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Abstract

Humans are increasingly and consistently exposed to a variety of endocrine disrupting chemicals 

(EDCs), chemicals that have been linked to neurobehavioral disorders such as ADHD and autism. 

Many of such EDCs have been shown to adversely influence brain mesocorticolimbic systems 

raising the potential for cumulative toxicity. As such, understanding the effects of developmental 

exposure to mixtures of EDCs is critical to public health protection. Consequently, this study 

compared the effects of a mixture of four EDCs to their effects alone to examine potential for 

enhanced toxicity, using behavioral domains and paradigms known to be mediated by 

mesocorticolimbic circuits (Fixed Interval (FI) schedule controlled behavior, novel object 

recognition memory and locomotor activity) in offspring of pregnant mice that had been exposed 

to vehicle or relatively low doses of four EDCs, Atrazine (ATR – 10mg/kg), Perfluorooctanoic 

acid (PFOA – 0.1 mg/kg), Bisphenol-A (BPA - 50μg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD – 0.25μg/kg) alone or combined in a mixture (MIX), from gestational day 7 until weaning. 

EDC-treated males maintained significantly higher horizontal activity levels across 3 testing 

sessions, indicative of delayed habituation, whereas no effects were found in females. Statistically 

significant effects of MIX were seen in males, but not females, in the form of increased FI 

response rates, in contrast to reductions in response rate with ATR, BPA and TCDD, and reduced 

short term memory in the novel object recognition paradigm. MIX also reversed the typically 

lower neophobia levels of males compared to females. With respect to individual EDCs, TCDD 

produced notable increases in FI response rates in females, and PFOA significantly increased 

ambulatory locomotor activity in males. Collectively, these findings show the potential for 

enhanced behavioral effects of EDC mixtures in males and underscore the need for animal studies 

to more fully investigate mixtures, including chemicals that converge on common physiological 
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substrates to examine potential mechanisms of toxicity with full dose effect curves to assist in 

interpretations of relevant mechanisms.

Introduction

Multiple classes of chemicals, e.g. fertilizers and herbicides, plastics, organic pollutants, 

metals, flame retardants and heat stabilizers, have been shown to have endocrine disrupting 

characteristics. Given the chemical heterogeneity of EDCs, a broad range of physiological 

targets have been identified. EDCs may interfere with the production, secretion, 

transportation, metabolism, binding action and/or excretion of natural hormones (Diamanti-

Kandarakis et al., 2009). There is mounting evidence that developmental exposures to EDCs 

impact neurochemical pathways leading to lifelong disease susceptibility and behavioral 

deficits into adulthood (de Cock et al., 2012, Schantz and Widholm, 2001, Schug et al., 

2011). Developmental EDC exposures can cause physiological reprogramming of hormonal 

homeostasis with impacts on peripheral and neurological hormone relationships, e.g., 

glucocorticoids and glutamate, estrogen and dopamine function (Patisaul and Adewale, 

2009, Vandenberg et al., 2012). EDCs have been implicated in the etiopathogenesis of 

ADHD, autism, and other neurodevelopmental and behavioral disorders (de Cock, Maas, 

2012, Schug, Janesick, 2011); thus, understanding the consequences of developmental 

exposure to low dose EDC mixtures for neurological disease etiology is vital (Colborn, 

2004b, de Cock, Maas, 2012).

Studies in animal models indicate that monoaminergic neural pathways are specifically 

altered as a result of developmental exposure to EDCs, particularly mesocorticolimbic 

dopaminergic systems (Palanza et al., 2008). For instance, in vivo and in vitro studies 

indicate atrazine (ATR) causes a reduction in striatal dopamine (Coban and Filipov, 2007, 

Hossain and Filipov, 2008). In rats, prenatal exposure to ATR decreased striatal dopamine 

and decreased locomotor activity (Bardullas et al., 2011, Lin et al., 2013a, Rodríguez et al., 

2012). Prenatal exposures to perfluorooctanoic acids (PFOAs), as fire retardants, increased 

home-cage activity in male mice, and enhanced astrogliosis and pro-inflammatory cytokines 

in the hippocampus and cortex of rats (Onishchenko et al., 2011, Zeng et al., 2011). Mice 

exposed to low dose TCDD in the perinatal period exhibited hypo-activation of the 

prefrontal cortex, increased brain monoamines and increased social behavior abnormalities 

(Ahmed, 2011, Endo et al., 2012). In mice, prenatal bisphenol A (BPA) exposure altered the 

development of central dopaminergic systems and resulted in hyperactivity and increased 

reward-seeking behavior (Mizuo et al., 2004a, Mizuo et al., 2004b, Narita et al., 2006, 

Suzuki et al., 2003). Also, prenatal and developmental exposure to BPA has been shown to 

elicit multiple sex-specific behavioral deficits including increase impulsivity, neophobia and 

exploratory behavior, altered maternal behavior and adult social behavior (Adriani et al., 

2003, Gioiosa et al., 2013, Palanza et al., 2002, Patisaul et al., 2012, Spulber et al., 2014, 

Wolstenholme et al., 2011).

