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Abstract

Background: Targeted delivery of anticancer chemotherapeutics such as mitoxantrone (MTX) can significantly
intensify their cytotoxic effects selectively in solid tumors such as breast cancer. In the current study, folic acid
(FA)-armed and MTX-conjugated magnetic nanoparticles (MNPs) were engineered for targeted eradication of folate
receptor (FR)-positive cancerous cells. Polyethylene glycol (PEG), FA and MTX were covalently conjugated onto

the MNPs to engineer the PEGylated FA-MTX-MNPs. The internalization studies were performed using fluorescein
isothiocyanate (FITCO)-labeled FA-decorated MNPs (FA-FITC-MNPs) in both FR-positive MCF-7 cells and FR-negative
A549 cells by means of fluorescence microscopy and flow cytometry. The cellular and molecular impacts of
FA-MTX-MNPs were examined using trypan blue cell viability and FITC-labeled annexin V apoptosis assays and

4" 6-diamidino-2-phenylindole (DAPI) staining, DNA ladder and quantitative polymerase chain reaction (gPCR) assays.

Results: The FR-positive MCF-7 cells showed significant internalization of the FA-FITC-MNPs, but not the FR-negative
A549 cells. The FR-positive cells treated with the PEGylated FA-MTX-MNPs exhibited the ICsq values of 3 ug/mL and

1.7 ug/mL, 24 h and 48 h post-treatment, respectively. DAPI staining and DNA ladder assays revealed significant
condensation of nucleus and fragmentation of genomic DNA in the FR-positive MCF-7 cells treated with the PEGylated
FA-MTX-MNPs as compared to the FR-negative A549 cells. The FITC-labeled annexin V assay confirmed emergence

of late apoptosis (>80%) in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs, but not in the
FR-negative A549 cells. The gPCR analysis confirmed profound cytotoxic impacts via alterations of apoptosis-related
genes induced by MTX-FA-MNPs in MCF-7 cells, but not in the A549 cells.

Conclusion: Our findings evince that the engineered PEGylated FA-MTX-MNPs can be specifically taken up by the
FR-positive malignant cells and effectively demolish them through up-regulation of Bcl-2-associated X protein (Bax)
and Caspase 9 and down-regulation of AKt. Hence, the engineered nanosystem is proposed for simultaneous targeted
imaging and therapy of various cancers overexpressing FRs.
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Introduction

Of different solid tumors, breast cancer is one of the
most common life-threatening cancers among women.
According to the World Health Organization (WHO)
report on Dec. 2013, breast cancer incidences in the year
2012 has increased 20% as compared to the year 2008,
resulting 521,000 death in 2012 [1].

Principally, breast cancer treatment modalities are based
on surgery, radiotherapy, hormone-therapy and chemo-
therapy [2]. Of these treatment modalities, chemotherapy
agents are used to induce cytotoxic impacts in cancerous
cells through various mechanisms such as DNA detri-
ments and inhibition of cell division and growth. For in-
stance, MTX as one of the chemotherapeutic agents is
commonly used for the treatment of metastatic breast
cancer, acute myeloid leukemia and non-Hodgkin’s lym-
phoma. It hinders cell proliferation through inhibition of
topoisomerase II and disruption of DNA repair/synthesis
[3], intercalation of DNA [4], DNA damage and apoptosis
via inhibition of the mitochondrial pathway [5]. Unfortu-
nately, administration of MTX is associated with inevi-
table initiation of inadvertent side effects (e.g. weakness,
hair loss, diarrhea, heart problems and immunosuppres-
sion), mainly because of the non-specific effects on the
healthy cells/tissue [6,7]. Further, cancer cells may become
resistant to MTX. To tackle such dilemmas, cancer cells
must be targeted with smart drug delivery nanosystems
(NSs) to deliver anticancer agents such as MTX specific-
ally into the tumor microenvironment (TME) and hence
malignant cells.

Among various NSs (e.g., nanoliposomes, polymeric
NPs, dendrimers and other organic/inorganic NPs) de-
signed for targeted therapy of cancer [8], MNPs appear
to be one of the most promising delivery agents because
they are biocompatible and can be easily decorated with
homing and therapy agents [9]. Besides, potent toxic
agents conjugated onto MNPs can be localized at the
target site using an external magnetic field [10]. Targeted
MNPs were shown to accumulate highly within the
target tumor cells through passive and active targeting
mechanisms while use of an external magnetic field can
intensify the accumulation of MNPs [11-13]. Of various
oncomarkers exploited for targeted therapy of cancer,
folate receptors (FRs) have highly been overexpressed in
various solid tumors such as breast and ovarian cancers
[14,15]. Hence, FA, a safe small molecule also known as
vitamin M or B9, has been used as homing device to
target the FRs-overexpressing malignant cells. Owing to its
versatility and conjugation simplicity, the FA-conjugation
have been used for engineering multimodal nanome-
dicines and theranostics [16-19]. Surface modification of
MNPs with polyethylene glycol (PEG) was shown to
enhance the biocompatibility and the duration of blood
circulation and to reduce the antigenicity of MNPs
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[20,21]. For example, Zhang et al. coated MNPs with
PEG-FA and reported increased internalization of the
modified MNPs in BT20 cells with decreased uptake in
macrophages [22]. We have previously engineered multi-
modal PEGylated MNPs armed with FA and conjugated
with MTX [23], or loaded with tamoxifen (TMX) [24].
We have also capitalized on functionalized MNPs to en-
hance the delivery of plasmid DNA into Escherichia coli
[25]. In the current study, we aimed to study the cytotox-
icity mechanism(s) of the PEGylated FA-MTX-MNPs in
the FR-positive MCF-7 cells in comparison with the FR-
negative A549 cells.

