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Abstract

The behavioral consequences of fetal alcohol spectrum disorders (FASD) are serious and persist 

throughout life. The causative mechanisms underlying FASD are poorly understood. However, 

much has been learned about FASD from human structural and functional studies as well as from 

animal models, which have provided a greater understanding of the mechanisms underlying 

FASD. Using animal models of FASD, it has been recently discovered that ethanol induces 

neuroimmune activation in the developing brain. The resulting microglial activation, production of 

proinflammatory molecules, and alteration in expression of developmental genes are postulated to 

alter neuron survival and function and lead to long-term neuropathological and cognitive defects. 

It has also been discovered that microglial loss occurs, reducing microglia’s ability to protect 

neurons and contribute to neuronal development. This is important, because emerging evidence 

demonstrates that microglial depletion during brain development leads to long-term 

neuropathological and cognitive defects. Interestingly, the behavioral consequences of microglial 

depletion and neuroimmune activation in the fetal brain are particularly relevant to FASD. This 

chapter reviews the neuropathological and behavioral abnormalities of FASD and delineates 

correlates in animal models. This serves as a foundation to discuss the role of the neuroimmune 

system in normal brain development, the consequences of microglial depletion and 

neuroinflammation, the evidence of ethanol induction of neuroinflammatory processes in animal 

models of FASD, and the development of anti-inflammatory therapies as a new strategy for 

prevention or treatment of FASD. Together, this knowledge provides a framework for discussion 

and further investigation of the role of neuroimmune processes in FASD.

1. OVERVIEW OF FETAL ALCOHOL SPECTRUM DISORDERS

Maternal consumption of alcohol during pregnancy can lead to a spectrum of defects in their 

offspring. The range of disorders induced by gestational alcohol exposure is designated as 

fetal alcohol spectrum disorders (FASD) and includes the severe disorder of fetal alcohol 

syndrome (FAS). FASD is associated with monumental personal, societal, and economic 

impacts. In the United States, a staggering 12% of pregnant women consume alcohol despite 

extensive public health warnings (Floyd, Weber, Denny, & O’Connor, 2009). The 

consequence is an incidence of FASD of at least 1 in 100 births and an incidence of FAS of 

2–7 in 1000 births (May et al., 2009; Sampson et al., 1997). The direct economic cost of 
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FASD in the United States was recently estimated at $4 billion per year (Lupton, Burd, & 

Harwood, 2004). Thus, FASD is a major public health problem.

FASD represents a range of mild to severe effects on the brain and is the primary cause of 

mental retardation (Abel & Sokol, 1986; American Academy of Pediatrics Committee on 

Substance Abuse and Committee on Children with Disabilities, 2000). Both structural and 

functional defects are produced in the developing brain by fetal alcohol exposure (Riley & 

McGee, 2005). The CNS pathology and cognitive and behavioral impairments commonly 

persist throughout life (Riley, Infante, & Warren, 2011; Streissguth, Landesman-Dwyer, 

Martin, & Smith, 1980). Brain structural defects in individuals with FASD are commonly 

identified in the corpus callosum, cerebellum, cerebral cortex, hippocampus, amygdala, 

thalamus, and basal ganglia (Astley et al., 2009; Norman, Crocker, Mattson, & Riley, 2009). 

These defects range from diminution in the size of the brain region to microstructural 

pathology at the level of loss of neurons and glial cells, ectopic locations of neurons and 

glia, or defects in neural connectivity. Clinical imaging studies of individuals with FASD 

indicate that the extent of brain damage correlates with the extent of cognitive deficits as 

well as with FAS facial dysmorphology (Astley et al., 2009; Coles & Li, 2011; Lebel, 

Roussotte, & Sowell, 2011; O’Hare et al., 2005; Suttie et al., 2013).

2. NORMAL BRAIN DEVELOPMENT

The fetal brain develops throughout the entire period of pregnancy and is the most 

vulnerable organ to alcohol pathology. The nervous system develops from neuroectoderm, 

which forms the neural tube (see Squire et al., 2013). Neuroepithelial cells in the wall of the 

neural tube proliferate to form neuroblasts. Glioblasts are produced by neuroepithelial 

proliferation to produce astrocytes and oligodendrocytes. Microglial cells are produced from 

nonneuroectodermal, mesenchymal tissue as described below (Saijo & Glass, 2011). The 

cranial end of the neural tube forms the prosencephalon (forebrain), mesencephalon 

(midbrain), and rhombencephalon (hindbrain). The cerebral cortex, hippocampus, and 

cerebellum develop by the proliferation of neuroepithelial cells in the innermost layers of the 

neural tube. Cerebral cortical and hippocampal neurons are generated from progenitor cells 

in the ventricular and subventricular zones of the telencephalon by proliferation, 

differentiation, and migration. Cerebellar Purkinje neurons are generated by the proliferation 

of neuroepithelial cells in the ventricular zone and migration into the developing cerebellar 

cortex. Cerebellar granule cells are generated by the proliferation of neuroepithelial cells in 

the rhombencephalon and migration to form the granular layer. Migrating neurons use radial 

glial cells, chemoattractant and chemorepulsive molecules, cytokines and chemokines, 

neurotrophins, and neurotransmitters as guides to their correct position. As described below, 

studies in animal models reveal that alcohol exposure leads to neuron and glial death and 

disruption of normal neurogenesis, differentiation, and migration of neurons.

3. FASD NEUROPATHOLOGY IN HUMANS

Because of advanced imaging capabilities and earlier and more reliable diagnosis of FASD, 

detailed analyses of structural anomalies in the brain of individuals with FASD are 

advancing. Microencephaly is the most commonly reported structural brain defect. But, 
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magnetic resonance imaging (MRI) has revealed more specific volume reductions in the 

corpus callosum, cerebral cortex, cerebellum, and subcortical structures including the 

hippocampus, basal ganglia, amygdala, and thalamus (Astley et al., 2009; Coles & Li, 2011; 

Lebel et al., 2011; Norman et al., 2009; Riley et al., 2011; Riley, McGee, & Sowell, 2004). 

Additional studies, as described below, have uncovered both gross and microstructural brain 

defects that correspond to functional deficits in individuals with FASD.

The corpus callosum is the principal white matter track in the brain and is very sensitive to 

fetal alcohol exposure. It exhibits gross changes with partial to complete agenesis and 

changes in volume, length, and thickness in individuals with FASD (Yang et al., 2012). At a 

higher level of resolution, diffusion tensor imaging (DTI) reveals microstructural 

abnormalities throughout the region (Wozniak et al., 2009). There is a striking 

correspondence between gross and microstructural pathologies in the corpus callosum and 

FASD disease severity, facial dysmorphology, and functional deficits (Sowell et al., 2001; 

Wozniak & Muetzel, 2011). For example, reduction in the size of the corpus callosum and 

displacement correspond to decreased executive function, learning and memory, and 

impaired motor skills (Kodituwakku, Kalberg, & May, 2001; Roebuck-Spencer, Mattson, 

Marion, Brown, & Riley, 2004; Sowell et al., 2001).

The cerebral cortex is also highly vulnerable to fetal alcohol exposure. At the gross level, 

aberrant formation of the gyri and sulci occurs (De Guio et al., 2013). MRI reveals that the 

frontal cortex atrophies (Leigland, Ford, Lerch, & Kroenke, 2013; Sowell et al., 2008; Yang 

et al., 2012; Zhou et al., 2011). Structural and functional imaging also indicates deficits in 

the frontal, parietal, and temporal lobes (Archibald et al., 2001; Bhatara et al., 2002; Lebel et 

al., 2012; Riley et al., 2004). There is a reduction in the volume and altered morphology of 

both the cortical gray matter and white matter (Bjorkquist, Fryer, Reiss, Mattson, & Riley, 

2010; Nardelli, Lebel, Rasmussen, Andrew, & Beaulieu, 2011; Riley et al., 2004). Further, 

there are changes throughout the subcortical region with particular losses in the 

hippocampus, thalamus, and globus pallidus (Riley et al., 2004; Wozniak et al., 2009). 