This is notable given that mesocorticolimbic dopamine systems mediate multiple behavioral 

domains particularly related to cognitive and executive functions as well as memory 

consolidation, temporal discrimination, exploratory and food-reinforced reward behaviors 
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(Cory-Slechta et al., 1997, Rossato et al., 2013, Sy et al., 2010). Further, there is growing 

appreciation that maternal and early life exposure to environmental toxicants can potentially 

have a profound lifelong impact on the central nervous system (CNS). Evidence is 

accumulating that these alterations occur at low doses, as many EDCs show non-monotonic 

dose-response relationships (Vandenberg, Colborn, 2012). However, most of this 

information has been obtained on a chemical-by-chemical basis. The neuroendocrine and 

behavioral deficits associated with EDC mixtures, which is more representative of human 

exposures, have not been evaluated (Diamanti-Kandarakis, Bourguignon, 2009).

There has been significant controversy as to whether low levels of EDCs can act together, 

particularly when present at lower than threshold concentrations, particularly if they have 

different mechanisms of action. However, as we have previously pointed out, multiple 

insults occurring concurrently at multiple sites within the e.g., dopamine system, may 

constrict the range and flexibility of compensatory mechanisms, thereby compromising 

integrity and viability of the system, and ultimately be more damaging than multiple insults 

at the same molecular target sites (Cory-Slechta, 2005). Indeed, recent studies of low dose 

mixtures of chemicals reducing androgens via different mechanisms resulted in additive 

male reproductive dysfunction effects (Howdeshell et al., 2008, Rider et al., 2009).

Based on this presumption, this study sought to determine whether the impact of multiple 

EDCs, all known to impact brain mesocorticolimbic systems but by different mechanisms, 

would yield enhanced effects in combination, as manifest in behaviors known to be 

mediated by these dopamine/glutamate circuits and correspondingly whether observed 

effects would, as expected, differ by sex. To this end, we assessed performance under the 

fixed-interval schedule of reinforcement, object exploration, novel object recognition, and 

spontaneous locomotor activity, all behaviors in which mesocorticolimbic system function is 

important (Cory-Slechta, Pazmino, 1997, Rossato, Radiske, 2013, Sequeira-Cordero et al., 

2013), in offspring exposed developmentally to four EDCs alone and combined in a mixture. 

As a first such study pursuing this hypothesis, it did not include full concentration-effect 

curves for all EDCs but was intended to provide critical information that could be used to 

more specifically formulate subsequent studies.

Methods

Developmental Exposure

C57BL/6 mice (age 9 weeks) were obtained from the Jackson Laboratory (Bar Harbor, ME). 

Nulliparous females were housed with males, and checked daily for presence of a vaginal 

plug. The day a vaginal plug was found was designated as gestational day (GD) 0. Pregnant 

mice were then individually housed for the remainder of the study. Pregnant mice were 

exposed orally to either the single EDC dose or the combination of all four doses: Atrazine 

(ATR – 10mg/kg), Perfluorooctanoic acid (PFOA – 0.1 mg/kg), Bisphenol-A (BPA - 50μg/

kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD – – 0.25μg/kg) and their mixture (MIX), 

from GD 7, a time point chosen because it represents the period shortly after embryonic 

implantation, until weaning (Wang and Dey, 2006). Vehicle (VEH) control dams were 

gavaged with peanut oil containing an equivalent concentration of anisole and given control 

treats daily. These compounds have all been shown to influence mesocorticolimbic and 
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neuroendocrine systems (see above), and doses were defined as relatively low doses either 

based on current human reference doses or were below levels typically shown to cause 

effects in animal studies (Fenton et al., 2009, Rowe et al., 2008, Vom Saal and Hughes, 

2005, Vorderstrasse et al., 2006). ATR and BPA (Sigma Aldrich, St. Louis, MO) were 

dissolved in peanut oil and administered to pregnant mice daily via puffed wheat cereal. 

PFOA (Sigma Aldrich, St. Louis, MO) was dissolved in water and administered daily via 

puffed wheat cereal. TCDD (Cambridge Isotopes, Cambridge, MA) was dissolved in anisole 

and diluted in peanut oil. Female mice were administered TCDD via oral gavage on GD 7 

and 14, and postnatal day (PND) 2, as TCDD has a relatively longer half-life (11 days), this 

schedule facilitates an even dosing throughout the pregnancy (Gasiewicz et al., 1983). MIX 

exposed mice were given puffed wheat cereal containing the same dose of each EDC and 

gavaged on the same schedule as each singly treated group. Random observations of dams 

indicated total consumption of the treated puffed wheat cereal used for dosing.