Materials and methods

Materials

Mitoxantrone was purchased from Ebewe Pharma GmbH
(Unterach, Austria). Low melting point agarose, RPMI
1640 and fetal bovine serum were purchased from
Invitrogen-Gibco (Paisley, UK). Ethylenediaminetetraacetic
acid (EDTA), 4-(2-hydroxyethyl)-1-piperazineethanesulfo-
nic acid (HEPES), streptomycin, penicillin G, L-glutamine,
trypan blue solution (0.4%), fluorescein isothiocyanate dye
(FITC), sodium dodecyl sulfate (SDS), propidium iodide
(PI), sodium chloride (NaCl) and 4’, 6-Diamidino-2-
phenylindole (DAPI) were purchased from Sigma-Aldrich
(Poole, UK). Total RNA extraction RNeasy Mini Kit
was purchased from Qiagen, Inc. (Valencia, CA, USA).
Primers for real time PCR (18srRNA, AKt, Caspase9, and
Bax) were purchased from Eurofins MWG Operon
(Ebersberg, Germany). The SYBR® Green PCR master mix
was obtained from Applied Biosystems (Foster City, USA).
Murine leukemia virus reverse transcriptase (M-MLV),
deoxynucleotide triphosphates (ANTPs), random hexamer
(pdN6) and MgCl, and other reagent not mentioned for
RT-PCR were obtained from Fermentas (Crawley, UK).
Annexin V-FITC apoptosis detection kit was obtained
from EMD Chemicals (Gibbstown, NJ, USA). Cell culture
dishes (well plates, pipette and flasks) were obtained from
SPL Life Sciences (Pocheon, South Korea). MCF-7 and
A549 cell lines were purchased from National Cell Bank
of Iran, Pasteur Institute (Tehran, Iran).

Engineering and morphological characterization

MNPs were synthesized, PEGylated and conjugated with
FA and MTX as described previously [24]. The mor-
phology and size of the engineered MNPs were cha-
racterized using transmission and scanning electron
microscopies as reported previously [23,24].

Particle size analysis

To determine the size of the engineered MNPs, we
employed dynamic light scattering (DLS) using Nanotrac
Wave™ (Microtrac, San Diego, CA, USA). The expe-
riments were performed at room temperature. MNPs
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were specifically analyzed in terms of the hydrodynamic
radius at a range of 0.8 to 6500 nanometers and zeta po-
tential from -125 to +125 mV. The size of MNPs was
calculated by fitting the data to a polydispersed model
using the Dynamics software version 5.26 (Microtrac,
San Diego, CA, USA).

Atomic force microscopy (AFM) analyses

AFM analyses were performed on glass slides. Briefly, the
glass slides were cleaned with acetone and washed with
(3x) with Milli-Q deionized water, and dried under nitro-
gen flow. Then, 100 puL of the bare or modified MNPs
were deposited on the glass slides. The slides were allowed
to dry at room temperature. All AFM experiments were
fulfilled by means of the contact mode using JPK AFM
Nanowizard™ (JPK Instruments AG, Berlin, Germany)
mounted on Olympus invert microscope IX81 (Olympus
Corp., Tokyo, Japan). We used HYDRA2R-100NG silicon
nitride cantilever (length 100 pm, width 35 um and thick-
ness 0.2 um) with spring constant of 0.011 N/m and 15—
29 kHz resonant frequencies (Applied Nano Structures
Inc., Mountain View, CA, USA) containing silicon tip. All
images were acquired in air at ambient condition with a
scan rate of 1.2 Hz with I-gain, P-gain and set-point of
170 Hz, 0.0040 and 950 mV, respectively. The images were
processed by Nanowizard Data Processing software ver-
sion spm-4.2.62, and necessary adjustments were applied
for the background slope, the contrast and brightness
of images.

Cell culture and treatments

MCE-7 and A549 cells were cultivated at a seeding density
of 4 x 10* cells/cm? in 6-well plates using RPMI-1640 sup-
plemented with 10% FBS, penicillin G (100 U/mL) and
streptomycin (100 pg/mL) and maintained at 37°C in
5% CO? and 95% air. At 50% confluence, the cultivated
cells were exposed to a designated amount of free MTX,
free MNPs or FA-MTX-MNPs (with 0.05, 0.2, 0.8, 1.6,
3.2 pg/mL of MTX) for 24 and 48 h. Then, the treated
cells were subjected to cell viability assay.

Trypan blue staining

Trypan blue staining was used for preliminary evaluation
of cytotoxic effects of MTX alone, FA-MTX-MNPs and
free MNPs in the FR-positive MCF-7 cells and the FR-
negative A549 cells. After 24 h and 48 h treatment, the
treated cells were exposed to 0.4% trypan blue and incu-
bated for 5 min, and then analyzed by Olympus CKX41
light microscopy equipped with DP20 camera (Olympus
Corp., Tokyo, Japan).

Internalization assessment
To study the FR-mediated internalization of MNPs, we
used MNPs decorated with FA and FITC (i.e., FA-FITC-
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MNPs). The cultivated cells in 6-well plates/cover slides
were incubated with designated amount of FA-FITC-
MNPs (~10.0 pg MNPs/mL) for 1 h at 37°C. After fixing
with 4% paraformaldehyde, the cells were subjected to
fluorescent microscopy analysis using Olympus IX81 in-
vert fluorescence microscope equipped with Olympus
DP70 camera (Olympus Corp., Tokyo, Japan) as de-
scribed previously [23,24]. In parallel, for the quan-
titative revalidation, the FA-FITC-MNPs treated cells
were analyzed by FACS-Calibur flow cytometry (Becton
Dickinson, San Jose, USA). The FACs flow cytometry
data were analyzed using freely available WinMDI soft-
ware ver.2.9 (http://facs.scripps.edu/software.html).