Correlation to disease severity is strong for structural and functional defects in the cerebral 

cortex (Norman et al., 2009; Yang et al., 2012).

Gross and fine structural defects are also produced in the cerebellum by fetal alcohol 

exposure. The volume of the entire cerebellum is smaller, and the reduced volume and 

displacement of the anterior vermis and posterior inferior regions are particularly striking 

(Archibald et al., 2001; Autti-Ramo et al., 2002; O’Hare et al., 2005; Sowell et al., 1996). 

Defects in cerebellar development have been often documented in individuals with moderate 

to severe FASD and correlate with disease severity (O’Hare et al., 2005; Wozniak et al., 

2009). For example, DTI studies of the cerebellum have revealed defects in the cerebellar 

white matter tracts that correspond to behavioral deficits (Spottiswoode et al., 2011).

There is an emerging wealth of information defining functional connectivity defects within 

and between brain regions in individuals with FASD (Norman et al., 2013; Wozniak et al., 

2013). There are increases or decreases in regional brain activity that correlate to deficits in 

cognitive function including executive function, learning and memory, mathematical 

processing, attention, and inhibition (Coles & Li, 2011). For example, there is differential 

Drew and Kane Page 3

Int Rev Neurobiol. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activation of circuitry in regions of the cerebral cortex, corpus callosum, striatum, and 

cerebellum during cognitive tasks (see, e.g., Coles & Li, 2011; Diwadkar et al., 2013; Lebel, 

Rasmussen, Wyper, Andrew, & Beaulieu, 2010; Norman et al., 2013; Wozniak et al., 2011, 

2013. These studies are particularly enlightening, because the degree of difference in brain 

activity correlates to the degree of cognitive impairment and disease severity.

4. FASD NEUROPATHOLOGY IN ANIMAL MODELS

Human studies confirm that findings in animal models accurately reproduce major aspects 

of the neuropathology and behavioral dysfunction seen in FASD. Treatment of rodents and 

nonhuman primates with alcohol (ethanol) has proved to be highly informative for 

understanding the neuroanatomical and cellular events that occur as a consequence of fetal 

alcohol exposure. For comparison to human gestation, it is important to align the temporal 

stages of brain development with the corresponding stage in human brain development. For 

example, rodent birth represents human midgestation for the development of several brain 

regions, whereas birth represents the beginning of the human third trimester for the 

development of other brain regions (Clancy, Darlington, & Finlay, 2001; Clancy, Finlay, 

Darlington, & Anand, 2007; Dobbing & Sands, 1979). Understanding parallels between 

human and rodent brain development is particularly important because so much of what we 

know about FASD neuropathology and its causes have been identified first in rodent models 

of these disorders.

Imaging studies of mice exposed to gestational ethanol have revealed significant parallels 

with human FASD including facial dysmorphology and defects in brain development. There 

is a highly specific pattern of regional brain malformation depending on the temporal period 

of exposure to ethanol (O’Leary-Moore, Parnell, Lipinski, & Sulik, 2011). For example, 

exposure on mouse gestational day 7 produces defects in the cerebral cortex, hippocampus, 

and basal ganglia in addition to abnormalities in fiber tracts (Godin et al., 2010). However, 

exposure on gestational day 8 produces neuronal death in the hindbrain and cranial neural 

crest cells, cranial nerve defects with the loss of ganglia, and abnormalities in fiber tracts 

(Parnell et al., 2009). The volume of the cerebral cortex, cerebellum, and hippocampus is 

reduced, and hypoplasia or agenesis of the corpus callosum is also present. Other exposure 

periods produce different unique patterns of structural and functional brain defects as 

demonstrated in numerous studies (e.g., O’Leary-Moore et al., 2011).

Investigation of nonhuman primates as models of FASD has provided important insights. 

These studies provide strong evidence that the cerebral cortex is vulnerable to ethanol-

induced neuropathology. Offspring of Macaque monkeys exposed to ethanol during early 

pregnancy experienced significant neuronal loss in the cortex, brainstem, and subcortical 

structures (Farber, Creeley, & Olney, 2010; Miller, 2006, 2007; Mooney & Miller, 2001, 

2009). Studies in rodents also demonstrate loss of cortical neurons in offspring following 

ethanol exposure during gestation or in the postnatal period (Ikonomidou et al., 2000; Miller 

& Potempa, 1990; Wilson, Peterson, Basavaraj, & Saito, 2011). Cortical volume, thickness, 

and surface area are reduced by ethanol exposure throughout gestation in rodents (Leigland 

et al., 2013). Proper neuron migration into the cerebral cortex is also disrupted by ethanol 

(Gressens, Lammens, Picard, & Evrard, 1992; Miller, 1993) apparently through inhibition of 
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radial glia development and ethanol-induced changes in the expression of molecules central 

to migration (Aronne, Guadagnoli, Fontanet, Evrard, & Brusco, 2011; Miller & Robertson, 

1993). Rodent models of fetal ethanol exposure further demonstrate neuroanatomical, 

synaptic, and electrophysiological defects in neocortical circuitry that correspond to deficits 

in behavior (El Shawa, Abbott, & Huffman, 2013; Inomata, Nasu, & Tanaka, 1987; 

Slawecki, Thomas, Riley, & Ehlers, 2004; Whitcher & Klintsova, 2008; Wilson et al., 

2011).

The developing hippocampus of the rodent is vulnerable to ethanol exposure. The size of the 

individual neuron populations in all regions of the hippocampus is reduced by ethanol 

exposure during gestation or in the postnatal period (Gil-Mohapel, Boehme, Kainer, & 

Christie, 2010). This includes significant loss of pyramidal neurons in CA1 and CA3 and 

granule neurons in the dentate gyrus (Ieraci & Herrera, 2007; Ikonomidou et al., 2000; 

Klintsova et al., 2007; Livy, Miller, Maier, & West, 2003; Tran & Kelly, 2003; Uban et al., 

2010). Developmental ethanol exposure also produces neuroanatomical and 

electrophysiological defects in hippocampal circuitry (Diaz et al., 2014; Everett, Licon-

Munoz, & Valenzuela, 2012; Lindquist, Sokoloff, Milner, & Steinmetz, 2013; Sakata-Haga 

et al., 2003). Defects in the hippocampus correlate with behavioral deficits, particularly with 

learning and memory (Banuelos et al., 2012; El Shawa et al., 2013; Hamilton et al., 2010; 

Idrus, McGough, Riley, & Thomas, 2014; Kelly, Pierce, & West, 1987; Thomas, Idrus, 

Monk, & Dominguez, 2010; Wagner, Zhou, & Goodlett, 2014; West, Kelly, & Pierce, 1987; 

Zink et al., 2011).