Offspring were weaned at PND 21. In order to minimize litter specific effects, no more than 

2 mice per sex per dam were used. All mice were pair-housed in microisolator cages after 

weaning in a specific pathogen-free facility under a 12hr light-dark cycle maintained at 22 ± 

2 °C at the University of Rochester Medical Center. All animal treatments were conducted 

with approval of the Institutional Animal Care and Use Committees at the University of 

Rochester.

Maternal Health and Weight

Pregnancies were monitored daily to evaluate whether there were differences in time to 

parturition, litter size, or sex ratio of all the offspring born to each dam. As adults, all 

offspring were weighed to ensure that there were no significant body weight differences 

before behavioral testing began. In preparation for behavioral testing, mice were food-

restricted to 85% free feed weight. For this purpose, mice were fed individualized amounts 

of food and weighed five times a week to ensure maintenance of individual 85% free 

feeding weights throughout behavioral testing.

Behavioral Battery

Behavioral testing of offspring began at 60 days of age, and consisted of locomotor activity, 

followed by novel object recognition performance, and finally performance on a fixed 

interval schedule of food reward, all behaviors under control of brain mesocorticolimbic 

systems. These specific behaviors were chosen to provide information on potential changes 

in cognitive and motor related functions. Since performance on the FI schedule has been 

demonstrated to influence subsequent behavioral performances on reinforcement schedules, 

it was tested last in the sequence.

Locomotor activity—Locomotor activity was assessed in photobeam chambers to 

determine any treatment-related motor deficits that might also impact performance on the 

novel object recognition paradigm or Fixed Interval performance. Spontaneous locomotor 

activity was measured in chambers (27.3 cm × 27.3 cm × 20.3 cm) equipped with 48-

channel infrared photobeams (Med Associates Inc., St. Albans, Vermont). Photobeam 

breaks were recorded every 5 minutes for an hour to assess horizontal, vertical, and 
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ambulatory movements. Mice were initially habituated to the locomotor activity chambers in 

two 60 min sessions occurring on consecutive days and locomotor behavior assessed during 

the third session. Ambulatory counts were defined as the number of beam breaks while in 

ambulatory movement. Vertical activity was defined as total time spent breaking any 

photobeam in the Z-axis, with the z-axis measured by photobeams mounted 7 cm above the 

floor of the locomotor box. Horizontal counts were defined as the number of beam breaks in 

a 2×2 inch photobeam box that were non-ambulatory (i.e. movement that occurred while the 

animal remained within the 2×2 inch defined photobeam box). Resting time was defined as 

time spent with no new photobeam breaks.

Novel Object Exploration and Recognition—NOR testing consisted of two phases 

and was conducted in an open plexiglass arena (dimensions: 30.5 cm × 30.5 cm × 30.5 cm). 

In the first session, mice were placed in the test environment that contained two objects for 

10 min, enabling individual assessments of response to novelty, decreased exploratory 

behavior or neophobia. During that time, side preference, exploration time, and patterns of 

exploration among treatment groups were assessed.

The second session of the NOR paradigm assessed short-term memory, premised on an 

animal’s awareness of novelty and its memory of already familiar objects. In the second 

session, occurring 24 hours after session 1, mice were returned for 5 min to the arena, in 

which a novel object now replaced one of the previous two objects. Placement of the novel 

object was counterbalanced across treatments to preclude bias. All sessions were videotaped 

and scored by a reviewer blinded to treatment group. Exploration was defined as a mouse 

oriented towards the object with head first entry into a pre-marked 2 cm circle surrounding 

the object. A recognition index was calculated based on the time spent with novel object 

compared to the familiar object (time spent with novel object/(time spent with novel object 

+ time spent with familiar object). Time per approach was calculated by the average time 

spent per bout of investigation for either the novel or familiar object.

Fixed-interval schedule of reinforcement—The fixed interval (FI) schedule of reward 

is a behavioral paradigm that can be used to assess multiple behavioral dimensions, 

including learning, ability to inhibit responding and motivation to act for reward. FI testing 

occurred in sound-attenuated operant chambers (30.5 cm × 24.5 cm × 21 cm; Med 

Associates Inc., St. Albans, Vermont). Chambers were equipped with a grid floor, speaker, 

house light and three response levers connected to a feeder that delivered 20 mg food 

pellets. Only one lever was activated for reinforcement contingencies during the FI 

schedule, although responses on the other two levers were recorded. Mice were trained to 

depress the response levers for food reward using a previously described protocol (Cory-

Slechta et al. 1985). The training schedule consisted of a 6 hour variable time 60 sec fixed 

ratio 1 (VT60FR1) schedule followed by 1 hour FR1 sessions across several days. Training 

was considered complete when subjects earned 50 rewards within a FR1 session. Subjects 

required between 1 and 4 FR1 sessions, and numbers of sessions to meet this criterion did 

not differ by treatment group.

