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Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal
organization. RhoGTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and
neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange
factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors.Through coordinated regulation by GEFs
and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So
far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset
of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the
understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize
the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these
regulators in the nervous system.

1. Introduction

Rho family GTPases constitute a distinct family of guanine
nucleotide-binding proteins which belongs to the superfam-
ily of Ras-related GTPases. RhoGTPases are key regulators of
the actin cytoskeletal dynamics, play crucial roles in various
aspects of brain development, and are implicated in a number
of neuropsychiatric and neurodegenerative diseases [1–5].
More than 20 mammalian members of Rho family GTPases
have been described, including Rho-like (RhoA, RhoB, and
RhoC), Rac-like (Rac1, Rac2, Rac3, and RhoG), Cdc42-like
(Cdc42, TC10/RhoQ, TCL/RhoJ, Wrch1/RhoU, and Chp/
Wrch2/RhoV), Rnd (Rnd1, Rnd2, and Rnd3/RhoE), Rho-
BTB (Rho-BTB1 andRhoBTB2), RhoD, Rif/RhoF, andRhoH/
TTF [6, 7]. Like all GTP-binding proteins, Rho GTPases con-
tain sequence motifs for binding to GDP or GTP, thus acting
as bimolecular switches, cycling between an inactive GDP-
bound state and an active GTP-bound state. Activity of Rho
GTPases is tightly controlled by the coordinated action of two
classes of regulatory proteins: guanine nucleotide exchange
factors (GEFs), which activate RhoGTPases by catalyzing the

exchange of boundGDP for GTP, enabling them to recognize
and activate downstream effectors, and GTPase-activating
proteins (GAPs), which suppress Rho GTPases by enhancing
their intrinsic rate of GTP hydrolysis to GDP.

Two types of GEFs for Rho GTPases have been identified.
Dbl- (diffuse B-cell lymphoma-) like GEFs, the classical
GEFs, are characterized by the presence of a DH (Dbl homol-
ogy) domain followed by a PH (pleckstrin homology) domain
[8]. The DH domain is known to be responsible for the cata-
lytic exchange activity of Rho GEFs, whereas the PH domain
regulates lipid binding and membrane targeting. Another
type of GEFs is the Dock (dedicator of cytokinesis) family
atypical GEFs, which contains a Dock homology region
(DHR) 1-DHR2 module instead of the PH-DH module.
DHR1-DHR2 module plays similar roles as PH-DH module,
of which DHR1 is important for the phospholipid-binding
and membrane targeting of Docks, and DHR2 is responsible
for its GEF activity [9]. On the other hand, Rho GAPs are
usually largemultidomain proteins characterized by the pres-
ence of a conserved Rho GAP domain and various function
domains [10]. A variety of GEFs and GAPs have been

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 632450, 17 pages
http://dx.doi.org/10.1155/2015/632450

http://dx.doi.org/10.1155/2015/632450


2 BioMed Research International

identified to govern the activity of Rho GTPases in neuronal
development and to be associated with neurological diseases
[5, 11–13].

Rac1 is one of the most well-studied Rho GTPases
which controls a wide range of cellular events of neuronal
morphogenesis andmotility [14]. Rac1 is amaster protein that
directs actin polymerization and cytoskeletal changes through
activating a series of signaling pathways, thus acting as a
converging sensor molecule that conveys divergent upstream
signals. To understand the spatiotemporally dynamic reg-
ulation of Rac1 activity in the nervous system, this review
summarizes the current findings of more than 30 Rac GEFs
(including both the Dbl-like and atypical GEFs) and GAPs
(Table 1). Both the molecular functions and the disease
relevance of these regulators in the nervous system will be
discussed. Most of these Rac GEFs or GAPs also act on
other Rho GTPases (such as RhoA or Cdc42) or even other
subfamilies of Ras-related GTPases (such as Ras and Rab).
For these regulators, we will emphasize their actions on Rac
and will try to discuss how their actions on Rac or other
GTPases are differentially regulated.

2. Dbl-Like Rac GEFs

2.1. Tiam. Tiam1 (T-lymphoma invasion and metastasis 1) is
one of the most extensively studied Rac GEFs in nervous and
other systems. Tiam1 is a well-known regulator for synapse
formation and plasticity. Tiam1 interacts with both EphB
receptors and the synaptic neurotransmitter receptors, N-
methyl-D-aspartate (NMDA) receptors, at the postsynaptic
sites [15, 16]. The Rac GEF activity of Tiam1 is upregulated
by CaMKII (Ca2+/Calmodulin-dependent protein kinase II)
dependent phosphorylation and EphB activation, leading to
elevated Rac1 activity and spine formation [15, 16]. Moreover,
Tiam1 forms a complexwith Par3 (partitioning defective gene
3), a regulatory protein for cell polarization, and is restricted
to the synapse. This regulation is important for the local acti-
vation of Rac1 and spine morphogenesis [17]. Interestingly,
Tiam1 is also regulated by MAP1B (microtubule-associated
protein 1B) and participates in NMDA-induced long-term
depression (LTD) through Rac1-dependent endocytosis of
AMPA (𝛼-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid) receptors and spine shrinkage [18]. These seemingly
contradictory findings of Tiam1 on both spine formation and
elimination have been possibly explained by the following
study. Tiam1 interacts and cooperates with BCR (breakpoint
cluster region), a Rac GAP at the synapse, and the two coun-
teract each other on Rac1 activity and spine morphogenesis
[19].This Rac GEF-GAP complex possibly secures a dynamic
and balancingmodule for regulating spine structure, receptor
internalization, and synaptic plasticity, whereas disrupting
either component may cause abnormal activation of the
other.