The developing cerebellum is vulnerable to ethanol exposure. Administration of ethanol to 

Macaque monkeys demonstrates significant cerebellar Purkinje neuron loss in their 

offspring (Bonthius et al., 1996; Farber et al., 2010). In rodents, cerebellar volume is 

reduced by midgestational ethanol exposure (Parnell et al., 2013). The cerebellum is also 

vulnerable to ethanol in the postnatal period where there is volume loss as well as marked 

loss of Purkinje neurons, granule neurons, and deep cerebellar neurons (Goodlett & Eilers, 

1997; Green, Tran, Steinmetz, & Goodlett, 2002; Hamre & West, 1993; Napper & West, 

1995; Pierce, Kane, Serbus, & Light, 1997; Pierce, Serbus, & Light, 1993; Pierce, Williams, 

& Light, 1999). Functional development of neurons is inhibited as evidenced by impaired 

migration, stunted development of dendrites, reduction in the number of synapses, and 

impaired electrophysiological activity (Allam et al., 2013; Jiang, Kumada, Cameron, & 

Komuro, 2008; Kane et al., 2011; Servais et al., 2007; Smith & Davies, 1990; Valenzuela, 

Lindquist, & Zamudio-Bulcock, 2010). These defects contribute to the deficits in motor 

coordination and classical conditioning commonly observed in rodent models of FASD 

(Brown, Calizo, & Stanton, 2008; Goodlett, Thomas, & West, 1991; Idrus, McGough, Riley, 

& Thomas, 2011; Klintsova et al., 1998; Lewis, Wellmann, & Barron, 2007; Murawski, 

Jablonski, Brown, & Stanton, 2013; Wagner, Klintsova, Greenough, & Goodlett, 2013).

5. BEHAVIORAL CONSEQUENCES IN HUMANS WITH FASD

The negative cognitive and behavioral outcomes associated with FASD are far ranging. This 

reflects the extended vulnerability of the developing brain to ethanol throughout gestation. 

The cognitive consequences of FASD include deficits in executive function, deficits in 
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learning and memory, impaired information processing, deficits in vigilance, delayed 

reaction time, restricted mathematical ability, poor speech and language skills, and impaired 

visual-spatial ability (Guerri, Bazinet, & Riley, 2009; Lebel et al., 2010; Mattson & Riley, 

1998; Mattson & Roebuck, 2002; Mattson et al., 2013; Santhanam, Li, Hu, Lynch, & Coles, 

2009). Impairment of executive function is particularly common in FASD, leading to 

problems with planning, set shifting, fluency, response inhibition, and working memory 

(Connor, Sampson, Bookstein, Barr, & Streissguth, 2000; Kodituwakku et al., 2001). 

Psychiatric disorders include abuse and addiction to alcohol and other drugs, internalizing 

and externalizing behavioral disorders, mood disturbances, and major depressive disorder 

(Barr et al., 2006; Fryer, McGee, Matt, Riley, & Mattson, 2007; Olson, Feldman, 

Streissguth, Sampson, & Bookstein, 1998; Streissguth et al., 2004; Ware et al., 2014). It is 

becoming increasingly clear due to functional imaging studies that these cognitive deficits 

are closely linked to ethanol-induced neuropathology in the cerebral cortex, hippocampus, 

cerebellum, and corpus callosum, as well as in other structures. Neuropathology in the 

cerebellum and basal ganglia is evident as delayed motor development and ataxia, including 

difficulty with balance, gait, and fine motor skills (Adnams et al., 2001; Connor, Sampson, 

Streissguth, Bookstein, & Barr, 2006; Mattson & Riley, 1998; Roebuck, Simmons, Mattson, 

& Riley, 1998; Roebuck-Spencer et al., 2004).

6. BEHAVIORAL CONSEQUENCES IN RODENT MODELS OF FASD

Human FASD behavioral outcomes have been modeled in rodents. Cerebral cortical, 

hippocampal, and cerebellar functions have been assessed with cognitive tests of learning 

and memory, motivation, anxiety, and locomotion, among others. Gestational exposure 

produces altered social behavior, impaired learning and memory, delayed development of 

spontaneous alternation behavior, increased anxiety, and poor motor coordination (El Shawa 

et al., 2013; Hamilton et al., 2010; Thomas et al., 2010). Postnatal exposure produces 

impaired learning and memory, altered delay discounting, and increased hyperactivity 

(Banuelos et al., 2012; Idrus et al., 2014; Kelly et al., 1987; Wagner et al., 2014; West et al., 

1987; Zink et al., 2011). Ethanol-induced cerebellar pathology underlies deficits in classical 

eyeblink conditioning tasks (Brown et al., 2008; Murawski et al., 2013; Wagner et al., 

2013). The cerebellum is centrally involved in motor function and ethanol impairs balance 

and coordination in rodents exposed to ethanol during early postnatal development (Goodlett 

et al., 1991; Idrus et al., 2011; Klintsova et al., 1998; Lewis et al., 2007).

The correspondence between ethanol-induced neuroanatomical and behavioral outcomes in 

humans and that in animals allows the use of animal models to elucidate links between 

structural and functional neuropathology and cognitive and motor deficits. Thus, a 

foundation for further investigation of the cellular and molecular mechanisms underlying 

FASD is established. This is important because, as there is no treatment that targets the 

causes underlying FASD and the long-term consequences can be so severe, there is a 

pressing need to develop therapeutic interventions to ameliorate the spectrum of deficits 

associated with the disorders.
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7. OVERVIEW: ALCOHOL EFFECTS ON IMMUNE RESPONSE IN THE BRAIN

It is well established that alcohol has potent effects on immune activity in the CNS 

throughout the life span (Drew & Kane, 2013). Ethanol effects on immune response have 

begun to be evaluated in animal models of maternal consumption, resulting in FASD, 

models of binge drinking common to adolescents, and chronic alcohol abuse common in 

adults and in aged populations. Alcohol abuse at each of these stages can result in 

neuroinflammation, which is believed to contribute to ethanol-induced neurodegeneration. 

This chapter focuses primarily on the effects of ethanol on immune activation in the 

developing CNS.

The effects of ethanol on the peripheral immune system have been extensively investigated. 

Therefore, ethanol has complex effects on immune activity that depend on a variety of 

factors including age, gender, pattern of ethanol exposure (acute, binge, or chronic 

administration), the timing of evaluation following ethanol exposure, and the cells or tissues 

under investigation (Goral, Karavitis, & Kovacs, 2008). These studies demonstrate that 

ethanol can induce or alternatively suppress immune activation in the periphery, depending 

on the specific experimental paradigm. An example of the dichotomous effects of alcohol on 

peripheral immune responses that occurs in human alcoholics who are generally 

immunosuppressed and yet frequently exhibit elevated serum levels of proinflammatory 

cytokines (Goral et al., 2008). Relative to the periphery, the effects of ethanol on the CNS is 

understudied (Blanco & Guerri, 2007; Crews & Nixon, 2009; Crews et al., 2006).

A series of seminal studies demonstrated that ethanol increases the expression of 

proinflammatory cytokines and chemokines, as well as molecules such as nitric oxide and 

Cox-2 in the CNS (Blanco, Pascual, Valles, & Guerri, 2004; Crews et al., 2006; Davis & 

Syapin, 2004; Knapp & Crews, 1999; Ward et al., 1996; Zou & Crews, 2006, 2010). These 

studies further determined that transcription factors including NF-κB and CREB are 

activated by ethanol (Blanco et al., 2004; Crews et al., 2006; Davis & Syapin, 2004; Ward et 

al., 1996; Zou & Crews, 2006, 2010), suggesting that these molecules may play critical roles 

in ethanol induction of proinflammatory molecules, oxidative stress, and ethanol-induced 

pathology in the CNS. Ethanol has been demonstrated to alter the function and viability of 

CNS glia including microglia and astrocytes, as well as neurons. However, much work is 

required to better understand the effects of ethanol on neuroinflammation and 

neurodegeneration.

8. MICROGLIA

8.1. Overview

Together with astrocytes and oligodendrocytes, microglia comprise the glial cells of the 

CNS. While oligodendrocytes play a critical role in forming myelin, astrocytes and 

microglia maintain the health of neurons through the production of neurotrophic factors and 

the removal of potentially neurotoxic molecules from the CNS. Microglia also maintain the 

CNS by the removal of debris and are involved in synaptic pruning critical in the formation 

of functional synapses. However, in response to CNS insult, microglia can become 
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activated, resulting in the production of inflammatory molecules that can contribute to 

neurodegenerative disorders.

