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Abstract

The psychology supporting the use of quantifier words (e.g., “some,” “most,” “more”) is of 

interest to both scientists studying quantity representation (e.g., number, area) and to scientists and 

linguists studying the syntax and semantics of these terms. Understanding quantifiers requires both 

a mastery of the linguistic representations and a connection with cognitive representations of 

quantity. Some words (e.g., “many”) refer to only a single dimension, whereas others, like the 

comparative “more,” refer to comparison by numeric (“more dots”) or nonnumeric dimensions 

(“more goo”). In the present work, we ask 2 questions. First, when do children begin to understand 

the word “more” as used to compare nonnumeric substances and collections of discrete objects? 

Second, what is the underlying psychophysical character of the cognitive representations children 

utilize to verify such sentences? We find that children can understand and verify sentences 

including “more goo” and “more dots” at around 3.3 years—younger than some previous studies 

have suggested—and that children employ the Approximate Number System and an Approximate 

Area System in verification. These systems share a common underlying format (i.e., Gaussian 

representations with scalar variability). The similarity in the age of onset we find for 

understanding “more” in number and area contexts, along with the similar psychophysical 

character we demonstrate for these underlying cognitive representations, suggests that children 

may learn “more” as a domain-neutral comparative term.
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As children acquire language, they come to understand sentences in a way that lets them 

verify whether these sentences are true or false. The verification of a sentence relies not only 

on the child’s ability to linguistically understand the sentence, but also on successfully 

navigating an interface between language and nonlinguistic cognitive systems. For instance, 

verifying the sentence “More of the dots are blue than yellow” might involve engaging both 
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visual attention (to select just the blue and yellow dots) and a representation of number (to 

enumerate and compare them) as well as a linguistic system that composes an understanding 

of the meaning of the sentence from its individual words. Given appropriate experimental 

conditions, studying this language/cognition interface may inform both theories of lexical 

acquisition and lexical meaning, and theories of basic cognition (Booth & Waxman, 2003; 

Lidz, Halberda, Pietroski, & Hunter, 2011; Soja, Carey, & Spelke, 1991).

Here, we ask at what age children begin to understand comparative expressions involving 

the comparative word “more” as applied to continuous extents (e.g., “there is more yellow 

goo than blue goo”) and to collections of countable items (e.g., “there are more yellow dots 

than blue dots”), and we make use of psychophysical methods to characterize the cognitive 

systems children engage to verify such expressions. In studying the learning of the interface 

between the lexical meaning of “more” and the cognitive systems that represent quantity, we 

hope to inform debates in both language acquisition and the nonlinguistic representations of 

quantity.

Quantifier words, such as “some,” “many,” and “most,” play a critical role in our 

communication and reasoning about amounts. A classic case study, and one that has drawn 

both fruitful research and controversy, has been the acquisition of the comparative “more” 

(e.g., “There are more apples than oranges”; Bloom, 1970; Donaldson & Wales, 1970; 

Hohaus & Tiemann, 2009; Townsend, 1974). One point of contention has been whether 

children immediately understand comparative “more” as having the adult meaning—a 

comparative operation that can be applied to any dimension— or whether they might 

initially have a more general (H. H. Clark, 1970) or less general meaning for “more” that is 

incrementally changed throughout development (Gathercole, 1985, 2008). The debate about 

incremental versus immediate learning has featured prominently in theories of lexical 

acquisition and has usually been thought to reveal both what the initial meanings available 

to children are (e.g., are domain-neutral logical operations accessible to young children), and 

what learning strategies they apply to acquiring new words (e.g., if they must go from overly 

specific or general meanings to correct ones; Bowerman, 1978; H. H. Clark, 1970; 

Gathercole, 1985, 2008).