DNA ladder assay

To evaluate DNA fragmentation in the cells treated with
FA-MTX-MNPs, DNA ladder assay was recruited using
a standard protocol as reported previously [26]. Briefly,
at 50% confluence, the cultivated cells treated with des-
ignated amount of MTX alone, free MNPs or FA-MTX-
MNPs for 2 h. At certain time points, the treated cells
were gently trypsinized and washed with phosphate
buffered saline (PBS) by centrifugation at 250 x g for
10 min. The cells were then incubated with 0.1 mg/mL
RNase A at 37°C for 1 h in lysate buffer [10 mmol/L
Tris—HCI, 10 mmol/L EDTA, and 0.6% SDS (pH 7.5)].
After precipitation of protein contents with 5 mol/L
NaCl by centrifugation at 10,000 x g for 60 min at 4°C,
the DNA was purified from the supernatant using a
standard chloroform-phenol extraction method. Isopro-
panol was added, and the mixture was stored overnight
at —20°C. After centrifugation at 13,500 x g for 15 min
at 4°C, the DNA pellet was re-suspended in Tris buffer
[10 mmol/L Tris—HCI and 1 mmol/L EDTA (pH 8.0)].
The extracted DNA samples were then quantified by
UV spectrophotometer at 260 nm and subjected to
electrophoresis on 1.5% agarose gel and stained with
ethidium bromide.

Apoptosis detection by DAPI staining

The DAPI staining assay was conducted to detect
possible occurrence of nucleus condensation in the
treated cells. Briefly, the treated cells were fixed with
the freshly prepared ice-cold paraformaldehyde (4%)
and then exposed to 0.1% Triton X-100 in PBS for
5 min for permeabilization. They were subsequently
stained with DAPI (1 pg/mL in PBS) for 5 min in the
dark. After removing the surplus stain, the cells were
washed (3x) using 0.1% Triton X-100 in PBS. The image
acquisition was performed by Olympus IX81 invert
fluorescence microscope equipped with Olympus DP70
camera (Olympus Corp., Tokyo, Japan) as described
previously [27].
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Acridine orange - ethidium bromide (AO-EB) viability
assessment

The AO-EB assay was conducted to further validate
possible occurrence of early and late apoptosis and/or
necrosis in the cells treated with MNPs (10.71 pg/mL),
MTX (1.60 pg/mL) or FA-MTX-MNPs (1231 pg/mL).
Briefly, after washing (3x) with PBS, 40-50% confluent
MCE-7 cells were treated with MNPs, MTX or FA-
MTX-MNPs and then subjected to the staining with
acridine orange (100 pg/mL) and ethidium bromide
(100 pg/mL). The cells were then subjected to light/
fluorescence microscopy analyses using Olympus IX81
invert fluorescence microscope equipped with Olympus
DP70 camera (Olympus Corp., Tokyo, Japan).

FITC-Labeled annexin V apoptosis assay

Annexin V staining was accomplished to detect any inci-
dence of apoptosis using a protocol described previously
[28]. Briefly, after washing (3x) with PBS, the treated
cells were detached by tripsinization and 1.0 x 10° cells
were incubated with 100 pL of 1X binding buffer con-
taining 5 pL FITC-labeled annexin V at 37°C in the dark
for 10 min. The cells were then exposed to 200 pL PBS
with 5 uL PL. After washing (3x) with PBS, the cells were
subjected to the image acquisition using Olympus IX81
invert fluorescence microscope equipped with Olympus
DP70 camera (Olympus Corp., Tokyo, Japan) as well as
flow cytometry analysis using FACS-Calibur flow cyto-
metr (Becton Dickinson, San Jose, USA).

Quantitative real-time PCR

For the real time PCR analysis, total RNA was extracted
from treated cells using Qiagen RNeasy® plus mini Kit
(Qiagen GmbH, Hilden, Germany) following the manu-
facturer protocol. Possible genomic DNA contamination
was eliminated from the extracted total RNA by treating
the mixture with 1 U/uL of RNase-free DNase at 37°C
for 30 min. Afterword, the enzyme was heat inactivated
using 5 mM EDTA (10 pL) at 65°C for 5 min. The
quality and quantity of the DNase treated total RNAs were
determined by NanoDrop 1000 (NanoDrop, Wilmington,
USA). For the synthesis of cDNA, RT reaction was per-
formed using 1 pg of total RNA, 0.5 pL RNase inhibitor
(40 U/uL), 10 uL 10X RT buffer, 0.5 uL random hexamer
(400 ng/uL), 2 pL dNTPs mix (10 pM) and 1 pL RT
enzyme (200 U/uL) in a total volume of 50 uL. The RT
cycling program was as follows: primary denaturation at
95°C for 5 min, incubation at 25°C for 10 min, 42°C for
42 min and 95°C for 5 min. The real time PCR was ful-
filled using Bio-Rad iQ5 system (Bio-Rad Laboratories
Inc,, Hercules, USA) using the following thermal cycling
conditions: an initial denaturation step at 95°C for 10 min,
and 40 cycles of 95°C for 15 sec, annealing temperature
for 1 min (62°C for 18srRNA and Caspase 9, 53°C for Bax
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and 58.3°C for AKt), and extension at 72°C for 30 sec.
Each reaction was performed in the final volume of 25 pL,
containing 12.5 pL 2X master mixes, 1 pL ¢cDNA, and
1 pL from each primer (100 nM) which was designed by
Beacon Designer 7 (primers are listed in Table 1). All reac-
tions were independently performed in triplicates. RNAse/
DNAse free water (1 pL) and extracted RNA (1 pL) with-
out DNase treatments were used as negative and no tem-
plate controls, respectively. The 18srRNA were used as a
housekeeping gene for the normalization of CT values as
described previously [29].

