move (and 

do not move) across these topologies, where risk networks and the infections they contain 

are going in the future, and what the impacts of various interventions might be.
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7 Appendix: Model Parameterizations

The following parameters were taken from the SFHR data and used in the case study above:

7.1 Static Network

In the context of this work, by applying ERGM analysis to the risk network  obtained from 

the SFHR survey data, we determined that m = 4 individual attributes exerted significant 

influence on the likelihood of edge formation. The names and categorical ranges of each of 

these significant attributes X = {x1,. . . x4} are tabulated below, a full exposition of their 

derivation by ERGM analysis is available [Dombrowski et al., 2013b]. The univariate and 

bivariate distributions of Gender, Ethnicity, AgeBinned, and DegreeBinned are tabulated 
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below. Fifinally, as 39% of individuals in the SFHR risk network were HIV+, in the 

corresponding statistical network model we take p = 0.39.

Significant attributes (as determined by ERGM)

Name Possible values (Ui)

x1 : Gender {Male, Female}

x2 : Ethnicity {White, Hispanic, African-American, Other}

x3 : AgeBinned {[15-20), [20-25), [25-30), [30-35), [35-40), [40-45), [45-50), [50-55)}

x4 : DegreeBinned {[0-2), [2-4), [4-10), [10-20)}

Gender univariate α1

Male Female

α1 540/767 227/767

Ethnicity univariate α2

White Hispanic African-American Other

α2 243/767 206/767 311/767 7/767

AgeBinned univariate α3

[15-20) [20-25) [25-30) [30-35) [35-40) [40-45) [45-50) [50-55)

α3 6/767 32/767 158/767 172/767 198/767 159/767 23/767 19/767

DegreeBinned univariate χ

[0-2) [2-4) [4-10) [10-20)

χ 322/767 221/767 161/767 63/767

Gender bivariate β1

β1 Male Female

Male 94/145 51/145

Female 76/127 51/127
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Ethnicity bivariate β2

β2 White Hispanic African-American Other

White 115/178 18/178 43/178 7/178

Black 11/157 112/157 31/157 7/157

Hispanic 32/175 25/175 117/175 1/175

Other 2/7 4/7 1/7 0

AgeBinned univariate β3

β3 [15-20) [20-25) [25-30) [30-35) [35-40) [40-45) [45-50) [50-55)

[15-20) 1/4 1/4 2/4 0 0 0 0 0

[20-25) 1/26 1/26 7/26 6/26 7/26 3/26 1/26 0

[25-30) 1/147 8/147 41/147 45/147 38/147 12/147 2/147 0

[30-35) 0 5/153 33/153 50/153 43/153 16/153 5/153 1/153

[35-40) 0 4/161 20/161 41/161 56/161 29/161 6/161 5/161

[40-45) 0 2/137 14/137 27/137 44/137 40/137 3/137 7/137

[45-50) 0 0 2/20 6/20 6/20 4/20 2/20 0

[50-55) 0 0 0 2/14 6/14 4/14 0 2/14

DegreeBinned univariate 

χ
= [0-2) [2-4) [4-10) [10-20)

[0-2) 77/158 37/158 29/158 15/158

[2-4) 57/203 77/203 40/203 29/203

[4-10) 42/195 50/195 64/195 39/195

[10-20) 15/100 23/100 31/100 31/100

7.2 Pathogen model for HIV/IDU

Inter risk impulse interval mean μR was set in accordance with the SFHR data set. Given 

that the criteria for connection in the SFHR survey was “a risk event in the last 30 days” 

[Friedman, 1999, p.115], the risk parameter μR was set to 1.0 months, so that nodes would 

draw from a distribution of risk profiles centered at one risk event per month per risk 

partner. With a mean degree of 3.4, this means, in effect, that the average actor will engage 

3-4 risk events in a 30 day period. Further description in the SFHR documentation points to 

a wide range of risk behavior rates. SFHR interview subjects reported an average of 112 

monthly injections (not all of which, obviously, involved a risk event), with a standard 

deviation of 139 [Friedman, 1999] p. 120. Taking the latter as our guide, we set the inter 
risk impulse interval standard deviation σR to 1.0 months, such that the variation in risk 

was roughly equal to the overall rate. This produced a truncated distribution with a near at 
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distribution between 0 and 2, and long but diminishing tail for rates greater than 2 risk 

events per number of risk partners per month.