Evidence for the incremental learning account of “more” has come from three sources. First, 

although children produce “more” by 2 years of age (e.g., “More juice”; Bloom, 1970; 

Carter, 1975; Harris, Barrett, Jones, & Brookes, 1988; Mehler & Bever, 1967), many 

researchers have argued that this early meaning is that of an additive, not the comparative 

“more” (e.g., “Some books are on this desk, and more are over there”; Beilin, 1968; 

Gathercole, 2008; Thomas, 2010; Weiner, 1974). In turn, some incremental learning theories 

have suggested that children first learn “more” as having an additive meaning and later on 

supplement it with the comparative form (H. H. Clark, 1970). This evidence has been 

controversial, however, because the two forms of “more” may not be related (Beilin, 1968; 

Weiner, 1974). Indeed, some languages use different words for the additive versus 

comparative “more” (e.g., “joŝ” vs. “viŝe” in Serbo-Croatian; Odic, Pietroski, Hunter, Lidz, 

& Halberda, 2012). As such, evidence for the acquisition of additive “more” may not be 

informative about the development of the comparative form. Here, we focus only on 

comparative uses of “more” in children learning English.
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The second source of evidence for the incremental learning account has been the contrast of 

how children learn “less” from “more.” Donaldson and Balfour (1968), for example, 

demonstrated that young 3-year-olds understand the word “less” to mean “more” and argued 

that it takes an additional stage of development for the adult-like meaning of “less” to 

emerge (see also Palermo, 1973). Other work has suggested that this “less-is-more” effect 

stems from experiment demands and not from children’s use of lexical knowledge (Carey, 

1978). Nevertheless, many theories of “more” development have argued for a stage-like 

development of comparative “more” understanding that only resembles the adult meaning 

after about 4 or 5 years of age (H. H. Clark, 1970; Gathercole, 1985, 2008).

The final source of inquiry for the incremental view, one that has deep connections to the 

psychological literature on magnitude representations, comes from how children understand 

comparative “more” in numeric versus nonnumeric contexts. For example, although some 

words in English, like “many” and “much,” are restricted with regard to what they can 

modify (“I have too many rocks” means that my individual hunks of rock are too numerous, 

whereas “I have too much rock” means that my volume of rock stuff is too great), other 

words, including “most,” “some,” and “more,” are dimension neutral. For example, “more” 

can refer to quantification by number (“I have more apples than you”), by area (“I have 

more land than you”), by normative quantity (“I have more charm than you”), and so on.

Because “more” can be used to modify various dimensions in grammatical sentences (e.g., 

number or area), the meaning of “more” remains equivocal as to the specified dimension, 

and other indicators in the phrase or the context must specify the intended dimension. The 

problem of determining the correct quantity dimension might be made easier by the presence 

of a mass/count-noun distinction, as in English (Barner & Snedeker, 2005; Gathercole, 

1985). Roughly, this distinction is between words that typically refer to individuals— count-

nouns like “dot” and “cow”—and those that typically do not refer to individuals—

massnouns like “goo” and “beef”1 (Bale & Barner, 2009; Gillon, 1992). The mass/count 

distinction is grammatical. Only count-nouns can be pluralized (“cow”/“cows,” “pebble” /

“pebbles”; “beef”/*“beefs,” “gravel”/*“gravels”), and only count-nouns can co-occur with 

numerical determiners (“three cows”/*“three beef”; for evidence that children learn the 

distinction as a syntactic one, see Gordon, 1985). Thus, given that children know the 

syntactic difference between mass- and count-nouns, they could use this knowledge to 

interpret “more” as indicating a numerical dimension when used with count-nouns (e.g., 

“you have more cows than me”) and indicating a nonnumerical dimension when used with 

mass-nouns (e.g., “you have more beef than me”).

Even with a mass/count distinction in place, the development of “more” may be incremental. 

Gathercole (1985, 2008), for example, suggested that children may initially understand 

“more” to apply only to count nouns (thus resembling “many”) and only later revise the 

meaning of “more” to be dimension-neutral and include quantification by nonnumeric 

dimensions (e.g., area). The alternative is that children might learn the meaning of “more” 

1Importantly, not all mass-nouns refer to nonobjects (e.g., “furniture,” “mail”), and children are aware of this from early on (Barner & 
Snedeker, 2005). Thus, while count-nouns surely suggest individuals and a comparison by number, mass-nouns are neutral and may 
depend on world knowledge or context for the selection of the appropriate dimension (Bale & Barner, 2009).
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immediately as a domain-general comparative that can apply equally well to multiple 

dimensions (e.g., number or area). This issue of incremental versus immediate acquisition of 

the meaning of “more” remains contentious in the literature (see Barner & Snedeker, 2005).