Statistical analysis

All data obtained from PCR and cell viability analyses
were exhibited as mean + standard deviation (SD). Statis-
tical assessments of data were performed using one-way
analysis of variance (ANOVA) and/or Student’s t-test
with a p value less than 0.05 for statistical significance.

Results
Synthesis and characterization
Figure 1 (panel A) shows schematic representation of
MNPs. Iron oxide (Fe3O,), the core of NPs, was pre-
pared through the thermal decomposition reaction of Fe
(acac); method. The MNPs (~7-10 nm) was modified by
dopamine-polyethylene glycol-folic acid (DPA-PEG-FA),
in which the bromoacetyl (BrAc) terminal polyethylene
glycol dopamine (DPA-PEG-BrAc) was synthesized and
treated with ethylene diamine to form bifunctional PEG
moiety containing dopamine at one end and amino
group at the other end (i.e., DPA-PEG-NH,). It was then
reacted with MNPs to form Fe;O,-DPA-PEG-NH, NPs.
The activated FA was covalently coupled to Fe3;O04-DPA-
PEG-NH, NPs forming Fe304-DPA-PEG-FA. MTX mo-
lecules were then conjugated to Fe;O4-DPA-PEG-FA to
form PEGylated FA-MTX-MNPs (Figure 1A).

The bare and functionalized MNPs were analyzed by
TEM and SEM (Figure 1, panels B and C, respectively)
as well as DLS and AFM. Based on DLS analyses, the

Table 1 Primers used for amplification of selected genes

Gene Primer sequence Melting
T(C)

18srRNA Forward: 5'-CGATGCGGCGGCGTTATTC-3'(19) 62

NR_003286.1  Reverse:5'-TCTGTCAATCCTGTCCGTGTCC-3'(22)

Akt Forward: 5'- CGCAGTGCCAGCTGATGAAG -3'(20) 583
NM_005163.2 Reverse: 5'- GTCCATCTCCTCCTCCTCCTG -3'(21)
Caspase 9 Forward: 5'- TGCTGCGTGGTGGTCATTCTC-3'(21) 62
NM_001229.2 Reverse: 5'- CCGACACAGGGCATCCATCTG-3'(21)

Bax Forward: 5'- GATGCGTCCACCAAGAAG -3'(18) 53
NR_027882  Reverse: 5'- AGTTGAAGTTGCCGTCAG-3'(18)
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Figure 1 Architecture, morphology, size and zeta potential of the engineered MNPs. A) PEGylated FA-armed MTX-conjugated MNPs (not
drawn to scale). B) TEM micrograph of PEGylated FA-MTX-MNPs. C) SEM micrograph of PEGylated FA-MTX-MNPs. D) DLS image of bare MNPs.

E) DLS image of Fes0,-DPA-PEG NPs. F) DLS image of Fe;0,-DPA-PEG-FA NPs. G) DLS image of PEGylated FA-MTX-MNPs. FA: folic acid. MTX: mitoxantrone.
MNPs: magnetic nanoparticles. TEM: transmission electron microscopy. SEM: scanning electron microscopy. DLS: dynamic light scattering.

size of bare MNPs, Fe;O,-DPA-PEG NPs, Fe;O4-  (Figure 1, panels D, E, F and G, respectively). The
DPA-PEG-FA NPs and PEGylated FA-MTX-MNPs PEGylated FA-MTX-MNPs displayed zeta potential
were respectively 7-10, 17-20, 30-32 and 33-35 nm  value of 8-10 mV.
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AFM analyses confirmed the results obtained by DLS
analyses showing the size (height) of ~10 and ~35 nm
for the bare MNPs and the PEGylated FA-MTX-MNDPs,
respectively (Figure 2).

Cellular uptake and internalization

In vitro cellular internalization was examined in both
MCE-7 and A549 cells. As shown in Figure 3, FA-armed
FITC-conjugated MNPs were significantly taken up by
the FR-positive MCEF-7cells, but not the FR-negative
A549 cells. The flow cytometry was used to revalidate
the fluorescence microscopy. As shown in Figure 4, the
flow cytometry analysis confirmed the results obtained
by the fluorescence microscopy analysis, showing mark-
edly high internalization of the engineered PEGylated
FA-MTX-MNPs by the FR-positive MCF-7 cells (>70%).
However, trivial internalization of these NSs was ob-
served by the FR-negative A549 cells.

Trypan blue exclusion assay

To study the toxicity of FA-MTX-MNPs, trypan blue ex-
clusion assay was used. As shown in Figure 5, the PEGy-
lated FA-MTX-MNPs were able to significantly repress
the growth and the proliferation of MCF-7cells (p <0.01),
but not A549 cells (data not shown). The ICs, for the free
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MTX and the PEGylated FA-MTX-MNPs were respec-
tively 1.5 pg/mL and 3.0 pg/mL after 24 h, and 0.86 pg/mL
and 1.7 pg/mL after 48 h.