Besides regulating synaptic function, Tiam1 plays multi-
faceted roles in developmental stages of the nervous system.
Tiam1 is highly expressed in the intermediate zone and the
cortical plate of developing cortex. The Rac GEF activity
of Tiam1 is required for the radial migration of newborn

cortical neurons, and both Rac1-regulated leading process
formation and JNK-regulated microtubule organization are
implicated in Tiam1-regulated neuronal migration [20].
Moreover, Tiam1 acts as a converging transducer of a
number of signals, including neurotrophins (such as nerve
growth factor (NGF) and brain-derived neurotrophic factor
(BDNF)), ephrins, and Wnts, to regulate neurite outgrowth
and neural differentiation [21–24]. Tiam1 is also involved in
the development of the myelinating glial cells oligodendro-
cytes and Schwann cells, suggesting a role of Tiam1 for the
myelination of neurons in both central and peripheral ner-
vous system [25, 26]. Moreover, the gene expression of Tiam1
is downregulated in specific neuronal types in response to
cocaine and oxygen/glucose deprivation, which is one of
possible molecular changes that cause synaptic structural or
functional alterations in these pathological conditions [27,
28].

Tiam2, also known as STEF (Sif- andTiam1-like exchange
factor), is the second member of Tiam protein family. Tiam2
is far less studied than Tiam1, and its neuronal function
revealed thus far is the regulation of neurite outgrowth [29,
30]. In particular, protein kinase A (PKA) dependent phos-
phorylation of Tiam2 activates the RacGEF activity of Tiam2,
which is a critical signaling pathway underlying dibutyryl
cAMP (dbcAMP) induced neurite extension of neuroblas-
toma cells [30].

2.2. Trio and Kalirin. Trio and Kalirin (also known as Duo),
both having several isoforms, are multidomain containing
Rac GEFs that share high sequence homology. Trio is ubiqui-
tously expressed and plays critical roles in early development
of the nervous system,whereasKalirin is specifically enriched
in brain and elicits essential regulatory effects on synapse
morphogenesis and function.

Mice with complete deletion of Trio display embryonic
lethality with malformed myofibers and defective organiza-
tions in several brain regions including hippocampus and
olfactory bulb [31]. Further characterization of these Trio
knockout mice revealed that Trio transduces signaling from
the chemoattractant netrin-1 through binding to the netrin-
1 receptor DCC (deleted in colorectal cancer), thus guiding
the outgrowth and projection of commissure axons of cortical
neurons [32]. Trio is tyrosine phosphorylated by Fyn, amem-
ber of Src family kinases, in response to netrin-1 stimulation,
which is essential for DCC localization and netrin-induced
Rac1 activation and axon growth [33]. Moreover, Trio is
implicated in NGF-mediated neurite outgrowth via binding
to the membrane protein Kidins220/ARMS [34]. Several
neuronal isoforms of Trio have been identified and they also
exhibit activities on neurite outgrowth [35, 36]. To under-
stand the neuronal roles of Trio,mice with specific deletion of
Trio in the developing nervous system have been generated.
These mice show remarkably reduced brain size and body
weight, severe ataxia, and neonatal death. Disrupted cerebel-
lum development including aberrant granule cell migration
and abnormal neurite growth is observed in these mice,
suggesting a critical role of Trio in cerebellum development
[37].
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Table 1: Summary of Rac GEFs and GAPs in the nervous system.

Name (aliases) Functions in the nervous system Upstream signals Neurological disease relevance Other targeted
GTPases

Dbl-like Rac GEFs

Tiam1

Spine morphogenesis; neuronal
migration; neurite outgrowth;
neural differentiation; glial cell
myelination

BDNF/TrkB; NGF/TrkA;
NT3/TrkC; ephrinB1/EphB2;

Wnts; CaMKII
Cdc42

Tiam2 (STEF) Neurite outgrowth dbcAMP Cdc42

Trio

Axon guidance; neurite
outgrowth; cerebellum
development; neuronal cluster
organization in hindbrain

Netrin/DCC; NGF; Notch RhoA

Kalirin-7

Spine morphogenesis; synaptic
plasticity; learning and memory;
dendritic growth of
interneurons; regulation of iNOS

EphB2; CaMKII; N-cadherin;
5-HT2A serotonin receptors;

neuregulin/ErbB4

Alzheimer’s disease; ischemic
stroke; schizophrenia; cocaine
addiction; attention deficit
hyperactivity disorder;
Huntington’s disease

Kalirin-9 Dendritic outgrowth and
branching; spine morphogenesis Schizophrenia RhoA

Kalirin-12 Dendritic outgrowth and
branching; endocytosis RhoA

𝛼-PIX
(ARHGEF6/Cool-2)

Spine morphogenesis; axon and
dendrite branching; learning and
memory

Reelin X-linked mental retardation Cdc42

𝛽-Pix
(ARHGEF7/Cool-1)

Spine formation; presynaptic
vesicle positioning; GABAA
receptor stabilization; neurite
and dendrite outgrowth

CaMKII Cdc42

Farp1 (CDEP)
Dendritic arborization; spine
morphogenesis; presynaptic
active zone modulation

Sema3A/PlexinA1;
Sema6A/PlexinA4; retinoids;

SynCAM1
Farp2 (FIR/FRG) Axon guidance; dendrite growth Sema3A/PlexinA1, PlexinA4 Cdc42

P-Rex1
Neurite outgrowth; neuronal
migration; cerebellum
development and function

NGF; BDNF; ephrin-B1

P-Rex2 Cerebellum development and
function PI3K

Vav2 Neurite outgrowth; axon
guidance; spine development

Ephrin/Eph; BDNF/TrkB;
NGF/PI3K Cdc42

Vav3

Neurite outgrowth; axon
guidance; spine development;
cerebellum development;
GABAergic neuron transmission
in brainstem

Ephrin/Eph; BDNF/TrkB;
NGF/PI3K Schizophrenia Cdc42

Plekhg4
(puratrophin-1) Cerebellar function Spinocerebellar ataxia RhoA; Cdc42

GEFT Neurite and dendrite growth Retinoic acid; dbcAMP Cdc42

RasGRF1
Neurite growth; synaptic
plasticity; learning and memory;
striatal function

Epilepsy; L-dopa-induced
dyskinesia Ras

RasGRF2
Neurite growth; synaptic
plasticity; alcohol-induced
reinforcement

Alcoholism Ras

Alsin
Motoneuron protection;
endosomal trafficking; neurite
outgrowth

Amyotrophic lateral sclerosis;
primary lateral sclerosis;
infantile-onset ascending
hereditary spastic paralysis

Rab5
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Table 1: Continued.