Early theories of “more” acquisition were relatively unconcerned about the contrast between 

numeric and continuous stimuli, and almost exclusively tested children with discrete objects 

and count nouns (Beilin, 1968; Donaldson & Wales, 1970; Mehler & Bever, 1967; Weiner, 

1974). The few studies that did use nonnumeric stimuli tested children older than 4 years 

(Hudson, Guthrie, & Santilli, 1982; Palermo, 1973), by which point the dimension-neutral 

form of comparative “more” may have been acquired. This has, at least in part, been the 

inheritance of a literature that focused on children’s understanding of “more” in the context 

of understanding conservation of volume and conservation of number, which tended to 

target children older than age 3 (Piaget, 1965; but see Mehler & Bever, 1967).

An important methodological innovation came in a series of studies that directly pitted 

numerical and continuous dimensions against one another (Barner & Snedeker, 2005, 2006; 

Gathercole, 1985; Huntley-Fenner, 2001). In these studies, children saw displays of items 

that might either typically be described with count-nouns (e.g., candles, feet) or typically be 

described with mass-nouns (e.g., ribbon, candy), and children had to judge which of two 

displays had more of that noun (e.g., “Which piece of paper has more ribbon?” or “Which 

piece of paper has more bows”). Critically, while one option always had more by number, 

the other option always had more by area (e.g., one giant candle versus three small candles). 

This allowed trials to serve as their own controls, as children could demonstrate flexibility in 

quantifying either by mass (e.g., “ribbon”) or by count (e.g., “bows”; Barner & Snedeker, 

2005). Results with this method have sometimes supported an incremental acquisition of 

“more” (Gathercole, 1985) and sometimes supported an immediate acquisition of both 

number and area “more” (Barner & Snedeker, 2005, 2006; Huntley-Fenner, 2001). For 

example, Gathercole (1985) found that children can verify “more” for numerical quantities 

relatively early— by around 3.5— but that they also inappropriately verify all mass-nouns 

by number up until at least age 5 years. And although children can successfully quantify via 

mass for familiar substance-like mass-nouns such as “toothpaste” (Barner & Snedeker, 

2005, 2006), Barner and Snedeker (2006) have argued convincingly that 3-year-olds are 

willing to quantify using number for both familiar and novel mass-nouns (e.g., counting the 

pieces of a novel mass-noun “fem” rather than its mass). Thus, evidence from this method 

remains equivocal between immediate and incremental acquisition.

Evidence that may resolve this issue includes investigating the interface between children’s 

first understanding of “more” and the psychological systems that represent area and number 

information. If children are to learn the meaning of “more” immediately as a domain general 

comparative, they must also immediately learn how the meaning of this word interfaces with 

the cognitive systems that code area and number information. In the present work, we focus 

on how the interface between linguistic meaning and the cognitive systems that represent 

number and area may provide evidence for or against the incremental “more” account. As 

reviewed above, on at least one version of the incremental account (Gathercole, 1985, 2008), 

“more” is initially understood as applying only to count-nouns. At this stage, “more” would 

have the restricted greater-in-number meaning while lacking the adult-like greater-in-
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amount meaning (see Figure 1). This would imply that when children acquire “more,” they 

first learn an interface between the linguistic meaning and the cognitive systems that 

represent number. Only later in development, as incremental learning lets children 

generalize “more” to other dimensions, would the interface be extended to other cognitive 

representations of quantity.

On the alternative immediate account, children’s meaning of “more” is the dimension-

neutral meaning greater-in-amount (see Figure 1). So they must also be capable of 

immediately learning an interface with each of the relevant cognitive representations of 

quantity (e.g., area and number) and eventually rely on a count/mass distinction or 

contextual cues to identify which dimension is intended for any given utterance. One 

challenge for the immediate account is that it makes the problem of learning the interface 

between “more” and cognition potentially difficult: If there is very minimal similarity 

between the cognitive systems that represent, for example, area and number, the children 

would have to somehow immediately form an interface between a domain-neutral meaning 

of more and very disparate quantity representations in cognition. The interface problem is 

simpler, however, if these cognitive systems share some underlying formal character that 

can support a single interface between a domain-neutral meaning of “more” and the 

cognitive representations of, for example, area and number. That is, immediately learning a 

domain-neutral meaning of “more” might be aided if the cognitive representations of area 

and number are related by sharing some underlying character.