DNA fragmentation analysis

The most important feature of apoptotic cells is the clea-
vage of chromosomal DNA at the internucleosomal sites
into numerous units including 180-200 base pairs frag-
ments. The engineered PEGylated FA-MTX-MNPs impacts
on the integrity of genomic DNA was examined. Figure 6
epitomizes a typical DNA fragmentation within the MCE-7
cells treated with the PEGylated FA-MTX-MNPs.

DAPI staining

Nuclear fragmentation and chromatin condensation/re-
modeling that are typical markers of apoptosis were
evaluated in the MCEF-7 cells treated with the free MTX,
the free MNP or the PEGylated FA-MTX-MNPs using
DAPI staining assay. As shown in Figure 7, the FA-
MTX-MNPs imposed clear changes in the nucleus (most
likely through DNA condensation and chromatin alter-
ation) of the treated MCF-7 cells, while the free MTX
treated cells did not show similar effects (Figure 7). The
responses of A549 cells were negligible as compared to
that of MCE-7 cells.

o {c) [T} I [

g .

T
Tpm
fast

Figure 2 AFM analyses of the bare MNPs and the PEGylated FA-MTX-MNPs. AFM analyses were performed using intermittent contact
mode. Panels A, B and C respectively represent the height (trace), the cross section line profile, and the 3D images of the bare MNPs. Panels D,
E and F respectively represent the height (trace), the cross section line profile, and the 3D images of the PEGylated FA-MTX-MNPs. AFM: atomic
force microscopy. FA: folic acid. MTX: mitoxantrone. MNPs: magnetic nanoparticles.
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DIC: differential interference contrast. FM: fluorescence microscopy.

25 um

Figure 3 The internalization of PEGylated FA-FITC-MNPs in A549 and MCF-7 cells. The cultivated cells were treated with the FA-FITC-MNPs
for 2 h and then subjected to the light and fluorescence microscopy analyses. A) DIC and FM superimposed image of the A549 cells. B) DIC, C)
FM, and D) DIC and FM superimposed images of the MCF-7 cells. FA: folic acid. FITC: Fluorescein isothiocyanate. MNPs: magnetic nanoparticles.

AO-EB viability analysis

To detect the early and late apoptosis as well as necrosis
upon treatment of the MCF-7 cells treated with the free
MNPs, the free MTX molecules or the FA-MTX-MNPs,
the cells were stained with AO (100 pg/mL) and EB
(100 pg/mL) and analyzed by the light/fluorescence mi-
croscopy. Figure 8 represents the AO-EB stained MCEF-7
cells. Having possessed integrated membrane, the un-
treated viable cells were impermeable to EB and hence they
displayed normal round nuclei stained green (Figure 8A).
In the same way, the MNPs treated cells were found to be
viable (Figure 8B). The cells treated with either the free
MTX (Figure 8C) or the FA-MTX-MNPs (Figure 8D)
showed profound apoptosis and/or necrosis. The apoptotic
cells had condensed and/or fragmented nuclei (Figure 8C
and D). They appeared to be impermeable to EB during
the early stages of apoptosis showing nuclei stained green,
but permeable to EB during the later stages of apoptosis

showing nuclei stained red. The necrotic cells displayed
red nuclear stain with no nuclear condensation.

Annexin V apoptosis assay

FITC-annexin V apoptosis assay was employed to ex-
plore the apoptosis stage in the treated cells with the
PEGylated FA-MTX-MNPs. Technically, phosphatidyl-
serine (Ptd-L-Ser) is mostly located on the cytosolic
leaflet of cell membranes in mammalian cells while it is
transmitted to the outer plasma membrane leaflet when
apoptosis is initiated. It is a susceptible marker for the
occurrence of early phase of apoptosis [30], in which the
annexin V shows high affinity to the negatively charged
Ptd-L-Ser and binds to the target molecule in the
presence of Ca®* [31]. As analyzed by the fluorescence
microscopy, there exists a significant FITC*/PI* of cells
treated with the PEGylated FA-MTX-MNPs or the free
MTX molecules. As shown in Figure 9, the flow
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Figure 4 Flow cytometry analyses of A549 and MCF-7 cells treated with the PEGylated FA-FITC-MNPs. The cultivated cells were treated
with the FA-FITC-MNPs for 2 h and then subjected to the flow cytometry analyses. Panels A, B and C show the untreated, the treated and the
overlaid images of the A549 cells, respectively. Panels D, E and F represent the untreated, the treated and the overlaid images of the MCF-7 cells,
respectively. FA: folic acid. FITC: Fluorescein isothiocyanate. MNPs: magnetic nanoparticles.

cytometry analyses revealed occurrence of the late phase  Quantitative gene expression

apoptosis in more than 95% of the MCF-7 cells, but not To find the mechanism of the apoptosis, quantitative
the A549 cells, upon treatment with the PEGylated FA-  gene expression was performed looking at three key
MTX-MNPs. genes involved in apoptosis and cell proliferation (i.e.,
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Figure 5 Cell viability trypan blue exclusion analysis in MCF-7 cells. The cultivated cells at 50% confluency were exposed to either the free
MTX (0.05-3.20 pg/mL) or the PEGylated FA-MTX-MNPs (0.39-24.62 ug/mL) for 24 h and 48 h, and then subjected to the trypan blue exclusion
assay. FA: folic acid. MTX: mitoxantrone. MNPs: magnetic nanoparticles.