A 60 second FI schedule was then imposed in the next behavioral test session. Sessions were 

initiated by the first response which initiated a 60 second fixed interval. The first lever press 
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response after completion of the 60 sec interval produced food reward and initiated the next 

60 second fixed interval. Sessions were 30 minutes in duration and carried out for 6 sessions 

to focus on early acquisition of characteristic FI performance. Standard FI performance was 

measured by overall response rate (total number of responses on the designated FI lever 

divided by total session time) evaluating the integrated performance on the schedule that 

includes both responding and pausing between rewards. Additionally, post-reinforcement 

pause (PRP) time and inter-response times (IRT) were measured during each FI session to 

assess behavioral mechanisms associated with any observed differences in overall response 

rate. PRP is defined as the amount of time between food reward delivery and the first lever 

press response in the next 60 sec interval. IRT is median time-lapsed between FI responses. 

These two measures allow separation between the time delay to begin lever pressing from 

the duration of time between lever presses once lever pressing has resumed.

Statistical Analysis

Breeding outcomes and NOR data were analyzed by ANOVA with treatment group as a 

between groups factor. Adult weight, FI and locomotor testing were analyzed separately 

using a repeated measures ANOVA with treatment group (ATR, TCDD, PFOA, BPA, MIX 

and VEH) as a between group factor and session number as a continuous within group 

factor. Post hoc testing was conducted contingent on ANOVA outcomes using Tukey-

Kramer HSD to correct for multiple comparisons for one-way ANOVAs and contrast tests 

for repeated measures ANOVAs. Given that the two sexes characteristically maintain 

different hormone profiles and show sex-specific behavioral responses to EDC exposures 

(Bigsby et al., 1999, Gioiosa et al., 2007, Jašarević et al., 2013), and that our previous data 

indicates robust sex specific differences during these behavioral tests (Allen et al., 2014, 

Weston et al., 2014), all analyses were conducted separately by sex. Statistical analyses were 

conducted using JMP Pro 9.0 (SAS Institute Inc., Cary, N.C.).

Results

Breeding outcomes

There were no treatment related deficits observed during pregnancy or time to parturition. 

Litter sizes (Table 1, F(5, 32) = 0.16, p = 0.98) and sex ratios (F / M) were equal across 

treatment groups (Table 1, F(5, 32) = 0.57, p = 0.73). There were no significant weight 

differences in pups during the month before behavioral testing began (females: F(5, 40) = 

1.44, p = 0.23; males: F(5, 65) = 1.31, p = 0.27).

Behavioral Testing

Locomotor Behavior—Significant EDC-induced changes in locomotor activity were 

seen only in males (Fig. 1). Males in nearly all EDC groups (ATR, TCDD, PFOA and MIX) 

showed significantly increased horizontal movement across the three days of locomotor 

assessment (F(5,68) = 3.93, p = 0.004) relative to vehicle control. Interestingly, these effects 

emerged only with repeated testing, with significant differences seen only during the second 

and third test sessions, findings consistent with a potential reduction in environmental 

habituation (Session 1: F(5,68) = 1.05, p = 0.39; Session 2: F(5,68) = 3.42, p = 0.008; 

Session 3: F(5,68) = 2.62, p = 0.03). In addition to the elevated horizontal activity, PFOA 
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males also exhibited decreased resting time (Resting: F(5,68) = 2.38, p = 0.048) and 

increased ambulatory movements in session one of the locomotor assessment (F(5,68) = 

2.71, p = 0.03). No significant treatment-related differences were found for vertical activity 

in males.

Novel Object Exploration and Recognition—A robust decrease in the rate of 

exploration during the initial phase of NOR testing (session 1) occurred in all treatment 

groups in both sexes. Specifically, males and females exposed to BPA, PFOA, TCDD, ATR 

and MIX all showed reductions in initial exploration of the novel objects, as indicated by 

significant reductions in time spent per approach (Figure 2: male by treatment group: F(5, 

62) = 13.13, p < 0.001, post hoc: Tukey-Kramer HSD: ATR, p = 0.001, BPA, p < 0.006, 

PFOA, p < 0.005, TCDD, p < 0.001, MIX, p < 0.001; female by treatment group: F(5, 40) = 

8.22, p < 0.001, post hoc: Tukey-Kramer HSD: ATR, p = 0.002, BPA, p < 0.001, PFOA, p < 

0.001, TCDD, p < 0.001, MIX, p = 0.03). However, while EDC-treated females 

compensated by increasing the number of times they approached the novel objects, EDC-

treated males did not (Figure 2: male by treatment group: F(5, 62) = 1.00, p = 0.43; female 

by treatment group: F(5, 40) = 4.31, p < 0.01). Consequently, only EDC-treated males 

showed significantly decreased overall exploration time, suggesting the different treatments 

resulted in deficits in exploratory behavior in males (Figure 2: male: F(5, 62) = 9.60 p < 

0.001, post hoc: Tukey-Kramer HSD: ATR, p < 0.001, BPA, p < 0.001, PFOA, p = 0.09, 

TCDD, p < 0.001, MIX, p < 0.001; female: F(5, 40) = 0.95, p = 0.45).