Name (aliases) Functions in the nervous system Upstream signals Neurological disease relevance Other targeted
GTPases

Atypical Rac GEFs
Dock1 (Dock180) Spine morphogenesis Netrin/DCC; RhoG

Dock2 Microglia function and A𝛽
deposition Prostaglandin E2 Alzheimer’s disease

Dock3 (MOCA/PBP) Axonal outgrowth;
neuroprotection BDNF/TrkB

Alzheimer’s disease;
glaucoma; attention deficit
hyperactivity disorder

Dock4
Neurite and dendrite
development; spine
morphogenesis

Retinoic acid Autism; dyslexia;
schizophrenia

Dock6 (Zir1) Axonal growth and regeneration Cdc42

Dock7 (Zir2)

Neuronal polarity; cortical
neurogenesis; Schwann cell
differentiation and myelination;
axon terminal development of
chandelier cells

Neuregulin/ErbB2, ErbB4 Epileptic encephalopathy and
cortical blindness Cdc42

Rac GAPs

BCR

Dendrite growth; spine
morphogenesis; astroglia
development; learning and
memory

BDNF/TrkB Cdc42

ABR

Dendrite growth; spine
morphogenesis; astroglia
development; learning and
memory

Cdc42

𝛼1-Chimaerin
(n-chimaerin) Dendrite and spine development Diacylglycerol Duane’s retraction syndrome

𝛼2-Chimaerin
Axon guidance in oculomotor
and motor system; neuronal
migration; cognitive function

Ephrin/Eph; Sema3/PlexinA;
BDNF/TrkB; CXCL12; HGF Duane’s retraction syndrome

𝛽2-Chimaerin Axonal pruning Sema3F

srGAP2 (FNBP2) Neuronal migration; spine
development; neurite outgrowth Slit/Robo; valproic acid Schizophrenia; epilepsy Cdc42

srGAP3
(MEGAP/WRP)

Spine development; synaptic
plasticity; learning and memory;
neural progenitor cell
differentiation and migration;
neurite outgrowth

Slit/Robo; valproic acid
Hydrocephalus; X-specific

mental retardation;
schizophrenia; epilepsy

ArhGAP4 Axon growth
p250GAP
(Grit/RICS/p250GAP/
p200RhoGAP/GC-
GAP)

Dendritic and spine
morphogenesis; axon guidance
and branching; neurite
outgrowth; neuronal migration

BDNF; NGF/TrkA; leptin Schizophrenia RhoA; Cdc42

PX-RICS Neurite outgrowth

Rich1 (Nadrin)
Spine morphogenesis; neurite
outgrowth; astrocyte
differentiation

NGF RhoA; Cdc42

Rich2 Spine morphogenesis and
synaptic plasticity

SH3BP1 (3BP-1) Growth cone collapse Sema3E/PlexinD1
BARGIN ROS diminishing Alzheimer’s disease
CrossGAP
(CrGAP/Vilse)

Axon guidance and spine
morphogenesis Slit/Robo Cdc42

MgcRacGAP
(RacGAP1/Cyk4) Neuronal migration



BioMed Research International 5

Alternative splicing of the KALIRIN gene (KALRN) gen-
erates several transcripts encoding functionally distinct pro-
teins, among which Kalirin-7 is the most prevalent isoform
in mature neurons. Kalirin-7 is one of the critical integrators
localized at the postsynaptic density of excitatory synapses to
promote activity-dependent dendritic spine morphogenesis.
Kalirin-7 is regulated at the synaptic areas through several
mechanisms. First, Kalirin-7 is targeted to the synaptic mem-
brane by interacting with synaptic proteins, such as PSD-
95/PDZ-containing proteins and the N-cadherin adhesion
molecule complex, leading to local activation of Rac1 and
spine formation [38, 39]. Second, Kalirin-7 is extensively
phosphorylated at the postsynaptic density, indicating that
it is a converging signaling target and dynamically regulated
by multiple kinases at the synapses [40]. In particular, the
Rac GEF activity of Kalirin-7 is activated by synaptic EphB2
receptors and CaMKII via tyrosine and threonine phos-
phorylation, respectively [41, 42]. Moreover, Kalirin-7 is
regulated by 5-HT

2A serotonin receptors and participates in
serotonin-modulated spine size increase of cortical pyrami-
dal neurons [43]. Besides regulating spine structure, Kalirin-7
also binds to the neurotransmitter NMDA and AMPA recep-
tors and regulates their expressions and functions [42, 44].
To understand the in vivo roles of Kalirin-7 and other Kalirins
in synapse structure and function, mice with only Kalirin-
7 isoform deleted and mice with the KALRN gene deleted
(in which all the Kalirin isoforms are absent) were gener-
ated. Interestingly, different phenotypical abnormalities were
observed in these two lines of mice. For instance, spine mor-
phogenesis and glutamatergic neurotransmission in cortex,
but not hippocampus, are significantly reduced in KALRN
knockoutmice, and thesemice exhibit age-dependent behav-
ioral deficits such as reduced working memory, sociability,
prepulse inhibition, and hyperactivated locomotion [45]. By
contrast, only modest alterations are observed in the hip-
pocampus, possibly associated with impaired fear condition-
ing in these mice [46]. On the other hand, Kalirin-7 knock-
out mice showed decreased spine density in hippocampus
and abnormal anxiety-like behavior, but locomotion and
spatial working memory are normal in these mice [47].
Since the expression of larger Kalirin isoforms, Kalirin-8, -9,
and -12, is upregulated in Kalirin-7 knockout cortex [47], the
discrepancies in these two lines of mice suggest nonover-
lapping functions of Kalirin-7 and other Kalirins. The larger
Kalirin isoforms have an additional RhoA GEF domain,
which may thus contribute to their unique functions [48].
Indeed, Kalirin-9 and Kalirin-12 specifically regulate den-
dritic outgrowth and branching of cortical neurons, whereas
overexpression of Kalirin-9 surprisingly decreases spine size
and density [49, 50]. Kalirin-12 is also implicated in dynamin-
dependent endocytosis in neuronal cells [51].