8.2. Role in the CNS development

Distinct from other glia and neurons that are derived from neuroectoderm, microglia are 

believed to be of hematopoietic origin (Saijo & Glass, 2011). Microglia are generated in the 

primitive yolk sac and migrate to the CNS early during fetal development prior to formation 

of the blood–brain barrier. As myeloid lineage cells, microglia are most closely related to 

macrophages. Microglia and macrophages both express molecules such as CD11b and CD14 

(Kettenmann, Hanisch, Noda, & Verkhratsky, 2011). Like macrophages, the differentiation 

of microglia is dependent of the transcription factor PU.1, as well as colony stimulating 

factor 1 and its receptor. The fact that PU.1-knock-out mice are devoid of both microglia 

and macrophages supports a common myeloid lineage for these cells (McKercher et al., 

1996).

Controversy has existed regarding whether macrophages are able to migrate into the mature 

CNS and form microglia, thus serving as a source to replenish the microglial cell population. 

Bone marrow chimera studies suggested that this is the case (Eglitis & Mezey, 1997; 

Hickey, 1991; Hickey & Kimura, 1988; Priller et al., 2001). However, these studies are 

complicated by the fact that the irradiation used in these protocols compromised the blood–

brain barrier. More recent parabiosis studies that involve direct connection of the circulation 

of the donor and recipient animals demonstrate that few donor cells enter the CNS in the 

absence of irradiation (Ajami, Bennett, Krieger, Tetzlaff, & Rossi, 2007; Mildner et al., 

2007) and macrophages that do enter do not appear to differentiate into microglia (Ajami, 

Bennett, Krieger, McNagny, & Rossi, 2011). In addition, microglia appear to be long-lived 

cells that can proliferate in response to pathological conditions in the CNS (Fellner, 

Jellinger, Wenning, & Stefanova, 2011; Glass, Saijo, Winner, Marchetto, & Gage, 2010; 

Lawson, Perry, & Gordon, 1992; Reitz, Brayne, & Mayeux, 2011), suggesting that they are 

replenished from stores of microglial precursors in the CNS when needed.

8.3. Function in the healthy CNS

Microglia comprise approximately 5–20% of the cells in the CNS. The relative abundance 

of microglia varies regionally as does the morphology of these cells (Lawson, Perry, Dri, & 

Gordon, 1990). This may reflect regional differences in the function and phenotype of 

microglia. Microglia are more abundant in gray matter than in white matter (Rivest, 2009). 

In the healthy mature CNS, microglia generally exhibit a ramified appearance characterized 

by a small soma, limited cytoplasm, and a series of thin, highly branched processes (Fig. 

3.1A). Although these branched processes extend significantly away from the soma, it is 

believed that the territory occupied by individual microglia does not overlap with adjacent 

microglia (Ransohoff & Perry, 2009). Microglia contribute to homeostasis of the healthy 

brain by producing growth factors critical to the survival of neurons as well as protecting 

neurons by removing potentially neurotoxic molecules from the parenchyma. Microglia play 

a critical surveillance role in the CNS. They are motile and phagocytose cellular debris 

including that derived from apoptotic cells (Sierra et al., 2010). Removal of cellular debris in 

this manner occurs in the absence of microglial activation and inflammation, thus 
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maintaining homeostasis. Microglia also play a critical role in the formation and remodeling 

of synapses. Multiphoton microscopy studies indicate that microglia are dynamic in vivo, 

constantly sampling the microenvironment by extending and retracting processes, 

particularly at the synapse (Davalos et al., 2005; Nimmerjahn, Kirchhoff, & Helmchen, 

2005). Microglia surveillance is particularly important in synaptic plasticity during 

development through activity-dependent synaptic pruning (Tremblay, Lowery, & Majewska, 

2010). The role of microglia in synaptic plasticity is also supported by the documented 

physical association of these cells with developing and mature synapses (Dalmau, Finsen, 

Zimmer, Gonzalez, & Castellano, 1998; Fiske & Brunjes, 2000; Perry, Hume, & Gordon, 

1985). Microglia also associate with dendritic spines, which further support a role for 

microglia in modulating the structure and function of synapses (Tremblay et al., 2010; 

Wake, Moorhouse, Jinno, Kohsaka, & Nabekura, 2009). Interestingly, microglia-derived 

products are critical to synapse development and function. This includes molecules 

classically defined as proinflammatory including major histocompatibility (MHC) class I, 

MHC I-binding receptors, complement proteins, and cytokines including TNF-α and IL-6 

(Boulanger, 2009). The chemokine receptor CX3CR1 is expressed specifically on microglia 

and is critical in microglia–neuron interactions through association with the chemokine 

CX3CL1/fractalkine present on neurons. Interestingly, CX3CR1-deficient mice exhibit 

reduced microglial numbers during development, and these mice exhibit deficits in synapse 

formation and plasticity in the hippocampus (Paolicelli et al., 2011). This further supports a 

role of microglia in the modulation of neuronal circuitry in the developing brain.

8.4. Immune response

Traditionally, the CNS has been considered to be an immune-privileged site. This is due to 

the absence of lymphatic drainage from the CNS, the observation that tissue grafted into the 

CNS is relatively protected from immune-mediated destruction, and the presence of a 

blood–brain barrier that limits the movement of immune cells from the periphery. However, 

it is now known that peripheral immune cells are capable of entering the CNS parenchyma. 

In addition, resident CNS cells including microglia and to a lesser extent astrocytes provide 

immune functions (Carson, Doose, Melchior, Schmid, & Ploix, 2006). As noted earlier, 

microglia provide homeostatic functions in the healthy CNS. Upon insult or aging, microglia 

can become activated, changing morphology from a highly ramified cell with a small soma 

to a hypertrophied cell with broad, stunted processes, and then to an ameboid cell (Fig. 3.1). 

When activated, they can produce a variety of proinflammatory molecules including 

cytokines, chemokines, reactive oxygen species, and nitric oxide. These molecules can be 

protective, for example, in ridding the CNS of infectious agents. In this regard, microglia are 

the primary cell type that performs innate immune functions in the CNS. However, 

chronically activated microglia and these same proinflammatory molecules can be toxic to 

parenchymal cells including neurons. Activated microglia are more aggressively phagocytic. 

They also express increased levels of MHC class I and II, which are central to antigen 

presentation during immune responses, and are, thus, capable of serving as antigen-

presenting cells. In this manner, microglia are capable of presenting antigen to T cells and 

mediating adaptive immune responses (Ransohoff & Perry, 2009; Saijo & Glass, 2011).
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Microglial activation is triggered following the interaction of Toll-like receptors (TLRs) 

present on the surface of these cells with conserved motifs associated with pathogens. In 

addition, microglia can also be activated in response to nonpathogenic insults through TLR 

engagement by endogenous danger signals including heat shock protein 70 and high 

mobility group box protein (HMGB) 1. TLR activation results in the activation of signal 

transduction pathways and changes in the functional phenotype of microglia including 

increased cell proliferation, increased production of proinflammatory molecules, increased 

antigen presentation, and increased phagocytic activity. Microglial activation occurs in a 

stepwise and not in an all or none manner (Carson et al., 2007; Colton, 2009; Hanisch & 

Kettenmann, 2007; Perry, Cunningham, & Holmes, 2007; Schwartz, Butovsky, Bruck, & 

Hanisch, 2006; Streit, Walter, & Pennell, 1999). Microglia can also undergo distinct forms 

of activation characterized by differential protein expression patterns and function in a 

manner similar to that first described as classical or alternative activation of macrophages 

(Ransohoff & Perry, 2009). Following the removal of inflammatory stimuli, microglia can 

revert back toward a quiescent form with a ramified morphological phenotype. However, 

studies indicate that these microglia are not fully deactivated and are primed for subsequent 

activation (Hanisch & Kettenmann, 2007).