Bax, AKt and Caspase 9). Figure 10 demonstrates the
expression changes of Bax, AKt and Caspase 9 in responses
to designated amounts of the PEGylated FA-MTX-MNPs
in a concentration-dependent manner. Increased amount
of the PEGylated FA-MTX-MNPs appeared to significantly
increase the expression of Bax (P =0.009) and Caspase 9
(P =0.011), while the expression of AKt (P =0.002) was
found to be decreased.

Discussion

Multifunctional nanomedicines are deemed to revo-
lutionize the treatment of life-threatening diseases such
as malignancies. While carrying therapeutic agents, these
NSs can be armed with homing and imaging devices
which enable them to be used for specific simultaneous
targeting and imaging. Of various advanced nanoma-
terials such as quantum dots and carbon nanotubes
[32,33], MNPs provide great characteristics for surface
functionalization. We have previously reported on en-
gineering of various NSs for effective delivery of dif-
ferent drugs [34-40], and also showed that the surface
functionalized MNPs can further be conjugated with
anticancer drugs such as MTX [23], loaded with TMX
[24], or even self-assembled with plasmid DNA [25]. In
the current study, we aimed to study the specific targeting,
internalization and genomic impacts of the engineered
multifunctional MNPs in the FR-positive/negative cells.
The TEM, DLS (Figure 1) and AFM (Figure 2) analyses re-
vealed the size of the engineered MNPs to be approxi-
mately about 10 and 35 nm before and after modification.

The PEGylated FA-MTX-MNPs showed surface charge of
10 mV. The size and zeta potential characteristics of these
NSs make them to be freely distributed with no ag-
gregations. It is noteworthy to mention that small NPs
(<10 nm) can be quickly removed from the blood cir-
culation through the clearance functions of kidney and/or
liver, while the larger particles show tendency to be
cleared by mononuclear phagocyte system, the so-called
reticuloendothelial system (RES) [41]. Of note, different
size ranges of PEGylated NPs and also non-PEGylated
NPs (with size range around 100 nm) have a longer circu-
lation duration and lower kidney/hepatic filtration [42].
Furthermore, the effect of NPs size (ranging from 10 nm
to 100 nm) was studied [43]. It was found that the
penetration of NPs into the tumors can extremely be
dependent on the size of the NPs. It can be deduced that
the smaller the NPs, the higher the rate of the accumula-
tion of NPs within the tumor. Hence, we speculate that
the engineered PEGylated FA-MTX-MNPs with a size
range at ~35 nm might show better penetration into solid
tumors through receptor-mediated endocytosis via folate
receptor, which was confirmed by our preliminary studies.
Given the fact that the tumor vasculature is irregularly
un-integrated and the pressure of interstitial fluid in solid
tumors is significantly higher than the normal tissues
[44,45], the engineered FA-MTX-MNPs are speculated to
be able to extendedly circulate within the blood and
effectively accumulate into the tumor interstitium and
hence cancer cells. In addition, the morphological and
physicochemical characterization of the PEGylated FA-
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Figure 6 DNA ladder assay for detection of DNA damages

in MCF-7 cells. Lanes A, B, C and D respectively represent the
untreated control cells, the treated cells with the free MNPs (10.71 pg/mL),
the PEGylated FA-MTX-MNPs (12.31 pg/mL), or the free MTX (1.60 pg/mL)
treated cells for 48 h. M: Marker (100 base-pair). FA: folic acid. MTX:
mitoxantrone. MNPs: magnetic nanoparticles.

MTX-MNPs by TEM, SEM and AFM revealed regular
spherical shape without any obvious detriments in con-
sensus with previous reports [46]. Taken into consi-
deration that many synthetic non-biodegradable polymers
and lipids used for delivery of drugs/genes are able to elicit
inadvertent toxicogenomics leading to inevitable un-
desired cellular responses [47-54], we speculate the PEGy-
lated FA-MTX-MNPs to be a safer delivery NS with
no intrinsic nonspecific biological impacts. Similar effects
have also been reported for the shikonin-loaded antibody-
armed poly(lactic acid-co-glycolic acid) NPs for targeted
therapy of ovarian cancer [34].

Based upon greater internalization of the PEGylated
FA-MTX-MNPs, it can be pondered that they may pro-
vide robust means for ligand-target delivery of chemo-
therapies. Some previously published studies have shown
the internalization mechanisms of various NSs through
endocytosis machineries in different cells [55,56]. It seems
that the internalization of folate-decorated NPs is a size-
dependent phenomena medicated via either clathrin-
coated pits or caveolae-mediated endocytosis [57]. For
example, NPs with size range about 50 nm appear to
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internalize quickly selectively through the clathrin-
mediated endocytosis, while the internalization of NPs
with size range at ~250 nm seems to be a slow process via
the caveolae-mediated endocytosis as a dominant path.
Internalization of MNPs was reported to be via the
clathrin-coated pits in LNCaP prostate cancer cells [58],
which can also be augmented by an external magnetic
field [59].