Being a critical synaptic regulator, KALRN has been
found as a high risk gene of a variety of neurological diseases
[52]. Both gene and protein expressions of Kalirin were
decreased in the hippocampus of Alzheimer’s disease (AD)
patients in a study, and the lowered Kalirin level may
contribute to higher iNOS (inducible nitric oxide synthase)
activity observed in the hippocampal specimens of the
patients [53, 54]. Moreover, KALRN expression is decreased

in schizophrenia patients, and Kalirin-7 interacts with
several schizophrenia-related proteins. The localization of
Kalirin-7 and the duration of Rac1 activation are regulated
by the schizophrenia-related factor DISC1 (disrupted-in-
schizophrenia 1) [55]. Moreover, Kalirin-7 is a downstream
mediator of the schizophrenia-related neuregulin/ErbB4 sig-
naling, regulating dendritic spine morphogenesis of cor-
tical pyramidal neurons and dendritic growth of cortical
interneurons [56, 57]. Importantly, a sequence variant of
KALRN found in schizophrenia patients encodes a Kalirin-7
mutant with diminished Rac GEF activity, and this mutant
fails to increase spine density and size [58]. Expression of
Kalirin-9, on the other hand, was found to be upregulated
in schizophrenia subjects [49]. Moreover, Kalirin has been
shown as a converging modulator in various pathological
conditions such as those induced by cocaine and ischemia
[59–61].

2.3. PIX. The PIX (p21-activated kinase (PAK) interacting
exchange factor) protein family includes 𝛼PIX (ARHGEF6)
and 𝛽PIX (ARHGEF7). 𝛼PIX/ARHGEF6 gene is one of the
causative genes of X-linked intellectual disability (ID) [62].
𝛼PIX is expressed primarily in the hippocampus and is local-
ized to the postsynaptic density of excitatory neurons [63,
64]. 𝛼PIX regulates spinemorphogenesis through interacting
with the postsynaptic adaptor protein GIT1 (G-protein cou-
pled receptor kinase-interacting protein 1) and activation of
Rac and PAK3 [63, 65]. In the early development of neurons,
𝛼PIX promotes axon and dendrite branching and participates
in dendritic Golgi translocation in response to reelin [66, 67].
𝛼PIX knockout mice exhibit disrupted synaptic plasticity
and a series of behavioral abnormalities, including impaired
spatial and complex learning and less behavioral control in
mildly stressful situations, resembling typical ID symptoms
[64].
𝛽PIX plays roles at both excitatory and inhibitory

synapses. At excitatory synapse, 𝛽PIX forms a complex with
important postsynaptic molecules including Shank and GIT1
and regulates synaptogenesis [68]. 𝛽PIX is phosphorylated
by CaMKII in response to neuronal activity induced Ca2+
influx, which causes activation of𝛽PIX towardRac1 and spine
formation [69]. 𝛽PIX also forms a complex with cadherin,
𝛽-catenin, and scribble at presynaptic sites and regulates
synaptic vesicle positioning [70]. Interestingly, the GIT1 and
𝛽PIX complex is also localized to inhibitory synapses and
regulates the synaptic stability of GABAA receptors [71].
The ability of 𝛽PIX in regulating both excitatory and inhib-
itory synapses suggests that it may be an essential mod-
ulator of synaptic balance. Moreover, 𝛽PIX is involved in
several signaling pathways that regulate neurite and dendritic
outgrowth [72–74]. This is controversial to a recent report
that 𝛽PIX knockdown has no effect on dendritic growth
and branching [66]. These observations may be due to
the presence of different isoforms of 𝛽PIX that may play
additional functions during neuronal development [66, 75].

2.4. Farp. Farp (4.1, ezrin, radixin and moesin (FERM),
RhoGEF (ARHGEF), and pleckstrin domain protein) family
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includes two closely related members, Farp1 and Farp2. Both
Farps function as mediators of Semaphorin (Sema)/Plexin
signaling. Farp1 interacts with PlexinA1 receptors and is
required for Sema3A-promoted dendritic arborization of hip-
pocampal neurons, which is a neuronal activity-dependent
process [76]. Moreover, Farp1 is a responsive gene of
retinoids in the developing spinal cord, where it mediates
Sema6A/PlexinA4 signaling induced dendritic growth of
spinal motoneurons [77]. On the other hand, although Farp2
also binds to PlexinA1 receptors, this interaction is dimin-
ished by Sema3A during axonal repulsion of dorsal root
ganglion (DRG) neurons [78]. Dissociation of Farp2 from
PlexinA1 increases Farp2’s GEF activity toward Rac1 and sub-
sequently activates other signaling events, leading to repul-
sion and decreased adhesion of axons [78]. A recent study
dissected the functional roles of different cytoplasmic
domains of PlexinA4 and compared the requirement of Farp1
and Farp2 in Sema3A/PlexinA4 signaling. It reveals that
Farp1 and Farp2 bind to PlexinA4 in different fashions, and
only Farp2 is required for Sema3A/PlexinA4 induced growth
cone collapse of DRG neurons and dendritic growth of corti-
cal neurons [79]. Besides acting as an effector of Sema/Plexin
signals, it is found that Farp1 interacts with SynCAM1
(synaptic cell adhesion molecule 1), a synaptogenic protein,
and regulates synapse formation. Farp1 works together with
SynCAM1 to promote spine morphogenesis through acti-
vation of Rac1 and increase of F-actin polymerization in
spine heads. Farp1 and SynCAM1 also activate a retrograde
signaling on the modulation of presynaptic active zones [80].

2.5. P-Rex. P-Rex (phosphatidylinositol (3,4,5)-trisphos-
phate-dependent Rac exchanger) family, including P-Rex1
and P-Rex2, is activated by both PI3K (phosphoinositide
3-kinase) and GPCRs (G-protein coupled receptors). P-Rex1
is localized to the distal tips of neurites and axonal growth
cones and regulates NGF-stimulated neurite outgrowth
through activating Rac1 and Rac3 [81]. Moreover, P-Rex1 is
expressed in the developing cortex and regulates both radial
migration and tangential migration of newborn pyramidal
neurons under the control of neurotrophins (such as NGF
and BDNF) and ephrin-B1, respectively [82, 83].