In the case of HIV, the infectiousness curveffican be approximated as function of infection 

age that decreasing sharply at approximately three months, and remains at low levels until 

approximately eight years later [Cates et al., 1997, Kahn and Walker, 1998, Lyles et al., 

2007]. We use this information to construct two-parameter infectiousness function Ij,1. 

Given that we know the infectiousness drop sharply approximately 3 months after the time 

of initial infection, we approximate the infectiousness curve Ij,1 by a step function whose 

value is  for the 3 month high infectiousness, or “acute” phase, and  thereafter, 

in the low infectiousness or “chronic” phase. We note here that . With such a 

model, if  then with probability  individual w acquires HIV from v during 

the layer j risk act. If, on the other hand, , then the transmission occurs with a 

much smaller probability . In either case, if w acquires HIV during the layer j risk 

act, then w is added to  and we set its infection time . To support such a model 

of HIV pathogen transmission, the 2 parameters  and  must be specified.

The infection probability in infectious period pH was initially inteded as a tuning 

parameter such that, once the other parameters had been set according to the SFHR data, a 

series of trials could be undertaken in simulated networks and the transmission parameter set 

such that the simulated HIV rates for the SFHR settings regularly matched those of the 

SFHR sample (i.e. 40%). This proved unnecessarily complex, as variations in the 

infectiousness probability had little effect on the overall HIV rates. In the end, we used a 

mean rate of risk for equipment co-use during periods of high infectousness of 5% chance of 

infection per risk event. Rates at low as 2% and as high as 10% showed only small effect in 

overall infection rates. While no precise data are available for HIV per-event risk rates, 

Hagan and colleagues found that HCV risk among IDU showed a 3 to 5 fold increase in 

seroconversion ratesand a risk factor of 5.9 for those who shared drug preparation 

equipment or syringes [Hagan et al., 2001].

The reduction in infectiousness post 3 months cL/H, was taken to be 1/100, as an estimate 

for a wide range of published measures, from 1/20th to 1/1000th, based on comparisons 

between periods of high and low infectiousness [Daar et al., 1991, Kahn and Walker, 1998].

The infection interval T+ for individuals initially HIV+ was taken to be three weeks, as an 

approximation for published a range of estimates from 9 to 14 weeks [Daar et al., 1991, 

Kahn and Walker, 1998].

7.3 Network dynamism model for HIV/IDU

The rate at which network actors changed their current list of risk partners churn interval 
mean μC was taken to reflect a network wherein risk partners are held as such for an average 

of 5 years. Justification for this [Friedman, 1999, p. 130] includes the fact that, 53 percent of 

the network noted that they had known all of their network for at least a year, and 43 percent 
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of the network felt “very close” to some or all of their network. Ethnographic reports from 

the SFHR network [Curtis et al., 1995] note considerable longevity to risk partnerships (see 

also [Friedman, 1999] chapter 3). Here again, where wide variation in individual 

characteristics obtained, we set the churn interval standard deviation σC=3.0 years to 

ensure that actors chose their individual churn behavior from a distribution that allowed for 

rapid turn overs of less than 2 years (for their entire personal network) to long-term 

partnerships (of 8 years or more). It was later discovered that the changes to μC and σC had 

little effect on the simulation outcomes with respect to asymptotic HIV rates.

The degree stability bias wS determined how closely individual nodes maintained their 

degree over the course of their participation in the network. On the whole, the justification 

for a fixed degree comes from prior work on drug scene “roles” [Friedman et al., 1998, 

Curtis et al., 1995]. While, obviously, no direct parameter settings can be drawn from the 

data described by Friedman et al and Curtis et al, the function used to determine the effects 

of the parameter, and the original parameter setting of 2.9 was designed such that variations 

from initial degree by roughly 30 % were very likely to be corrected. It was discovered that 

the changes to wS little effect on the simulation outcomes with respect to asymptotic HIV 

rates.

The macroscopic population process growth rate rP =0 was set thereby specifying a 

constant population size, although certainly individuals were leaving and entering 

throughout (see below).