In accordance with other studies using NOR testing (Aubele et al., 2008a, Frick and 

Gresack, 2003), control males had significantly longer exploration times than did control 

(vehicle) females (Figure 3: VEH male: VEH female, t = 2.41, p < 0.05). However, MIX 

exposed males actually showed significantly lower rates of exploration compared to MIX 

exposed females (Figure 3: MIX male: MIX female, t = −3.40, p < 0.05), suggesting a 

reversal of sex-associated differences in exploratory behavior by the MIX treatment. The 

reversal of this sex specific exploration bias suggests that MIX males experienced the 

greatest reduction of exploratory behavior, as female rates did not change significantly in 

response to MIX treatment (Figure 3: VEH male: MIX male, t = 4.42; p < 0.001; VEH 

female: MIX female, t = −0.08; p = 0.93). This enhanced reversal of sex specific exploratory 

behavior was only seen in the MIX treatment group (data not shown).

In the second session, enhanced deficits in short-term memory were observed in MIX 

exposed males, as reflected in the significantly reduced recognition indices based on overall 

exploration time (Figure 4, F(5, 61) = 2.92, p < 0.02; Tukey-Kramer HSD: p = 0.018). 

Males exposed to single EDCs did not show significant differences in recognition time 

compared to control (Figure 4, F(5, 61) = 2.92, p < 0.02; Tukey-Kramer HSD: ATR, p = 

0.48; BPA, p = 0.10; TCDD, p = 0.47; PFOA, p = 0.26). For females, significant treatment-

related deficits in short-term memory were not observed based on the overall exploration 

time recognition index (Figure 4: F(5, 40) = 0.84, p = 0.52). However, TCDD-treated 

females spent significantly less time per each approach of the novel object compared to 

VEH exposed females, suggesting slight memory deficits (t = 2.02, p = 0.02), as VEH 

females spent more time with the novel object during each exploration bout (data not 

shown).
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Fixed Interval Reinforcement Schedule-Controlled Behavior—Enhanced 

behavioral deficits were seen in male MIX offspring during the acquisition of the FI 

reinforcement schedule (Figure 5). MIX males showed significantly increased FI response 

rates, suggesting an inability to inhibit responding or impulsive responding (treatment (TX) 

by session, F(25, 310) = 3.08, p < 0.001, post hoc: mixture vs. control, F(5, 310) = 4.43, p < 

0.001). This behavioral response was unique to MIX exposed males, as increased rates of 

responding were not seen in any other male treated group. In fact, ATR, BPA and TCDD 

males exhibited significant reductions in response rates relative to controls, suggestive of 

reduced attention to task or impaired motivation (post hoc: ATR vs. control, F(5, 310) = 

3.86, p < 0.002; TCDD: F(5, 58) = 5.61, p < 0.001; BPA: F(5, 310) = 5.61, p < 0.001). 

Response rates of PFOA exposed males did not differ from control males (F(5, 310) = 0.68, 

p = 0.64).

TCDD exposed females showed marked increases in FI response rates during early sessions, 

suggesting potential increased impulsivity or inability to acquire the temporal pattern of 

response (Figure 5; TX*session, F(5, 39) = 2.38, p < 0.001), post hoc: TCDD vs. control, 

F(5, 195) = 8.38, p < 0.001). MIX females did not show enhanced effects during the FI 

schedule (post hoc: MIX vs. control, F(5, 195) = 1.45, p = 0.21). In fact, the response rates 

of MIX females were significantly lower than TCDD exposed females (post hoc: MIX vs. 

TCDD, F(6, 195) = 2.91, p < 0.02).

PRP time was not significantly different between treatment groups or treatment groups over 

time, for either males or females (Figure 5: males: TX; F(5, 62) = 0.95, p = 0.45; TX by 

session, F(25, 310) = 1.19, p = 0.17; Figure 5: females: TX; F(5, 39) = 0.62, p = 0.68; TX by 

session, F(25, 195) = 0.57, p = 0.95). Consistent with the significantly increased overall 

response rates in MIX exposed males and TCDD exposed females, however, both also 

exhibited significantly reduced IRT times. Collectively with the absence of changes in PRP 

times, these findings suggest an inability to inhibit responding and not a more rapid 

initiation of responding within the interval, i.e., a temporal discrimination dysfunction, 

likely explained increased overall response rates of MIX males and TCDD females (Figure 

5: males: TX by session, F(25, 310) = 2.05, p < 0.01), post hoc: MIX vs. controls, F(5, 310) 

= 19.41, p < 0.001; Figure 5: females: post hoc: TCDD vs. controls, F(5, 195) = 3.22, p < 

0.01). However, male treatment groups that showed significant decreases in overall response 

rate, i.e., ATR, BPA and TCDD, did not show significant alterations in either PRP time or in 

IRT values, suggesting that modest but non-statistically significant delays to begin 

responding in the interval and lack of repeated responding once initiated may combine to 

create significantly lower overall response rates.