Expression of P-Rex2 in the brain is much more limited
and is most prominently expressed in cerebellar Purkinje
cells. Aberrant dendrite morphology of Purkinje cells was
observed in P-Rex2 knockout mice, associated with motor
coordination deficits. P-Rex1 and P-Rex2 double knockout
mice exhibitmore severemotor coordination defects together
with ataxia, abnormal posture, and gait [84]. This suggests
that P-Rex1 and P-Rex2 cooperatively regulate cerebellum
function. Further studies using P-Rex1/2 double knockout
mice show that PI3K-P-Rex signaling is important for late
phase long-term potentiation (LTP) at the parallel fiber-
Purkinje cell synapse in cerebellum [85].

2.6. Vav. Threemammalian Vavs, Vav1, Vav2, and Vav3, have
been identified in Vav protein family. Vav1 is preferentially
expressed in immune system, whereas Vav2 and Vav3 are
more ubiquitous with higher expression in developing brain.

A number of studies have revealed that Vav2 andVav3, in par-
ticular Vav2, participate in diverse signaling pathways to reg-
ulate neurite outgrowth and branching in vitro and in Xeno-
pus spinal neurons [86–88]. Investigation of Vav2 and Vav3
single or double knockout mice has provided more infor-
mation about the functional roles of these proteins in the
nervous system. In early developmental stages, Vav2 andVav3
are found to mediate ephrin/Eph signaling regulated axon
guidance of ipsilateral retinogeniculate projections [89]. Vav2
binds to activated EphA4 receptors and its Rac GEF activity
was stimulated by ephrin-A1. Such regulation induces endo-
cytosis of the ephrin/Eph complex and a subsequent growth
cone collapse of cultured retinal ganglion cells (RGCs).
Importantly, deletion of bothVav2 andVav3 inmice results in
abnormal axon projection of RGCs to the dorsal lateral genic-
ulate nucleus. In later developmental stages, Vav2 and Vav3
interact with TrkB receptors and are transiently activated
upon TrkB stimulation by BDNF, leading to the activation of
Rac1 [90]. Vav2 and Vav3 are dispensable for basal dendritic
spine formation but are required for BDNF-induced rapid
spine enlargement and theta-burst-stimulated LTP in hip-
pocampus [90]. Other abnormalities identified in Vav2/Vav3
double knockout mice include delayed degeneration, revas-
cularization and regeneration of peripheral nerves, and optic
neuropathy associated with ocular deficits that are highly
resemblance of glaucoma-like phenotypes [91, 92].

To address whether individual Vav plays nonoverlapping
biological roles, single knockout mice of each Vav have been
generated. In particular, two additional functions of Vav3 in
the nervous system have been found. First, Vav3, but not
Vav2, contributes to the development of cerebellum [93].
Vav3 regulates the precise timing of several developmental
processes at postnatal stages, including dendritogenesis of
Purkinje cell and the survival and migration of the granule
cells. In line with the morphological defects of cerebellum,
Vav3 knockout mice exhibit abnormalities in cerebellum-
related behaviors such asmotor coordination and gaiting pat-
terns [93]. Second, Vav3 specifically regulates the axon guid-
ance of a subset of GABAergic neurons in the ventrolateral
medulla (VLM), a brainstem area. This regulation controls
the precise GABAergic transmission in VLM, which is even-
tually important for the modulation of blood pressure and
respiratory rates [94]. Moreover, it was recently found that
VAV3 is a candidate gene for schizophrenia, pointing to the
importance of investigatingVav3 in themolecular pathophys-
iology of schizophrenia [95].

2.7. Plekhg4. Plekhg4, a GEF enriched in adult cerebellum,
has been identified to be linked with autosomal dominant
spinocerebellar ataxia, a heritable neurodegenerative disease
[96]. When expressed heterologously in fibroblast cells,
Plekhg4 possesses general GEF activities toward RhoA, Rac1,
and Cdc42 and is capable of inducing actin-dependent for-
mation of lamellipodia and filopodia [97]. The stability and
subcellular localization of Plekhg4 can be regulated by the
chaperon complex of heat shock proteins [97]. Nonetheless,
the function of Plekhg4 in the nervous system, especially
the cerebellum, and how its dysfunction leads to cerebellar
impairments still await further characterization.
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2.8. GEFT. GEFT, a small GEF that contains primarily a
DH and a PH domain, is widely expressed in various brain
regions. Overexpressed GEFT promotes dendrite and spine
growth in hippocampal neurons and facilitates retinoic acid
and dbcAMP induced neurite outgrowth in neuroblastoma
cells [98, 99]. Although GEFT may activate both Rac1 and
Cdc42, its effect on neurite growth is possibly via Rac1/PAK
pathway [98].

2.9. RasGRF. RasGRFprotein family, includingRasGRF1 and
RasGRF2, has dual GEF activities toward both Ras and Rac
and is expressed predominantly in mature neurons. RasGRFs
play multiple roles in neurite outgrowth, synaptic plasticity,
and neuronal behaviors [100, 101]. In particular, RasGRF1
exhibits differential roles in regulating LTD, LTP, and dentate
gyrus neurogenesis in an age-dependent manner [102, 103].
RasGRF1 directly couples to NMDA receptor 2B subunits
(NR2B) to participate in the induction of LTD and dendrite
complexity development [102, 104, 105]. On the other hand,
association of RasGRF2 with NMDA receptor 2A subunits
(NR2A) is required for LTP generation [102, 106]. As critical
mediators of synaptic function, both RasGRFs are found to be
essentially involved in physiological and pathological neural
behaviors. For instance, RasGRF1 regulates learning and
memory and is implicated in epilepsy, striatum-dependent
motor behavioral deficits induced by cocaine, L-dopa, or
amphetamine [107–112]. RasGRF2 is important for contextual
discrimination and is found to be a responsible molecule for
alcohol-induced reinforcement [113, 114].

Given that RasGRFs activate both Ras and Rac1, detailed
analysis has been performed to provide further information
about whether both small GTPases or only one of them is
important for specific RasGRF’s function. In particular, Rac1
signaling is differentially activated in RasGRF1-mediated
LTD [102]. Similarly, although the Ras GEF activity of
RasGRF2 regulates synaptic strength and NMDA current,
only its Rac GEF activity is activated immediately following
stimulation of NMDA, which is in turn required for the rapid
spine enlargement and LTP generation [115]. Importantly, the
Rac GEF activity of RasGRFs may be differentially regulated
by protein interaction and phosphorylation. For instance,
the Rac GEF activity of RasGRF1 is specifically inhibited by
the microtubule-destabilizing factor SCLIP (SCG10-like pro-
tein), which antagonizes the neurite outgrowth induced by
RasGRF1 [116]. Moreover, the Rac GEF activity of RasGRF2
is decreased by p35/Cdk5 via phosphorylation [117].