9. POTENTIAL LONG-TERM CONSEQUENCES OF IMMUNE ACTIVATION IN 

THE DEVELOPING CNS

As discussed previously, proinflammatory molecules including cytokines and chemokines 

play an important role in ridding the brain of pathogens, but expression of these molecules is 

low in the mature brain in the absence of inflammatory insults. In contrast, in the developing 

brain, proinflammatory molecules are expressed at significant levels in the absence of 

inflammatory insults. This reflects the fact that these molecules classically recognized for 

their inflammatory activity have other important roles in CNS development that are 

independent of an immune response. For example, expression of the cytokines IL-1β and 

TNF-α is developmentally regulated, and these molecules are believed to play important 

roles in CNS development including modulation of neural cell migration, proliferation, 

differentiation, and death (Merrill, 1992). The cytokine IL-6 is believed to serve as a 

neurotrophic factor and to contribute to vascular development in the CNS (Fee et al., 2000; 

Gadient & Otten, 1994). MHC class I molecules have been demonstrated to mediate 

activity-dependent synapse formation in the developing visual system (Corriveau, Huh, & 

Shatz, 1998). Complement, a traditional immune molecule central to antigen presentation, is 

necessary for microglial sculpting of early postnatal neural circuits (Schafer et al., 2012). 

Clearly, altered expression of traditional immune system molecules that have important 

nonimmune roles in the developing brain will have significant, detrimental consequences for 

brain development.

Recent studies have shown that the induction of an inflammatory response in the developing 

rodent brain can have dramatic, lasting effects as evidenced by cognitive deficits and 

behavioral disorders in adulthood (Bilbo, Smith, & Schwarz, 2012; Schwarz & Bilbo, 2012). 

Immune activation during early development can also alter the immune response later in life 

(Bilbo et al., 2012; Schwarz & Bilbo, 2012). Furthermore, even transient reduction in the 
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number of microglia can have dramatic impact on the developing brain. For example, 

genetic deletion of the molecule CX3CR1, which is expressed by microglia, was used to 

generate a transient loss of microglia in the early postnatal mouse. Transient loss of 

microglia resulted in deficits in synaptic pruning, leading to weak synaptic transmission and 

behavioral deficits in adulthood (Zhan et al., 2014). In addition, mice with deletion of 

CX3CR1 demonstrate impaired hippocampal synaptic plasticity and cognitive function 

(Rogers et al., 2011). Collectively, these studies indicate that immune activation in the 

developing brain has dramatic long-term effects on synapse formation and plasticity, 

cognition, development of behavioral disorders, and altered immune responses. Future 

studies are needed to determine if ethanol induction of immune activity in the developing 

brain contributes to the long-term sequelae associated with FASD.

10. LINK BETWEEN ETHANOL AND IMMUNE RESPONSES

10.1. Human studies

The effects of alcohol on peripheral immune responses in humans are well established. For 

example, serum from alcoholics has been demonstrated to exhibit increased levels of 

cytokines including IL-1β, IL-6, IL-12, and TNF-α (Achur, Freeman, & Vrana, 2010). 

Increased cytokine expression in the serum of alcoholics is believed to result in part from 

release of these molecules into the circulation from the alcohol-damaged liver. In addition, 

peripheral blood mononuclear cells derived from alcoholics express increased levels of 

proinflammatory cytokines (Laso, Vaquero, Almeida, Marcos, & Orfao, 2007). Even in 

healthy individuals, excessive acute or binge alcohol and associated hangover is marked by 

increased cytokine expression in peripheral blood (Kim et al., 2003). A vicious cycle of 

alcohol abuse develops since proinflammatory cytokines increase alcohol craving behavior 

and result in increased consumption (Kiefer, Jahn, Schick, & Wiedemann, 2002).

Relatively little is known regarding the effects of alcohol on the immune response in the 

human brain. Postmortem evaluation of adult alcoholic brains indicates increased expression 

of mRNAs encoding immune molecules in the prefrontal cortex of alcoholics relative to 

nonalcoholics (Liu et al., 2006). The expression of the transcription factor NF-κB, which 

activates the expression of a wide variety of neuroimmune genes, is also increased in 

alcoholic brain (Okvist et al., 2007; Yakovleva, Bazov, Watanabe, Hauser, & Bakalkin, 

2011). NF-κB also modulates synaptic plasticity suggesting a mechanism by which 

neuroimmune activation may impair cognition and memory in alcoholics. Contribution of 

neuroimmune activation to alcohol neuropathology is further suggested through the activity 

of the proinflammatory chemokine CCL2/MCP-1. CCL2 expression is increased in the 

hippocampus, amygdala, substantia nigra, and ventral teg-mentum in alcoholics (He & 

Crews, 2008). Studies in transgenic mice over-expressing CCL2 in the CNS reveal that 

CCL2 alters synaptic transmission in the hippocampus (Nelson, Hao, Manos, Ransohoff, & 

Gruol, 2011) suggesting another mechanism by which neuroimmune activation may impair 

cognition and memory. These studies suggest that neuroimmune activity and 

proinflammatory molecules may alter synaptic plasticity in alcoholics.

Relatively little is known concerning the effects of alcohol on immune response in the 

developing human brain. It has been demonstrated that increased expression of 

Drew and Kane Page 11

Int Rev Neurobiol. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proinflammatory cytokines including IL-1β, IL-6, and TNF-α is detected shortly after birth 

in the blood of neonates and mothers, when the mother chronically consumed alcohol during 

pregnancy (Ahluwalia et al., 2000). It was not possible in these studies to determine if these 

cytokines were of neonatal or maternal origin, but it is clear that the neonate is exposed to 

these proinflammatory molecules. Studies are needed to determine if alcohol alters the 

expression of proinflammatory molecules in the developing brain.

10.2. Animal studies

Animal models of FASD have played a critical role in defining the mechanisms by which 

ethanol damages the developing CNS. These models involve prenatal or neonatal exposure 

to ethanol. Prenatal exposure to ethanol is toxic to neurons in vivo including cerebral 

cortical, hippocampal, and cerebellar neurons as described above. Ethanol is also toxic to 

cultured primary neurons. For example, conditioned medium from ethanol-treated microglia 

was toxic to primary basal hippocampal neurons. Furthermore, TNF-α neurtralizing 

antibodies blocked ethanol-induced neuronal death (Boyadjieva & Sarkar, 2010). This 

suggests that ethanol induces the production of TNF-α and possibly other proinflammatory 

molecules by activated microglia, which contributes to ethanol-induced neuronal cell death.

The neonatal rodent brain is also highly susceptible to the toxic effects of ethanol with 

neuropathology in the cerebral cortex, cerebellum, corpus callosum, hippocampus, and other 

regions as detailed above. The relevance of the neonatal rodent is that it is developmentally 

similar to the brain during the second half to third trimester of pregnancy (Clancy et al., 

2001; Dobbing & Sands, 1979). We have demonstrated that ethanol exposure of 3- to 5-day-

old neonatal mice results in a significant loss of cerebellar Purkinje neurons (Kane et al., 

2011) as has been well documented in a variety of FASD models (Dikranian, Qin, 

Labruyere, Nemmers, & Olney, 2005; Hamre & West, 1993; Pierce et al., 1999). In addition 

to neurons, we demonstrated that microglia are highly susceptible to ethanol-induced death. 