Discussion

Developmental exposure to EDCs alone and as a mixture led to multiple behavioral 

deficiencies in adulthood in behaviors that included a fixed interval reinforcement schedule 

(FI), novel object recognition (NOR) paradigm and spontaneous locomotor activity, all 

known to involve mesocorticolimbic mediation (Antunes and Biala, 2012, Cory-Slechta, 

Pazmino, 1997, Cory-Slechta et al., 1998, Ennaceur et al., 2005, Evans and Cory-Slechta, 

2000) predicated on the fact that developmental exposures to these EDCs are known to alter 
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monoaminergic neural pathways (De Coster and van Larebeke, 2012, Frye et al., 2012, 

Suzuki, Mizuo, 2003), particularly along the mesolimbic dopaminergic systems (Palanza et 

al. 2008). Specifically, behavioral deficits were found in response to all five EDC 

treatments, but were enhanced with exposure to a mixture of EDCs in a sex-specific manner, 

with only males showing unique behavioral deficits compared to the single EDC exposed 

males.

MIX exposed males had significantly elevated FI rates of responding, whereas components 

of the MIX, including ATR, TCDD and BPA significantly reduced overall rates of 

responding on the FI schedule, demonstrating that the combination produced a unique 

alteration of adult male FI performance. It is interesting to think about the possibility that 

these results reflect altered underlying mesocorticolimbic dopamine function, as we have 

previously reported a U-shaped curve relating dopamine to FI response rates (Cory-Slechta, 

1998), wherein either increases or decreases in dopamine ultimately suppress FI response 

rates through their ability to suppress locomotor (low levels) and induce stereotypy (high 

levels). This will require future assessment of dose effect curves for dopamine-related 

changes in response to the single EDCs and the mixture. However, the dichotomous nature 

of the effects is notable given the accompanying disparate interpretations, i.e., that MIX 

could lead to increased impulsivity or an inability to inhibit responding and/or time 

discrimination deficits, whereas individual components induce a lack of attention to task 

and/or even impaired motivation or impaired temporal discrimination. Considerations of 

non-linearity of underlying neurotransmitter mediating functions will be critical to 

interpretations of behavioral outcomes in future studies of mixtures and may indicate that 

disparate behavioral changes can nevertheless reflect interactions in a common 

neurotransmitter system.

Male specific MIX effects likewise characterized novel object recognition performance. 

Evidence of neophobia for both sexes exposed developmentally to EDCs occurred during 

the initial session of the NOR task in that all EDC groups of both sexes showed decreased 

time per approach to objects relative to vehicles, but only males exhibited significantly 

decreased overall time spent exploring the objects, suggesting a more severe effect in males. 

These findings may be consistent with the EDC profile of locomotor activity and habituation 

failure changes in response to EDCs in males, who failed to exhibit the typical decreases in 

horizontal movement over repeated activity testing sessions in the locomotor chambers, 

suggesting an absence of habituation to the novelty of the chamber. These differences were 

not seen in female mice.

Novelty exploration and neophobia is typically a sexually dimorphic behavior. Male 

preference for novelty has been suggested to have adaptive functions (Wilson and Daly, 

1985), with support from rodent studies indicating that males spend more time exploring 

novel objects than females (Cyrenne and Brown, 2011, Frick and Gresack, 2003). Even 

when females show increased exploratory behavior, developmental exposure to EDCs 

eliminates any sex specific differences in exploratory behavior and alters sex-specific 

neurochemistry (Gioiosa, Fissore, 2007, Rubin et al., 2006). The current findings add further 

support to those assertions that developmental exposure to EDCs creates sex-specific 

alterations in exploratory behavior (Patisaul, Sullivan, 2012). In this study, vehicle males 
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showed significantly increased overall exploration time with objects compared to vehicle 

females, findings consistent with prior reports (Cummings et al., 2013, Cyrenne and Brown, 

2011, Frick and Gresack, 2003, Wilson and Daly, 1985). In contrast, mice developmentally 

exposed to the mixture of EDCs showed the opposite relationship, as MIX exposed males 

showed significantly decreased exploration times compared to MIX exposed females. There 

is experimental evidence that such behavioral differences can be hormonally mediated, as 

rats exposed to a long-acting gonadotrophin-releasing hormone antagonist, Antide, 

demonstrated a similar behavioral reversal. Antide treated males showed reduced serum 

testosterone and diminished preference for novelty compared to females (Cyrenne and 

Brown, 2011). Additionally, gonadectomized males showed diminished exploratory 

behavior compared to control males, while gonadectomized males given testosterone 

increased novel object exploration (Aubele et al., 2008b). Future studies will assist in 

understanding whether these sex-dependent EDC effects relate to feminized hormone 

physiology and/or altered neurochemical function.