Furthermore, FRs have been shown to be overex-
pressed by various epithelial cancerous cells in different
solid tumors, and hence they can be exploited for the
targeted therapy of cancer [60-65]. Accordingly, target-
ing cancer cells overexpressing FRs by NPs armed with
FR-specific homing devices have been shown to result in
profound internalization of the NPs [23,25,66]. In our
study, the fluorescence microscopy examinations (Figure 3)
and the flow cytometry analyses (Figure 4) revealed that
the FA-armed MNPs decorated with FITC were actively
taken up by the FR-positive MCF-7 cells, but not the
FR-negative A549 cells. It should be stated that MNPs fas-
cinated much interests not only due to their magnetic
characteristics but also because of their association with
low toxicity in the human body [67-69]. For example,
Karlsson et al. compared cytotoxicity of various MNPs
and inferred that the MNPs do not induce cytotoxicity at
a concentration range under 100 pg/mL. Our study dis-
closed that, while the MNPs per se were nontoxic, the
PEGylated FA-MTX-MNPs could considerably induce
high inhibitory impacts on the proliferation of FR-positive
cancer cells as compared to the untreated control cells
(Figure 5). Such inhibition appeared to be a concentration-
dependent phenomenon. The liberation of covalently con-
jugated MTX payloads from the engineered MNPs was
shown to be a sustained-release process, in which the
esterase-mediated enzymatic activity of the cancer cells
are responsible for the release of drug molecules [70],
reader is directed to see the following work for some se-
lected methods of surface modifications and bioconjuga-
tions of NPs [35]. The free MTX molecules induce the
inhibitory impacts via interaction with DNA and inhi-
bition of topoisomerase II enzyme by ensnaring it with a
covalent topoisomerase-DNA complex [71]. Besides, the
inhibition in DNA helicase II activity has also been shown
as a mechanism for DNA damages induced by MTX [72].
The MTX molecules can result in profound cell death, in
which the biosigns for such cell death appear to manifest
as the chromatin condensation/remodeling [73], and the
fragmentation in the internucleosomal DNA [74]. Pre-
vious studies have also highlighted an enhanced fragmen-
tation of internucleosomal DNA by the anthracyclines
drugs such as MTX in the human myeloid leukemia HL-
60 and KG-1 cells [75]. In the current study, both the free
MTX and the PEGylated FA-MTX-MNPs were found to
induce the fragmentation of internucleosomal DNA in the
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FA-MTX-MNPs.

Figure 7 DAPI staining assay for detection of chromatin decomposition in MCF-7 cells. Cell were treated with either the free MTX (1.60 ug/mL)
or the PEGylated FA-MTX-MNPs (1231 pug/mL), stained with DAPI and then subjected to the transmission light microscopy (panels A, D, G and J),
fluorescence microscopy (panels B, E, H and K) and the stylized images of fluorescence microscopy (panels C, F, | and L) showing margins of nucleuses.
All'images are shown as 200x magnification. Panels A, B and C show the untreated control cells. Panels D, E and F represent the cells treated with

the free MNPs alone. Panels G, H and I show the cells treated with the free MTX. Panels J, K and L demonstrate the cells treated with the PEGylated

X200

MCE-7 cells, which was confirmed by DNA ladder assay
(Figure 6). In addition, the fluorescence microscopy exam-
ination of DAPI stained cells illustrated chromatin rings
and crescent-shaped nuclei within the nuclear membrane
of the cells treated with the free MTX and the PEGylated
FA-MTX-MNPs (Figure 7). Given that the PEGylated FA-

MTX-MNPs elicit the cell death, we assumed that the im-
pacts of these NSs might be as same as that of the free
MTX molecules in MCEF-7 cells. However, to ensure upon
impacts of the PEGylated FA-MTX-MNPs, we also stu-
died the alternation of membrane phospholipids using
annexin V flow cytometry apoptosis assay based on the
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necrotic (stained red).

Figure 8 Acridine orange - ethidium bromide (AO - EB) assay for detection of apoptotic and/or necrotic MCF-7 cells. A) Untreated cells
as a negative control. B) Cells treated with the free MNPs (10.71 pg/mL). C) Cells treated with the free MTX (1.60 pg/mL). D) Cells treated with the
PEGylated FA-MTX-MNPs (1231 pg/mL). The cultured cells, at 40-50% confluency, were treated and then subjected to the staining with acridine orange
(100 pg/mL) and ethidium bromide (100 pg/mL) followed by light/fluorescence microscopy analyses. The untreated cells (panel A) and the MNPs
treated cells (panel B) were viable with impermeable membrane to EB, which showed normal round nuclei stained green. The cells treated with the
free MTX or the PEGylated FA-MTX-MNPs (panels C and D, respectively) were apoptotic (stained orange) with condensed and/or fragmented nuclei or

existence of Ptd-L-Ser on the plasma membrane as a sign
of annexin V affinity for the apoptotic cells [76]. Once the
nuclear morphology and internucleosomal DNA fragmen-
tation of the treated cells were characterized, we found
somewhat DNA fragmentation (Figure 6) and chromatin
condensation (Figure 7) in MCEF-7 cells upon treatment
with the free MTX or the PEGylated FA-MTX-MNPs. Of
note, we also witnessed high degrees of phenotypic apop-
tosis and necrosis within MCE-7 cells treated with either
the free MTX or the engineered PEGylated FA-MTX-
MNPs, while the free MNPs per se appeared to be safe as
shown by the AO-EB apoptosis/necrosis detection assay
(Figure 8). In fact, the AO is a vital dye that can stain both
live and dead cells, but the EB stains solely the cells with
defected membrane. While the viable cells appeared to be
uniformly green (Figure 8A and B), the early apoptotic
cells stained green with bright green dots in the nuclei
evincing the chromatin condensation and the nuclear
fragmentation (Figure 8C and D). Late apoptotic cells ap-
peared to incorporate the EB and hence stained orange
showing condensed and often fragmented nuclei, but the
necrotic cells stained orange/red showing almost normal
nuclear morphology without any condensed chromatin
(Figure 8C and D).