Strikingly, the surviving microglia in ethanol-treated animals exhibit an altered morphology 

with enlarged soma and shorter, broader, less branched processes characteristic of activated 

microglia, as opposed to the ramified appearance of normal microglia in vehicle-treated 

control animals. Our studies in this FASD model further demonstrated that agonists of the 

anti-inflammatory nuclear receptor PPAR-γ block microglial activation and protect neurons 

and microglia against ethanol cytotoxicity, suggesting a possible link between ethanol-

induced microglial activation and loss of neurons in the developing brain. As discussed 

previously, microglia perform a variety of functions in the developing brain and their loss or 

activation during the period of brain development produces persistent neuropathological and 

negative behavioral consequences. Together, these observations suggest that loss of 

microglia and microglial activation in response to ethanol in the developing brain may 

contribute to the long-term behavioral and structural anomalies associated with FASD.

Neonatal exposure to ethanol also increases the expression of cytokines in the brain, which 

can persist following ethanol withdrawal (Tiwari & Chopra, 2011). In these studies, neonatal 

rats were exposed to ethanol on postnatal days 7–9, and cytokine expression was evaluated 

on postnatal day 28. IL-1β, TGF-β, and TNF-α expressions were elevated in the cerebral 

cortex and hippocampus. The transcription factor NF-κB, which activates the expression of 
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a number of genes that encode proinflammatory molecules, was increased following ethanol 

exposure in these brain regions, as were markers of oxidative stress including catalase, 

superoxide dismutase, nitric oxide, glutathione, and lipid peroxidation. Importantly, 

treatment with the antioxidant resveratrol suppressed the production of oxidative stress in 

the developing CNS and this resulted in improved cognition in adult animals. Other studies 

demonstrated that a single dose of ethanol administered at postnatal day 7 resulted in lipid 

peroxidation and expression of the apoptotic marker caspase-3 in the developing cerebellum 

(Kumar, Singh, Lavoie, Dipette, & Singh, 2011). In another study, a single dose of ethanol 

administered at postnatal day 7 resulted in altered morphology and increased Iba-1 staining 

in microglia, suggesting microglial activation (Saito et al., 2010). Collectively, these studies 

suggest that microglial activation, neuroinflammation, and oxidative stress contribute to 

ethanol-induced degeneration in the developing CNS.

As discussed previously, microglia play critical roles in CNS development and activation of 

immune responses in the developing brain can result in long-term consequences in the 

mature brain (Schwarz & Bilbo, 2012). These studies suggest that ethanol-induced immune 

activation in the developing CNS may produce similar long-term consequences. In this 

regard, prenatal exposure of rats to ethanol resulted in an altered neuroimmune response to 

trauma in adults (DeVito & Stone, 2001). In these studies, rats exposed to ethanol prenatally 

were inflicted with a stab wound to the brain as adults in order to produce a neuroimmune 

response. The expression of the neuroimmune activation markers GFAP, ICAM-1, and 

TNF-α was reduced in animals exposed to ethanol relative to vehicle-treated controls, 

indicating that developmental ethanol exposure alters the neuroimmune response in 

adulthood. In contrast, expression of ED1, which is commonly associated with microglial 

activation, was increased by trauma in animals exposed to ethanol prenatally, indicating that 

the alteration of neuroimmune responses in adulthood due to developmental ethanol 

exposure is complex. Future studies are needed to determine how fetal exposure to ethanol 

alters immune response and long-term function of the mature brain. These studies will have 

important implications concerning the contribution of neuroinflammation in the developing 

brain to the long-term consequences of FASD.

10.3. Signaling pathways

Innate immunity provides the first line of defense against CNS insult. Resident microglia 

and astrocytes are the principal cells that mediate innate immune responses. These cells 

react to insults such as pathogens or endogenous danger signals through TLRs present on 

their surface. Recent studies have begun to investigate the role of TLRs in modulating 

ethanol activation of neuroimmune responses. Studies suggest that ethanol may cause 

release of HMGB1 protein, which can serve as an endogenous danger signal to activate TLR 

signaling and generate neuroimmune activation (Vetreno, Qin, & Crews, 2013; Whitman, 

Knapp, Werner, Crews, & Breese, 2013; Zou & Crews, 2014). Ethanol can activate the 

TLR-dependent transcription factors AP1 and NF-κB in astrocytes (Blanco, Valles, Pascual, 

& Guerri, 2005). Ethanol can also increase the expression of downstream TLR-dependent 

genes including Cox-2 and iNOS via activation of p38 MAP kinase, ERK1/2, and 

SAPK/JNK signaling pathways (Blanco et al., 2005). Ethanol was demonstrated to cause 

IL-1R and TLR4 to move into lipid rafts in astrocytes (Blanco, Perez-Arago, Fernandez-
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Lizarbe, & Guerri, 2008). IL-1 and TLR4 signaling is important in these processes as 

demonstrated by the fact that neutralizing antibodies to IL-1R and TLR4 can suppress 

ethanol induction of these proinflammatory molecules and signaling pathways (Blanco et al., 

2005). TLR4 was also shown to be critical in ethanol induction of Cox-2 and Src 

phosphorylation in astrocytes (Floreani et al., 2010). These observations suggest that ethanol 

induction of immune responses in the CNS occurs through the movement of these receptors 

to lipid rafts, resulting in the activation of signaling pathways that ultimately lead to the 

production of proinflammatory molecules.

The role of TLR4 in modulating ethanol effects on immune responses in the CNS is further 

supported by studies utilizing TLR4-deficient mice. Ethanol induced the expression of 

Cox-2 and iNOS and activated p38 MAP kinase, ERK, and JNK signaling pathways in 

microglia from wild-type but not TLR4-deficient mice. Conditioned medium from microglia 

treated with ethanol from wild-type but not TLR4-deficient mice caused apoptosis of 

cortical neurons. These studies indicate that ethanol effects on microglia result in the 

production of molecules that are indirectly toxic to neurons in a TLR4-dependent manner 

(Fernandez-Lizarbe, Pascual, & Guerri, 2009). In other studies, ethanol was demonstrated to 

increase the expression of CD11b by microglia and GFAP by astrocytes in the frontal cortex 

of wild-type but not TLR4-deficient mice. Furthermore, these studies indicated that ethanol 

increased the expression of IL-6, TNF-α, NF-κB, and the apoptotic marker caspase-3 in a 

TLR4-dependent manner (Alfonso-Loeches, Pascual-Lucas, Blanco, Sanchez-Vera, & 

Guerri, 2010). Collectively, these studies demonstrate that TLR4 plays a critical role in 

ethanol-induced neuroinflammation and neurodegeneration.

Proinflammatory molecules are known to increase alcohol consumption in rodents (Blednov 

et al., 2005, 2012). Thus, ethanol induction of neuroinflammation may create a vicious 

cycle, which supports additional alcohol consumption, abuse, and addiction. As noted 

previously, TLR4-deficient mice exhibit decreased ethanol-induced neuroinflammation. In 

addition, these mice consume less alcohol than their wild-type counterparts and exhibit less 

alcohol-mediated anxiety and cognitive impairment than control animals (Pascual, Balino, 

Alfonso-Loeches, Aragon, & Guerri, 2011). These studies also indicate that alcohol 

decreases histone acetylation in the brain in a TLR4-dependent manner. This suggests that 

ethanol triggers TLR4-dependent epigenetic changes in chromatin configuration, which are 

linked to downstream effects on neuroinflammation and ultimately to ethanol-induced 

alterations in cognition and behavior. Further studies indicate that TLR4-deficient mice 

exhibit less sedation in response to ethanol than wild-type control animals (Wu et al., 2012). 