Novel object recognition is considered an assay of short-term memory. Memory deficits 

occur after exposure to EDCs, e.g., BPA, ATR and TCDD, and have been associated with 

spatial and object memory deficits in developmentally exposed male mice (Belloni et al., 

2011, Brouillette and Quirion, 2008, Lin et al., 2013b, Palanza, Gioiosa, 2008, Tian et al., 

2010, Xu et al., 2011). However, in the current study after controlling for multiple 

comparisons, only MIX males showed significant memory deficits with a reduced 

recognition index in the NOR assay based on overall exploration time of novel relative to 

familiar objects. The unique influence of the mixture of EDCs on male memory warrants 

further investigation as the reduced exploration patterns during the first NOR test session 

may be responsible for the memory deficits seen during the recognition phase of the NOR 

testings, as animals that have reduced experience with the objects during that habituation 

phase may have difficultly separating novel from familiar in the recognition phase. As such, 

it is critical to include information from the NOR training sessions in any analyses of short-

term memory.

Of additional note in this study were the dramatic behavioral consequences of TCDD 

exposure in females. As TCDD is a selective AhR receptor, it is relevant that AhR genes, 

ARNT, and ARNT2, are sensitive to perinatal steroid hormone manipulations and expressed 

in sexually dimorphic brain regions (Petersen et al., 2006) such as the sexually dimorphic 

nuclei of the preoptic area, which contain estrogen receptors, and the anteroventral 

periventricular nucleus, which is a structure critical for sex-specific, estrogen-dependent, 

luteinizing hormone surge release (Petersen and Barraclough, 1989, Petersen et al., 1989, 

Petersen, Krishnan, 2006). Gene expression for AhR, ARNT, and ARNT2, mRNAs was also 

found in the sexually dimorphic medial preoptic regions and the ventromedial 

hypothalamus, brain regions critical to expression of male sexual behaviors (Gray and 

Brooks, 1984, Meisel and Sachs, 1994) and female (Kow and Pfaff, 1998). Of further note is 

the report that nearly all AhR gene expression in the brain of developing and adult rats is 

found in GABAergic neurons (i.e., those expressing the glutamic acid decarboxylase, the 

enzymes critical for GABA synthesis) suggesting GABA inhibitory function may be a target 

of TCDD exposure (Hays et al., 2002) which could modulate the dopamine/glutamate 

balance of mesocorticolimbic systems (Harte and O'Connor, 2005, Yamaguchi et al., 2011). 
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Animal and human studies suggest that exposure to TCDD elicits memory deficits, with 

some suggestion that females are more susceptible than males (Barrett et al., 2001, 

Brouillette and Quirion, 2008).

PFOA exposed males also showed increased ambulatory movement and decreased resting 

time, suggesting significantly increased hyperactivity compared to controls. Multiple studies 

also identify a causal role of developmental exposure to PFOA with increased hyperactivity 

in rodents, and epidemiological studies support a role for PFOA in human ADHD etiology, 

particularly at low exposure levels (Hoffman et al., 2010, Johansson et al., 2008, Ode et al., 

2014, Onishchenko, Fischer, 2011). Taken together, the role of low level EDC exposures, 

particularly to perfluorinated chemicals, in the etiology of attention-related behaviors 

warrants further investigation.

Some limitations to the current study should be noted. One is the fact that TCDD was 

administered differently (gavage) than BPA, ATR and PFOA. It has become increasingly 

clear that prenatal stress can act synergistically to enhance behavioral and neurochemical 

toxicity (Cory-Slechta et al., 2010, Weiss and Bellinger, 2006). Because TCDD has a longer 

half-life, TCDD is traditionally administered via oral gavage: as a result TCDD, mixture and 

control mice were all gavaged once every seven days, potentially exposing these groups to 

increased prenatal stress, as gavage has been long known to cause stress (Brown et al., 

2000). Therefore, prenatal stress is a potential confounding variable for MIX, TCDD and 

control mice. Future research should identify alternative means of appropriate administration 

of TCDD to reduce stress or should specifically investigate the potential role prenatal stress 

may have on synergistically eliciting neurobehavioral deficits associated with EDC 

exposure. The fact that control mice did receive vehicle gavage, however, provides support 

for the enhanced behavioral toxicity of MIX relative to control values.

In summary, the sex dependent alterations observed in behavioral performance, e.g., 

impulsivity and neophobia, could correspond with sex-biased human behavioral disorders, 

like addiction and ADHD. Further, this male-biased susceptibility to EDC mixtures was 

observed in the absence of signs of overt toxicity, or changes in body weight, litter size or 

sex ratios, and despite the heterogeneity of the chemical classes and associated mechanisms. 