2.10. Alsin. The gene encoding Alsin, ALS2, is a causative
gene of several motoneuron degenerative diseases, including
juvenile amyotrophic lateral sclerosis (ALS), primary lateral
sclerosis, and infantile-onset ascending hereditary spastic
paralysis [118]. Alsin has dual GEF activities for both Rab5,
a member of Rab GTPases essential for protein trafficking
through early stages of the endocytic pathway, and Rac1.
A battery of studies in cells and in ALS2 knockout mice
have revealed a broad range of cellular functions of Alsin,
including protection of motoneuron survival, endosomal
trafficking of neuronal membrane proteins, and neurite

outgrowth [119–124]. Both Rab5 and Rac1 contribute to these
functions mediated by Alsin. In particular, knockdown of
Alsin in cultured rat spinal motoneurons leads to reduced
endosome size, abnormal protein trafficking, and elevated
neuronal death [121]. Activation of Rac1, but not Rab5,
rescues these defects in Alsin deficient neurons [121]. Thus,
although Rab5 may contribute to Alsin-regulated endosomal
trafficking, Rab5 is not essentially required inAlsin-regulated
neuronal functions. In agreementwith this finding, themem-
brane and endosomal localization of Alsin is reciprocally
regulated by activated Rac1, suggesting that activation of Rac1
may be a signaling event prior to that of Rab5 [125, 126].
Moreover, the RacGEF activity, in particular Rac1/PI3K/Akt3
pathway, is involved in Alsin-regulated protective effects
against motoneuron death induced by mutant forms of SOD1
(superoxide dismutase 1), another causative gene in ALS
[120, 127]. Rac1/PAK pathway is also important for Alsin-
regulated neurite outgrowth [119]. However, Alsin knockout
mice exhibit no obvious motoneuron death and only mild
motor defects [118]. The poor recapitulation to phenotypes
in human diseases may be due to compensatory effects from
otherALS-related genes such as SOD1. Indeed, loss ofALS2 in
a ALS-related SOD1 mutant mice exacerbates neurotoxicity,
accumulation of misfolded proteins, and motor dysfunction
of the mutant mice [128].

3. Dock Family Atypical Rac GEFs

Dock (dedicator of cytokinesis) protein family is a family of
atypical GEFs which contains 11 members, of which Dock1–
5 activate Rac1 and Dock6 and Dock7 activate both Rac1
and Cdc42 [129]. Except Dock5, the other six members of
these Rac GEF activity-possessing Docks all have known
functions in the nervous system. Dock1, also called Dock180,
is involved in the regulation of axon guidance and dendritic
spine morphogenesis. Dock180 binds to the netrin receptor
DCC and mediates netrin-induced Rac1 activation and axon
growth [130]. Interestingly, Dock180 is also important for the
axon pruning induced by ephrin-B3 reverse signaling and
RhoG, suggesting a bifaced role of Dock180 in axon attraction
and repulsion [131, 132]. Moreover, Dock180 promotes Rac1
activation and leads to dendritic spine morphogenesis in
hippocampal neurons [133].

Dock2 is expressed exclusively in microglia and is impli-
cated in neuroinflammation of AD pathology. It has been
shown that the number of Dock2-expressing microglia is
abnormally increased in brains ofADpatients and the expres-
sion of Dock2 is positively regulated by prostaglandin E2
receptors [134]. Additionally, Dock2 deficiency significantly
reduces the area and size of𝛽-amyloid (A𝛽) plaque in cerebral
cortex and hippocampus of a mouse model of AD [135].

Dock3 plays major roles in neurite outgrowth and neuro-
protection and is implicated in several neurological diseases
such as AD and glaucoma [136]. Dock3 mediates several
molecular events that are important for BDNF-induced
neurite and axon growth [137, 138]. More importantly, Dock3
exerts several neuroprotective effects, whereas loss of Dock3
leads to axon degeneration [139]. Dock3 decreases the secre-
tion of APP (amyloid precursor protein) and A𝛽 peptide



8 BioMed Research International

by accelerating the proteasome-dependent degradation of
APP [140]. Moreover, Dock3 ameliorates the neurotoxicity
induced by NMDA receptors via interacting with the C-
terminus of NMDA receptor subunits [141, 142]. These find-
ings suggest that Dock3 is a potential therapeutic target for
nerve injury and degeneration. Indeed, two recent findings
have shown thatDock3 stimulates neuroprotection after optic
nerve injury and protects myelin in a demyelinationmodel of
multiple sclerosis [143, 144].

The gene encodingDock4 has been found to be associated
with several neuropsychiatric diseases, including autism,
dyslexia, and schizophrenia [145–147]. Dock4 regulates neu-
rite and dendrite outgrowth through Rac1-dependent actin
cytoskeleton reorganization [148]. Dock4 is also important
for spine morphogenesis of hippocampal neurons [149].

Dock6 has been found to promote neurite outgrowth and
regulate axonal growth and regeneration of sensory neurons
[150, 151]. Although Dock6 is capable of activating both Rac1
and Cdc42 in vitro, it preferentially activates Rac1 in DRG
neurons [151]. The GEF activity of Dock6 towards Rac1 is
regulated by phosphorylation/dephosphorylation at Ser1194
by Akt kinase and protein phosphatase PP2A.