This altered behavior was not due to altered alcohol pharmacodynamics, which was similar 

in wild-type and TLR4-deficient mice. Furthermore, these studies demonstrated that TLR4 

siRNA infused into the amygdala inhibited binge drinking behavior in alcohol-preferring 

rats (Wu et al., 2012). Based on our understanding of the role of GABA in alcohol 

consumption, it may be significant that GABAA α2 plays a crucial role in TLR4-dependent 

changes in alcohol consumption (Liu et al., 2011). These studies collectively support a role 

for TLR4 in modulating ethanol-induced neuroinflammation, alcohol consumption, and 

alcohol-mediated changes in cognition and behavior.
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The studies outlined above clearly demonstrate a role for TLR4 in ethanol-induced 

neuroinflammation and neurodegeneration. Ligand binding to TLR4 can result in the 

activation of the MyD88-dependent or alternatively the MyD88-independent signaling 

pathway. In the MyD88-dependent signaling pathway, TLR4 physically interacts with 

MyD88, which results in the activation of NF-κB. The MyD88-independent pathway 

involves interaction of TLR4 with the adaptor protein TRIF. This leads to the activation of 

NF-κB and IRF-3, both transcription factors that activate the expression of genes encoding 

proinflammatory molecules. Future studies utilizing MyD88- and TRIF-deficient mice are 

required to determine if these TLR4-dependent effects occur through MyD88-dependent or -

independent mechanisms. In this regard, studies indicate that MyD88-deficient mice exhibit 

altered ethanol-induced sedation and motor impairment (Wu et al., 2012); this supports a 

role for MyD88-dependent signaling in modulating ethanol consumption. However, 

additional studies indicate that ethanol increases the activation of NF-κB and IRF-3 in 

microglia (Fernandez-Lizarbe et al., 2009), which suggests that MyD88-independent 

signaling may also mediate effects of ethanol.

As mentioned above, IL-1 signaling is believed to play a significant role in ethanol-induced 

neuroinflammation, where IL-1β expression is increased by ethanol (Alfonso-Loeches et al., 

2010; Crews, Qin, Sheedy, Vetreno, & Zou, 2013; Lippai et al., 2013; Tiwari & Chopra, 

2011). Recent studies demonstrate that in addition to IL-1β, caspase-1 activity is induced by 

ethanol in the adult brain (Lippai et al., 2013). Both IL-1β and caspase-1 are produced as 

precursor molecules, which must be processed to form mature, active IL-1β and caspase-1. 

Caspase-1 functions to process pro-IL-1β to mature IL-1β. Inflammasomes are protein 

complexes which function as a part of the innate immune system and respond to pathogens 

as well as to endogenous danger signals including those resulting from the toxic effects of 

ethanol. Caspase-1-activating inflammasomes are the best-characterized inflammasomes and 

function to process pro-caspase-1 to mature caspase-1. The caspase-1-activating NLRP3 

inflammasome is composed of a number of proteins including NLRP3 and the adaptor 

protein apoptosis-associated speck-like protein (ASC). Ethanol increases caspase-1 and 

IL-1β expression in adult brain of wild-type but not NLRP3- or ASC-deficient mice (Lippai 

et al., 2013). These studies suggest that caspase-1-activating inflammasomes may modulate 

IL-1β-dependent and ethanol-induced neuroinflammation and neurodegeneration. However, 

future studies are needed to determine the mechanisms by which ethanol-induced IL-1β 

signaling modulates neuroinflammation and neurodegeneration in the developing and 

mature brain.

11. THERAPIES

11.1. Early diagnosis of FASD

Early diagnosis is believed to be essential to maximize the potential for therapies to limit the 

devastating effects of fetal ethanol exposure. Thus, extensive effort has been put forth to 

identify biomarkers of gestational ethanol exposure (Joya et al., 2012; Memo, Gnoato, 

Caminiti, Pichini, & Tarani, 2013). Clinical identification of characteristic facial 

dysmorphologies is valuable, but is most applicable for identification of FASD in children 

(Jones et al., 2009, 2010). Identification of FASD in younger infants and children is 
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progressing through the use of sophisticated imaging techniques (Coles & Li, 2011; Lebel et 

al., 2011; Norman et al., 2009). In fact, it is becoming possible to identify fetal ethanol 

exposure in newborns. Analysis of nonoxidative metabolites of ethanol including fatty acid 

ethyl esters, ethyl glucuronide, and ethyl sulfate in meconium allows identification of fetal 

ethanol exposure in newborns (Joya et al., 2012; Memo et al., 2013). It has recently been 

demonstrated that fetal ethanol exposure can be identified effectively and at low cost using 

newborn screening for phosphatidyl ethanol in dried blood spots (Bakhireva et al., 2014). In 

addition, advanced MRI, ultrasound imaging, and functional analysis show promise for 

prenatal diagnosis of FASD (Bookstein et al., 2005; Hepper, Dornan, & Lynch, 2012; Kfir et 

al., 2009; Memo et al., 2013). Mouse models of FASD are forecasting even earlier detection 

of fetal ethanol exposure (O’Leary-Moore et al., 2011; Sudheendran, Bake, Miranda, & 

Larin, 2013). Together, these findings suggest that it will be realistic to diagnose FASD in 

neonates and infants in the hospital or clinic in the foreseeable future, opening the possibility 

that early temporal windows will be available for intervention with therapeutics. It is hoped 

that early diagnosis of FASD will lead to the treatment of FASD infants in addition, or 

alternatively, to pregnant women with therapeutics (Kodituwakku & Kodituwakku, 2011; 

Roach & Anderson, 2008), including those exhibiting anti-inflammatory properties.

11.2. Development of novel anti-inflammatory therapies for FASD

As discussed previously, our work and that of others indicate that ethanol exposure in 

neonatal rodents results in potent neuroinflammation. Since neuroinflammation is believed 

to contribute to ethanol-induced neurodegeneration, this suggests that anti-inflammatory 

agents may be effective in the treatment of FASD. Our discussion will focus on the potential 

of the following anti-inflammatory agents—pioglitazone, minocycline, and naltrexone—for 

the treatment of FASD. However, it is recognized that other anti-inflammatory agents could 

also proved to be effective in the treatment of FASD.

11.2.1 Pioglitazone—Pioglitazone is an FDA-approved pharmaceutical agonist for 

PPAR-γ, a member of a nuclear receptor family of proteins that modulate 

neuroinflammatory responses and other neurodegenerative responses. We (Diab et al., 2002; 

Drew & Chavis, 2001; Storer, Xu, Chavis, & Drew, 2005a, 2005b) and others (Bernardo, 

Levi, & Minghetti, 2000; Kielian, Bearden, Baldwin, & Esen, 2004; Petrova, Akama, & Van 

Eldik, 1999) demonstrated that PPAR-γ agonists, including pioglitazone, inhibit activation 

of microglia. PPAR-γ agonists also inhibit the production of proinflammatory cytokines and 

chemokines by microglia (Cunard et al., 2002; Lovett-Racke et al., 2004; Xu, Chavis, 

Racke, & Drew, 2006; Xu & Drew, 2007; Xu, Storer, Chavis, Racke, & Drew, 2005). We 

and others also demonstrated that PPAR-γ agonists are protective in animal models of many 

CNS disorders characterized by neuroinflammation and neurodegeneration (Diab et al., 

2004; Heneka, Landreth, & Feinstein, 2001; Mandrekar-Colucci, Sauerbeck, Popovich, & 

McTigue, 2013; Niino et al., 2001). Most recently, we demonstrated that PPAR-γ agonists 

provide protection for neurons and microglia from ethanol-induced cell death and blocked 

ethanol-induced activation of microglia in a mouse model of FASD (Kane et al., 2011). We 

further have demonstrated that pioglitazone suppresses ethanol increases in proinflammatory 

cytokines and chemokines in neonatal mice P.D. Drew, J.W. Johnson, J.C. Douglas, K.D. 