Collectively, these findings support the need to further evaluate relationships between 

developmental exposure to EDCs and sex dependent neurobehavioral toxicity. EDCs have 

been implicated in the increased incidence of neurobehavioral disorders with sex biased 

prevalence rates, such as ADHD and autism, where males are increasingly susceptible 

(Colborn, 2004a, b, Frye, Bo, 2012). Such research will should include the generation of full 

dose-effect curves for individual EDCs and the MIX, particularly given findings of non-

monotonic dose effect curves and the recognition of the non-linearity of underlying 

neurobiological substrates, e.g., dopamine (Cory-Slechta, 2005, Cory-Slechta, O'Mara, 

1998, Evans and Cory-Slechta, 2000). Further, the fundamental role of sex hormones in 

behavioral neurodevelopment, including time-course assessments of hormone profiles will 

be requisite to this understanding.
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Highlights

• All males exposed to EDCs showed exploratory deficits during NOR 

habituation.

• Only MIX exposed males showed a sex specific reversal in exploratory 

behavior.

• MIX exposed males displayed reduced object recognition during NOR testing.

• MIX exposed males showed uniquely elevated response rates during FI 

acquisition.

• TCDD exposure produced notable increases in FI response rates in females.
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Figure 1a-h. 
Locomotor behavior was significantly altered in the exposed male offspring but not females. 

Group mean ± S.E locomotor counts and time for males (left) and females (right) for 

treatment groups as indicated. Asterisks indicate significant difference from vehicle control. 

Males: MIX = 7, ATR = 11, BPA = 10, PFOA = 9, TCDD = 14, VEH = 22; Females: MIX 

= 6, ATR = 6, BPA = 9, PFOA = 12, TCDD = 5, VEH = 16.
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Figure 2a-f. 
NOR exploratory behavior was disrupted by EDC exposure. Group mean ± S.E measures of 

NOR performance in the first testing session, including time spent per each approach to the 

object replaced in session 1 by a novel object, number of bouts of approach to that object, 

and time spent exploring the object for males (left column) and females (right column) for 

treatment groups as labeled. Asterisks signify significant difference from vehicle control. 

Males: MIX = 7, ATR = 11, BPA = 10, PFOA = 8, TCDD = 14, VEH = 17; Females: MIX 

= 5, ATR = 6, BPA = 7, PFOA = 9, TCDD = 5, VEH = 15.
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Figure 3. 
Reversal of sexually dimorphic exploratory behavior was seen in mixture group. Group 

mean ± S.E total time (min) exploring the objects in session 1 for male and female, vehicle 

and mixture-treated groups as indicated. Asterisks designate significant differences between 

groups indicated by horizontal lines. Males: MIX = 7, ATR = 11, BPA = 10, PFOA = 8, 

TCDD = 14, VEH = 17; Females: MIX = 5, ATR = 6, BPA = 7, PFOA = 9, TCDD = 5, 

VEH = 15.
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Figure 4a and b. 
Enhanced NOR recognition deficits in MIX exposed male mice. Group mean ± S.E 

recognition index values (percent) in session 2 for males (a, top) and females (b, bottom) for 

treatment groups as indicated. Asterisks indicate significant difference from vehicle control. 

Males: MIX = 7, ATR = 11, BPA = 10, PFOA = 8, TCDD = 14, VEH = 17; Females: MIX 

= 5, ATR = 6, BPA = 7, PFOA = 9, TCDD = 5, VEH = 15.
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Figure 5a-f. 
Enhance deficits in FI behavior seen only in male mice exposed to the mixture. Group mean 

± S.E. changes in overall response rate (top row), postreinforcement pause time (middle 

row) and mean inter-response times of male (left column) and female (right column) 

treatment groups as indicated across the sessions of FI testing. Asterisks next to the 

designation of a treatment group designate significant difference from control. Males: MIX 

= 7, ATR = 11, BPA = 10, PFOA = 9, TCDD = 14, VEH = 17; Females: MIX = 4, ATR = 6, 

BPA = 7, PFOA = 9, TCDD = 5, VEH = 15.
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Table 1

Pregnancy Outcomes and Adult Weights

Treatment
Total

number
of Dams

Mean
litter size ±

S.E.

Average sex
ratio ± S.E.

f/m

Mean
Adult Weight

± S.E. (F)

Mean
Adult Weight

± S.E. (M)

ATR 7 7.4 ± 0.24 0.81 ± 0.13 18.9 ± 0.32 23.8 ± 0.38

BPA 6 7.2 ± 0.71 1.12 ± 0.17 19.5 ± 0.31 23.5 ± 0.40

MIX 6 6.6 ± 1.02 0.98 ± 0.37 19.2 ± 0.36 24.8 ± 0.48

PFOA 6 7.5 ± 0.28 1.24 ± 0.28 18.6 ± 0.26 24.0 ± 0.43

TCDD 7 7.0 ± 0.19 0.65 ± 0.18 18.9 ± 0.36 24.2 ± 0.33

VEH 11 7.0 ± 0.76 1.16 ± 0.35 19.0 ± 0.20 23.7 ± 0.29
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