Dock7 is highly expressed in the developing brain and
has been found to play important roles in several neuronal
developmental processes. Dock7 regulates the neurogenesis
in the neocortex by promoting the differentiation of radial
glial progenitor cells into basal progenitors and neurons [152].
Dock7 also plays a role in controlling neuronal polarity
and axon formation [153]. A recent study has revealed that
Dock7 is expressed in chandelier cells, an important type of
interneurons for modulating cortical circuits, and regulates
axonal terminal development of these cells under the control
of ErbB4 receptors [154]. Notably, mutations in DOCK7
were found in individuals with epileptic encephalopathy and
cortical blindness [155]. In the peripheral nervous system,
Dock7 is important for the development of Schwann cells,
the glial cells that ensheath the axons of motor and sensory
neurons. Dock7 negatively regulates the differentiation of
Schwann cells and the onset of myelination in both primary
Schwann cells in vitro and sciatic nerves in vivo [156].
Moreover, Dock7 promotes Schwann cellmigrationmediated
by neuregulin-ErbB2 receptors [157].

4. Rac GAPs

4.1. BCR and ABR. BCR and ABR (active BCR-related) are
two closely related Rac GAPs expressed mainly in the brain.
ABR and BCR have both GAP and GEF domains but only
exhibit GAP activity in vivo. Knockout of both ABR and BCR
or either of them in mice leads to elevated Rac1 activity in
the brain [158, 159]. Defects observed in the knockout mice
include functional and structural abnormalities of astroglia
in postnatal cerebellar development, increased dendritic
arborization and spine number, and defective LTP mainte-
nance in the hippocampus [158–160].Moreover, BCR coexists
with Tiam1 as a Rac GEF-GAP complex to regulate spine
morphogenesis and synaptic plasticity under the control of
BDNF-TrkB signals [19]. Either ABR or BCR knockout mice
exhibit impaired spatial and object recognition memory

[158].TheGAP activity of BCR can be promoted by phospho-
rylation at its Tyr177 residue [160]. Fyn and protein tyrosine
phosphatase receptor T (PTPRT) are the upstream kinase
and phosphatase, respectively, that regulate BCR activity via
targeting the Tyr177 residue [160].

4.2. Chimaerin. Chimaerins are a family of Rac GAPs which
contain a GAP domain homologous to that of BCR. Two
subfamilies of chimaerins, 𝛼-chimaerins encoded by CHN1
gene and𝛽-chimaerins encoded byCHN2 gene, are identified
in mammals. There are three alternative spliced products of
each of CHN1 and CHN2: 𝛼1- and 𝛽1-chimaerins contain a C1
domain and a GAP domain, 𝛼2- and 𝛽2-chimaerin possess
an additional SH2 domain at the N-terminus, and 𝛼3- and
𝛽3-chimaerin only contain a GAP domain [161].

Among the different members of chimaerins, 𝛼2-
chimaerins are the most studied and have been revealed to
play crucial functions in the nervous system. Mutation of the
CHN1 gene is one of the causes of Duane’s retraction syn-
drome (DRS), a complex congenital eye movement disorder
caused by aberrant axonal innervation of the extraocular
muscle [162]. A number of heterozygous missense mutations
in CHN1 have been found in DRS and all cause hyperacti-
vation, that is, gain of function, of the GAP activity of
chimaerin and misguidance of oculomotor nerves [162].
Further molecular dissection has shown that 𝛼2-chimaerin
acts as a downstreammediator of both the repellent signals of
oculomotor axon guidance, that is, Sema3/PlexinA, and the
attractant signals, that is, the chemokine CXCL12 and
hepatocyte growth factor (HGF) [163]. The ability of 𝛼2-
chimaerin to respond to both positive and negative signals
suggests that 𝛼2-chimaerin represents a balancing interme-
diate which maintains the high sensibility of axons to the
surrounding microenvironment.

Besides regulating axon guidance in oculomotor system,
𝛼2-chimaerin is also critical in the axon pathfinding of
corticospinal tract and spinal cord neurons during motor
circuit assembly. 𝛼2-Chimaerin functions as an indispensable
effector of ephrin/Eph repellent signaling pathway to restrict
the axons to project into the ipsilateral side of the spinal
cord without crossing the midline [164–167]. Such function
of 𝛼2-chimaerin controls alternate body movement, whereas
knockout of 𝛼2-chimaerin results in locomotion defects and
involuntary synchronous arrhythmic stepping, known as a
rabbit-like hopping gait [164, 166–168].Themolecular regula-
tion of 𝛼2-chimaerin activation includes membrane recruit-
ment and tyrosine phosphorylation of 𝛼2-chimaerin by Eph
receptors and binding to the adaptor protein Nck family,
which leads to Rac1 in activation and growth cone collapse
[164, 165, 169].

Interestingly, despite the hopping gait behavior, 𝛼2-
chimaerin null mice exhibit enhanced contextual fear learn-
ing. Such behavior abnormalities are only observed when
𝛼2-chimaerin is genetically deleted in early developmental
stages, but not in adulthood [170]. One of the roles of 𝛼2-
chimaerin in early development is the regulation of the radial
migration and positioning of newborn pyramidal neurons
during corticogenesis. Such regulation is a key determinant
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of normal cortical excitability and seizure threshold in adult-
hood [171]. On the other hand, 𝛼1-chimaerin, the shorter
splicing variant of 𝛼2-chimaerin, is enriched in later devel-
opmental stages and is not involved in gait behavior or
contextual fear learning [170]. 𝛼1-Chimaerin plays a role in
pruning of dendritic branches and spines, and such effectmay
be regulated by synaptic activity and interaction with NMDA
receptors [172, 173].

The function of 𝛽-chimaerins in the nervous system is
less understood comparing to 𝛼-chimaerins. One report has
revealed that 𝛽2-chimaerin acts as a mediator of Sema3F
signaling in regulating axonal pruning in developing hip-
pocampus [174].