Phelan, & C.J.M. Kane (Unpublished observations). Taken together, these studies support 
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the possibility that PPAR-γ agonists may protect microglia and neurons against ethanol 

neurotoxicity and prevent ethanol induction of inflammatory processes in FASD. 

Interestingly, PPAR-γ agonists have been demonstrated to suppress alcohol consumption 

and relapse to alcohol-seeking behavior (Stopponi et al., 2011), which may be related to 

their anti-inflammatory activity.

11.2.2 Minocycline—Minocycline is a tetracycline derivative antibiotic used in the 

treatment of bacterial infections. However, it is now clear that minocycline also possesses 

potent anti-inflammatory activity. In fact, minocycline has been demonstrated to strongly 

suppress microglial activation in a variety of neuroinflammatory and neurodegenerative 

disorders (reviewed in Garrido-Mesa, Zarzuelo, & Galvez, 2013). However, the effects of 

minocycline on ethanol-induced neuroinflammation have only just begun to be evaluated 

and have not been evaluated in models of FASD. Minocycline was shown to block ethanol-

induced microglial activation in an 8-week-old male mice treated intragastrically with 5 g/kg 

ethanol for 10 days (Qin & Crews, 2012). Interestingly, like PPAR-γ agonists, minocycline 

and the related antibiotic doxycycline reduced alcohol consumption in rodents (Agrawal, 

Hewetson, George, Syapin, & Bergeson, 2011; McIver, Muccigrosso, & Haydon, 2012; Wu 

et al., 2011). Minocycline also increased the motor impairing effects of ethanol, a 

phenomenon associated with reduced alcohol consumption (McIver et al., 2012; Wu et al., 

2011). Further, in our investigations, we discovered that ethanol increases 

neuroinflammation in adult, but not adolescent mice (Kane et al., 2014). This is interesting 

in light of the observation that minocycline decreases alcohol consumption in adult but not 

adolescent mice supporting the concept that minocycline suppresses alcohol consumption by 

suppressing neuroinflammation (Agrawal et al., 2014).

11.2.3 Naltrexone—Naltrexone is one of the few approved treatments for alcoholism. It is 

an opioid antagonist with suppressive effects on alcohol consumption that have been thought 

to be mediated primarily through opioid receptors (Maisel, Blodgett, Wilbourne, 

Humphreys, & Finney, 2013). However, naltrexone (and its stereoisomer naloxone) also 

functions as a TLR4 antagonist (Hutchinson et al., 2008), and TLR4 plays a critical role in 

ethanol-induced neuroinflammation and neurodegeneration as outlined above (Alfonso-

Loeches et al., 2010; Blanco et al., 2005, 2008; Fernandez-Lizarbe et al., 2009; Lippai et al., 

2013; Pascual et al., 2011; Wu et al., 2012). It is notable then, that in addition to suppressing 

alcohol consumption, naltrexone can block ethanol-induced microglial activation in adult 

mice (Qin & Crews, 2012). However, the effects of naltrexone on microglial activation and 

neuroinflammation in response to ethanol in models of FASD have not been evaluated. The 

PPAR-γ agonist pioglitazone was demonstrated to potentiate the suppressive effects on 

naltrexone on alcohol consumption (Stopponi et al., 2013). This suggests that although 

PPAR-γ agonists and naltrexone are both anti-inflammatory, these agents may act through 

distinct pathways. Collectively, these studies suggest that a combination of 

antiinflammatories such as pioglitazone, minocycline, and naltrexone may act cooperatively 

to suppress ethanol-induced neuroinflammation and neurodegeneration.
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12. CONCLUSIONS

FASD is associated with neuropathology and functional deficits that persist throughout life. 

Animal models are providing not only a foundation for understanding the causes and 

consequences of FASD but also new knowledge that is leading to understanding the cellular 

and molecular mechanisms at play, when the fetal brain is exposed to alcohol. Investigation 

of alcohol’s effect on microglia and neuronal–microglial interactions has led to a model of 

the novel contributions of microglia to the neuropathology and functional deficits of FASD 

(Fig. 3.2). This is based on the recent findings in models of FASD that alcohol causes loss of 

not only neurons but also microglia in the developing brain, depleting the population of 

protective microglia. Further, alcohol also induces activation of microglia, changing their 

phenotype to a proinflammatory form that can lead to neuron death. These observations are 

particularly important given emerging evidence that the loss of microglia in the developing 

brain is associated with loss of synapses, loss of neuronal plasticity, reduced neurogenesis, 

cognitive abnormalities, behavioral deficits, and altered immune response in adulthood. 

These same abnormalities are produced by microglial activation and inflammation in the 

developing brain. This knowledge elucidates potentially critical consequences of microglial 

loss, microglial activation, and inflammatory processes during brain development. Thus, 

alcohol’s effects on microglia during fetal development may contribute to the 

neuropathological and behavioral abnormalities associated with FASD. The age at which 

FASD can be diagnosed in the clinic is progressively declining, making therapeutic 

intervention in infants a realistic possibility in the fore-seeable future. Based on these 

observations, therapeutic intervention in the ethanol-induced microglial activation and 

neuroinflammation with anti-inflammatory pharmaceuticals is suggested to be of potential 

long-term benefit to infants born with FASD. Clearly, this area of research is yielding new 

understanding of cellular and molecular mechanisms underlying FASD and holds promise 

for even greater knowledge.
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Figure 3.1. 
Microglial morphology exhibits a stepwise modification as the process of activation changes 

the functional phenotype of the cell. Microglial cells in the normal, unperturbed CNS exhibit 

a ramified morphology with a small soma, limited cytoplasm, and long, thin, highly 

branched processes (A). With activation, the cells hypertrophy and the processes retract, 

becoming broader and stunted with less branching (B). Highly activated cells progress 

toward an ameboid, hypertrophied form with few or no processes (C). These images are 

from the postnatal mouse cerebellum and are representative of the described morphological 

phenotypes of microglia. The microglial cells in these images were visualized with 

immunohistochemistry against the ionized calcium-binding adapter molecule (Iba-1), 

classically used to identify CNS microglia. Arrows indicate microglial cells with the 

described morphologies.
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Figure 3.2. 
Together, direct toxic effects of alcohol on neurons and postulated indirect effects of alcohol 

mediated through effects on microglia lead to significant neuronal cell death and 

dysfunction in the developing brain. Microglia in the unperturbed fetal brain serve 

beneficial, protective roles for neurons. Alcohol depletes the microglial population in the 

developing brain through microglia cell loss. In addition, alcohol exposure induces 

microglial activation and expression of neuroinflammatory molecules in the developing 

brain. These effects of alcohol on microglia reduce the beneficial activity of microglia 

exerted during normal development and induce proinflammatory activity of microglia that 

leads to neurodegenerative processes. The direct consequences of microglial loss and 

neuroinflammation in the developing brain are now known to generate long-term 

neuroanatomical and behavioral consequences in the adult brain. These include persistent 

loss of neurons, loss of synapses, deficits in neuronal plasticity, cognitive abnormalities, 

psychiatric disorders, and altered reactivity of the immune system. These are consistent with 

some of the long-term consequences in individuals with FASD. Further, based on our 

findings, it is suggested that treatment with anti-inflammatory pharmaceuticals will prevent 

alcohol-induced microglial and neuronal cells’ loss, microglial activation, and 

neuroinflammation, leading to better long-term outcomes in FASD.
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