While a number of individuals in the SFHR study had few partners, or would be considered 

marginal members of the network itself, there is also a wealth of ethnographic reports on 

very short-term visitors to the network [Friedman et al., 1998, Curtis et al., 1995]. As far as 

we know, no solid estimates of the proportion of these transient participants is given, nor 

would we expect the number to be uniform across sub-networks in New York City. A “drug 

market” zone like that studied by the SFHR project is likely to have a greater proportion of 

transient members than a smaller, let public network. We took the fraction of individuals 
that are “transient” ftr=0, as a base-line in the simulations here.

As with network churn, a dearth of diachronic data meant that we relied heavily for these 

parameter settings on ethnographic observation and the experience of project co-authors in 

the SFHR network. While many of the SFHR network members had been injectors for 

longer than 9 years, this does not mean that their they participated in the same IDU network 

for that entire time. For this reason, the settings were made identical to the churn settings 

above, mean duration of steadies’ lifetimes μst=5.0 years, and standard deviation of 
steadies’ lifetimes σst=3.0 years, so that participation varied widely from 2-8 years for 

“steady” participants.
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Figure 1. HIV prevalence in SFHR-based networks of size 1000, 5000, 10,000 and 25,000
Figure 1 shows the HIV prevalence (over time) in 15 year simulations of ten independently 

generated networks of various sizes based on the HIV/IDU model. The bars in the graph 

indicate the range of findings across these ten trials. We note that in all but the smallest of 

these graphs, an initial infection rate of 0.5% HIV spreads throughout the network in 12-18 

months to a prevalence level of roughly 40%. From here, it remains relatively stable, rising 

to 50% over the next 15 years.
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Figure 2. New HIV infections over time in networks of size 1000, 5000, 10,000 and 25,000
Figure 2 shows the number of highly infectious nodes (over time) in 15 year simulations of 

ten independently generated networks based on the HIV/IDU model. All but the first of 

these graphs show that a surge of acute infections appears roughly 10 months into the 

simulation, encompassing roughly 20% of all individuals. In the 10 months after the initial 

spike, the acute infections dissipate, and the network returns to having relatively few acute 

infections (approximately 3%). This low but steady rate of new infections over time, 

together with the stabilization of HIV shown in Figure 1 demonstrates that while the 
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network continues to produce new infections over time, they fail to propagate through the 

network, as suggested by Friedman and the original SFHR investigators [Friedman et al., 

2000].
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Figure 3. 
Divergence Δ of  over 18mo for 1k (left), 10k (right) nodefinetworks on 3 trials.
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Figure 4. 
(Top) Infectiousness of HIV as a function of age of infection, (Bottom) A simpli ed two-

parameter representation.
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Algorithm 1

Procedure MakeNetwork

Input: statistical network model (αi, βi, j, X j, χj
=

, Pk )i=1,…,m; j=1,…,l ;k=1,…,p; population size n.

Output: risk network (xi, V, Ej, Ak, dj)i=1,...,m;j=1,...l;k=1,...,p.

1 ({xi}, {dj}, V) ← MakePopulation(n, {αi}, {X j})i=1,..,m; j=1..l

2 {Ak} ← MakePathogens(V , {Pk})k=1..p

3
E ← MakeRelations({βi, j}, {χj

= }, {xi}, {dj}, V )i=1,,,m; j=1..l

4 return (xi, V, Ej, Ak, dj)i=1,...,m;j=1,...,l;k=1,...,p.
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Algorithm 2

Procedure MakePopulation

Input: pop. size n, attribute distributions {αi}i=1..m, degree distributions {X j} j=1..l
.

Output: ({xi}, {dj}, V)i=1..m;j=1..l.

1 V = {v1, v2, . . ., vn}.

2 foreach vk in V do

3     // Set the attributes of individual vk.

4     foreach i in 1...m do

5         xi(vk) := an element of Ui randomly selected via αi.

6     // Set individual vk's ideal ego net size at each layer.

7     foreach j in 1...l do

8
        s ≔ f j

C(v), the layer-j ideal degree class of vk.

9         τ := χj;s the corresponding layer-j ideal degree distribution, taken from Range(X j).

10         dj(vk) := an integer randomly chosen via pdf τ.

11 return ({xi}, {dj}, V)i=1..m;j=1..i.
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Algorithm 3

Procedure MakePathogens

Input: population V, pathogen prevalences {Pk}k=1..p

Output: {Ak}k=1..p

1 A1 = A2 = ... Ap = ∅

2 foreach k in 1... p do

3     foreach vi in V do

4
        t ≔ f k

B(v), identifying the pathogen-k class of vi in Domain(Pk ).