4.3. srGAP. The Slit-Robo GAP (srGAP) family is an F-
BAR (Bin, Amphiphysin, and Rvs) domain containing GAP
family that has four members, srGAP1, srGAP2, srGAP3,
andArhGAP4.Among thesemembers, srGAP1 preferentially
inhibits Cdc42, whereas srGAP2 and srGAP3 downregulate
Rac1. ArhGAP4 may be implicated in the inhibition of axon
growth, but its function has been largely unknown [175].

srGAP2 negatively regulates radial migration of cortical
neurons through its F-BAR domain mediated increase of
leading process branching [176].The GAP activity of srGAP2
toward Rac1 partially contributes to srGAP2-induced neurite
branching andmigration inhibition [176]. Moreover, srGAP2
promotes maturation of dendritic spines but decreases sine
density in the neocortex [177]. Notably, it is found that
SRGAP2 is one of the human-specific duplicated genes, which
undergoes incomplete duplications that generate several
partial SRGAP2 products in the human brain [177, 178].
srGAP2C, encoded by one of the major duplications, forms
dimers with srGAP2 and inhibits srGAP2 function on
migrating inhibition and spine maturation, suggesting that
srGAP2 is modulated by its paralogs in human brain [177].

srGAP3, also called MEGAP (mental disorder asso-
ciated GAP protein) or WRP (WAVE (Wiskott-Aldrich
syndrome protein verprolin-homologous) associated Rac
GTPase-activating protein), is a factor linked tomental retar-
dation [179]. srGAP3 controls the early stages of dendritic
spine formation in an F-BAR domain dependent manner
and is dispensable for the maintenance of spine density
[180]. The in vivo functions of srGAP3 on synapse structure
and function have been revealed in several lines of srGAP3
knockout mice. Mice with deletion of srGAP3 in brain show
deficits in multiple long-term learning and memory tasks,
including novel object recognition, water maze, and passive
avoidance [180]. In another study, a line of complete srGAP3
knockout mice show schizophrenia-like behaviors, such
as impaired social behavior, working memory and pre-
pulse inhibition, more spontaneous tics, and exacerbated
methylphenidate-induced locomotor hyperactivation [181].
However, the long-term memory is surprisingly normal in
these complete srGAP3 knockout mice. Moreover, srGAP3
interacts with the actin regulatory scaffold WAVE-1 and
regulates synapse morphogenesis and function. Mice with
disruptedWAVE-1-srGAP3 interaction show decreased spine
density, elevated LTP, and impaired retention of spatial
memory [182]. Notably, srGAP3 knockout mice exhibit

perinatal-onset hydrocephalus, which is possibly due to
cerebral aqueductal occlusion caused by abnormal migration
and differentiation of progenitor cells from the ventricular
region into the corpus callosum [181, 183]. Studies in neurob-
lastoma cells and cultured embryonic neural progenitor cells
have confirmed that srGAP3 negatively regulates neuronal
differentiation andneurite outgrowth [184, 185]. Such effect of
srGAP3 may involve interaction with Brg1 (Brahma-related
gene 1), a modulator of chromatin remodeling enzymes, and
an interplay of other srGAPs such as srGAP2 [186, 187]. Other
functions of srGAP3 include the positioning of commissural
axons of spinal cord neurons, possibly under the regulation
of Slit-Robo signals [188].

4.4. p250GAP. p250GAP, also called RICS or Grit, shows
GAP activity toward inhibition of RhoA, Rac1, and Cdc42.
p250GAP genewas recently found as a candidate gene for sus-
ceptibility to schizophrenia, suggesting its potential impor-
tance in brain development and function [189]. p250GAP
is a target of microRNA 132 (miR132), which downregulates
p250GAP expression and upregulates Rac1 activity in a man-
ner dependent on neuronal activity. This miR132-p250GAP
pathway is required for dendrite development, the hormonal
regulator leptin-induced synaptogenesis, and BDNF-induced
axon branching of RGCs during retinocollicular/tectal map
formation [190–192]. On the other hand, p250GAP interacts
with and is recruited to spines by NMDA receptors, leading
to amodulation of RhoA activity and spinemorphology [193,
194]. Moreover, functions of p250GAP dependent on RhoA
or Cdc42 have been revealed in regulating neurite/axon
growth and neuronal migration of cortical neurons [195–
197]. PX-RICS, a major isoform of p250GAP identified in the
nervous system, also regulates neurite extension [198].

4.5. Rich. Rich (RhoGAP interactingwithCdc42-interacting
protein 4 homologues) protein family contains two mem-
bers, Rich1 and Rich2. Rich1, also called Nadrin (neuron-
associated developmentally regulated protein), shows GAP
activity toward RhoA, Cdc42, or Rac1. In particular, Rich1
interacts with PACSIN (protein kinase C and casein kinase 2
substrate in neurons), a neuronal adaptor protein, to regulate
dendritic spine morphogenesis through modulating Rac1
activity [199]. Different splicing variants of Rich1 have been
identified in neurons and some show inhibitory effects on
NGF-induced neurite outgrowth [200].

Rich2 is a novel interacting protein of Shank3, a crit-
ical postsynaptic scaffolding protein. During LTP, Rich2-
Shank3 interaction is increased in dendritic spines and the
complex participates in exocytosis of AMPA receptor sub-
units through endosomal recycling [201]. Furthermore, Rich2
specifically inactivates Rac1 in neurons and regulates den-
dritic spine morphogenesis [202].

4.6. SH3BP1. An RNAi screening identified SH3BP1 (SH3-
domain binding protein 1) as a downstream mediator of
Sema3E/PlexinD1 signaling [203]. SH3BP1 binds to PlexinD1
receptors at resting state and is released from PlexinD1
complex upon Sema3E stimulation, which in turn leads to
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inactivation of Rac1 and cell collapse [203]. SH3BP1 is also
implicated in Sema3A-mediated growth cone collapse [204].
Moreover, an SH3BP1 splice-variant BARGIN (BGIN), which
possesses a C-terminus polyubiquitin (Ub) binding module,
inactivates Rac1 in a poly-Ub-interaction dependent manner.
BGIN-mediated Rac1 inhibition contributes to diminishing
reactive oxygen species (ROS) in APP-related pathology of
AD [205].

4.7. CrGAP/Vilse. CrossGAP (crGAP), also called Vilse, was
identified as a Rac GAP that mediates Slit-Robo signaling
in axon repulsion in Drosophila [206, 207]. In mammals, it
was recently found that crGAP/Vilse interacts with CNK2
(connector enhancer of KSR-2), a scaffold protein implicated
in ID, and regulates spine morphogenesis of hippocampal
neurons [208].

4.8. MgcRacGAP. MgcRacGAP is a Rac GAP implicated
in cytokineses. MgcRacGAP interacts with kinesin-6, a
microtubule-based motor protein, and regulates F-actin dis-
tribution andmovement of migrating cortical neurons [209].
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