Further, the MCF-7 cells treated with the PEGylated
FA-MTX-MNPs revealed a high affinity to the annexin
V, showing the expression of Ptd-L-Ser on the outer
membrane leaflet. The annexin V assay revealed that ap-
proximately 80% of the cells treated with FA-MTX-
MNPs were FITC"/PI", indicating their ability to induce
Ptd-L-Ser on the outer membrane leaflet of the treated
cells and to loss the membrane integrity which inhibits
PI exclusion by the cells (Figure 9). We speculate that
the engineered PEGylated FA-MTX-MNPs have great
ability to initiate the “find-me” and “eat-me” signals on
the surface of the cells, and hence activate the cell death
mechanism in a similar fashion as reported for the free
MTX molecules previoulsy [77].

To delineate the apoptosis pathway observed in the
ER-positive MCEF-7 cells treated with the PEGylated FA-
MTX-MNPs, we studied the gene expression profile of
several essential genes related to the mitochondrial
apoptosis pathway. It was found that the cell death sig-
nals are generated through the formation of pores in the
membrane leading to liberation of mitochondrial pro-
teins like small mitochondria-derived activator of cas-
pases (SMACs) into the cytoplasmic matrix. Further, it
has already been reported that the interaction of some
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Figure 9 FITC-conjugated annexin V apoptosis analysis of MCF-7 cells. A) The untreated cells (negative control). B) The cells treated with
the free MNPs (10.71 pg/mL). C) The cells treated with the free MTX (1.60 pg/mL). D) The cells treated with the PEGylated FA-MTX-MNPs
(1231 pg/ml). FITC: Fluorescein isothiocyanate. FA: folic acid. MTX: mitoxantrone. MNPs: magnetic nanoparticles.

released factors with the apoptotic protease activating
factor-1 (Apaf-1) known as apoptosome can activate the
pro-caspase 9 [78]. The consequently activated caspase 9
can in turn cleave the subsequent proteins in the apop-
totic caspase cascade, which can irretrievably oblige the
cells to assign an inevitable intrinsic apoptosis. The
PI3K/AKt pathway, as an important intracellular signa-
ling path, plays a key role in apoptosis and subsequently
in cancer development [79], in particular breast cancer.
Through this pathway, phosphorylation of the inactive
form of AKt can inhibit Bax effects on the mitochondria,
in large part by entrapping the protein in the cytosol
[80,81], resulting in inevitable immoderate proliferation
of cancerous cells. However, upon the initiation of
apoptosis via PI3K/AKt pathway, Bax interacts with the
outer mitochondrial membrane voltage-dependent anion
channels (VDAC) and hence increases the permeability
of the mitochondrial membrane [82]. Opening of the
mitochondrial channels can lead to the release of

cytochrome complex (Cyt c) and other pro-apoptotic
proteins of the mitochondria, resulting in profound
stimulation of the mitochondrial apoptotic pathway. In
our investigation, we studied the expression of the most
important genes (i.e., AKt, Caspase 9 and Bax) and ob-
served a considerable regulation in the gene expression
profile of the treated cells with the PEGylated FA-MTX-
MNPs (Figure 10). The expression of AKt was down-
regulated as compared to the untreated control cells.
Nonetheless, there was a significant up-regulation in the
expression of AKt’s downstream gene (i.e. Bax), which
was not surprising because of the down-regulation of
AKt. Taken all, the use of PEGylated FA-MTX-MNPs
can activate the tumor suppressor genes Bax and
Caspase 9, but inactivate the tumor inducer gene AKt,
which triggers the apoptosis pathway(s). Thus, given
these changes in expression AKt, Caspase 9 and Bax, we
presume that the initiation of the observed apoptosis by
the engineered MNPs may occur via the PI3K/AKT
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Figure 10 Quantitative PCR analysis of apoptotic genes in MCF7 cells treated with the PEGylated FA-MTX-MNPs. Panels A, B, and C show
the expression of Caspase 9, BAx and AKt, respectively. As a housekeeping gene, 18 s rRNA was used to normalize Ct values using the Pfaffl method.
Data are expressed as mean values of independent triplicates (mean + SD). Asterisks represent statistical difference (p < 0.05) with untreated control.

FA: folic acid. MTX: mitoxantrone. MNPs: magnetic nanoparticles. Ct: threshold cycle. UT: untreated control.

pathway that is known as the main pathway involved in
breast cancer.

Conclusion

So far, a number of studies have been conducted towards
development of effective anti-cancer nanomedicines in
order to lower the inadvertent adverse effects of che-
motherapeutics. In the current study, we developed FA-
armed MNPs conjugated with MTX to specifically target
the FR-positive MCE-7 cells and effectively deliver the
MTX molecules to the target cells. We studied the ef-
fects of surface modification on cellular uptake, toxicity
and mechanism(s) of the toxicity of the engineered
PEGylated FA-MTX-MNPs. Our results revealed that
the FA-coated MNPs have a considerably higher level of
cellular uptake by the FR-positive MCF-7 cells but not
the FR-negative A549 cells. The observed growth in-
hibitory effects induced by the engineered NSs in the
FR-positive MCF-7 appeared to be dose- and time-
dependent, which were comparable to the overall bio-
logical impacts of the free MTX molecules. Based on the
profound inhibitory effects of the PEGylated FA-MTX-

MNPs in the FR-positive cancer cells through PI3K/
AKT pathway, we propose this FR-targeting NS as a ro-
bust site-specific targeted delivery nanomedicine and
theranostic that can be used against various FR-positive
malignancies. Having capitalized on passive targeting
through enhanced permeability and retention effect and
active targeting through folate receptor-mediated endo-
cytosis we expect to attain greater specific endocytic in-
ternalization and hence better clinical outcome by these
nano-sized PEGylated FA-MTX-MNPs.
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