5         τ := pk;t the corresponding pathogen-k prevalence rate in Range(Pk ).

6         if Random(0, 1) < τ then

7             Ak := Ak ∪ {vi}

8 return {Ak}k=1..p
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Algorithm 4

Procedure MakeRelations

Input: bivariate attribute distributions {βi,j}i=1..m;j=1..l, bivariate degree distributions {χj
= } j=1,,l , individual attributes {xi}i=1..m and 

ideal degrees {dj}j=1..l, the population V

Output: E

1 E = ∅
2 foreach i in 1... |V| do

3     foreach j =1...l do

4         N j(vi) ≔ ∅.

5         foreach e = 1...dj(v) do

6
            Schedule AddEdge(vi, j) to take place at time 

1
ei + 1

.

7 Wait until time 1.

8 E ≔ ⋃i=1
∣V ∣ ⋃w∈N (vi)

{(v, w)}

9 return E

Simulation. Author manuscript; available in PMC 2015 April 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khan et al. Page 47

Algorithm 5

procedure AddEdge

Input: individual v, layer j.

1 // Determine candidate new neighbors for v.

2 Cj
t(v) ≔ V j

t \ (N j
t(v) ∪ {v}).

3
if ∣ Cj

t(v) ∣ > 0 then

4
    foreach c in Cj

t(v) do

5         Compute the bias due to degree constraints:

aδ
t(c) ≔ {e

−1∕(dj
(v)−∣Nj

t(v)∣) ∣ N j
t(u) ∣ < dj

(u)

0 otherwise.

6         Compute the bias due to the bivariate degree distribution:

aχ
t (v, c) ≔ χj

= ( ∣ N j
t(v) ∣ − ∊, ∣ N j

t(v) ∣ + ∊, ∣ N j
t(c) ∣ − ∊, ∣ N j

t(c) ∣ + ∊).

7         Compute the bias due to bivariate attribute distributions:

aβ
t(c) ≔ ∏i=1

m βi, j(xi
(v), xi

(c)).

8         Compute the bias due to triadic closures:

aΔ
t(c) ≔ ζ(wj

Δ − 1) ⋅ Δj
t(v, c)

where Δj
t(v, c) = # layer j triangles formed on adding layer j edge (v, c).

9         Compute propensity of edge (v, c) as the product of 4 biases:

wj
t(c) ≔ aδ

t(c) ⋅ aχ
t (c) ⋅ aα

t (c) ⋅ aΔ
t(c).

10
        Normalize propensity to obtain a distribution over Cj

t(v) : :

pj
t(c) ≔

ωj
t(c)

∑
c ′∈Cj

t(v)
ωj

t(c ′)
.

11
    w := choose from Cj

t(v) randomly according to distribution pj
t
.

12     // Add the layer j edge connecting v to w.

13
        N j

t(v) ≔ N j
t(v) ∪ {(v, w)}
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Artificial Scenario 1

Multiple layers, One pathogen

Number of layers Pathogen 1 prevalence at 60 months

l = 2 (and p = 1) 70%

l = 3 (and p = 1) 81%

l = 4 (and p = 1) 89%

Base Scenario (p = 1 and l = 1) 42%
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Artificial Scenario 2

Multiple pathogens, One layer

Number of Pathogens Average prevalence at 60 months (across all p 
pathogens)

Ave. pairwise correlation of pathogen 
occurrence

p = 2 (and l = 1) 42% 0.86

p = 3 (and l = 1) 43% 0.76

p = 4 (and l = 1) 44% 0.72

Base Scenario (p = 1 and l = 1) 42%
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Artificial Scenario 3

Multiple layers, Multiple non-inreracting pathogens

Number of Pathogens p
Number of Layers l

Average prevalence at 60 months (across all p pathogens) Ave. pairwise correlation of pathogen 
occurrence

p = l = 2 42% 0.12

p = l = 3 43% −0.11

p = l = 4 42% 0.08

Base Scenario (p = l = 1) 42%
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Artificial Scenario 4

Multiple layers, Multiple inreracting pathogens

Number of Pathogens p
Number of Layers l

Average prevalence at 60 months (across all p pathogens)

p = l = 2 22%

p = l = 3 15%

p = l = 4 12%

Base Scenario (p = l = 1) 42%
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