Thus, understanding the cognitive representations of area and number becomes a relevant 

source of evidence for understanding the immediate or incremental acquisition of “more.” 

Here, we sought to determine (a) whether there are underlying similarities in the cognitive 

representations of area and number that could support the immediate acquisition of a 

domain-neutral meaning of greater-in-amount, and (b) whether there is developmental 

evidence that children can successfully verify sentences with area and number “more” at 

approximately the same ages. Positive evidence for each of these would serve as evidence in 

favor of an immediate acquisition of a domain-neutral “more.”

Evidence for (a) has been mounting. Recent work has suggested that from very early on, 

infants have access to noisy, approximate representations of various dimensions including 

number (Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004; Izard, Sann, Spelke, & 

Streri, 2009), volume (Huttenlocher, Duffy, & Levine, 2002), and area (Brannon, Lutz, & 

Cordes, 2006; for reviews, see Cantlon, Platt, & Brannon, 2009, and Feigenson, 2007). A 

key aspect of these representations is that they are noisy in that they do not represent these 

continua precisely (i.e., there is always some error surrounding the estimates they generate). 

These representations are hypothesized to be normal (or Gaussian) distributions over a 

mental quantity scale, with the noise, or variability, of the representation increasing with 

larger numbers (i.e., showing scalar variability; Dehaene, 1997; Feigenson et al., 2004). The 

underlying cognitive system purported to support numerical discriminations, the 

Approximate Number System (ANS), demonstrates several key behavioral signatures, chief 

among which is Weber’s law— discrimination of numerosity depends not on the absolute 

difference between the cardinalities of the two sets but on their ratio (Feigenson et al., 

2004). Thus, discriminating 20 from 10 items (a ratio of 2.0) is relatively easy, whereas 
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discriminating 20 from 18 items (a ratio of 1.11) is relatively difficult. This ratio dependence 

and dependency on Weber’s law occur as a natural consequence of Gaussian representations 

with scalar variability— the distance between two activations is greater for larger ratios and 

makes discriminating between two numbers easier. Recent work has also demonstrated that 

the most difficult numerical ratio children can successfully discriminate improves with age 

(Halberda & Feigenson, 2008).

This dependency on Weber’s law seems to characterize infants’ judgments of surface area. 

For example, Brannon et al. (2006) habituated infants to a face of a particular size and then 

presented them with the same face in a different size. Infants could discriminate the change 

if the area ratio between the original and new face was around 3.0 (3:1) or 2.0 (2:1) but not 

if it was more difficult. Furthermore, Huntley-Fenner (2001) demonstrated that children 

around age 4 years could discriminate two piles of sand that differed by a ratio of 1.5 (3:2). 

These findings suggest that area, like number, relies on an approximate representation 

system and that the representational precision of this system, much like in the case of 

number, may improve with age (Cantlon et al., 2009).

However, although the evidence from infancy suggests that both number and area share a 

common representational format (i.e., Gaussian activations with scalar variability), there has 

been no direct evidence showing that young children approximate area, more generally, in 

accordance with Weber’s law. Psychophysicists have long debated whether representations 

of all quantity dimensions obey Weber’s law (Bizo, Chu, Sanabria, & Killeen, 2006; Getty, 

1975), and work with adults has led some authors to suggest that area approximation does 

not occur via a dedicated mechanism, but rather that, when presented with geometrical 

figures, adults fail to estimate area and rely on diameter or aspect-ratio as a proxy for area 

(Chong & Treisman, 2003; Morgan, 2005; Nachmias, 2008; Teghtsoonian, 1965). A similar 

issue exists in the infancy literature, where area discrimination tasks could, in principle, be 

done through many other dimensions, such as perimeter, radius, and so on. Before we can 

conclusively state that there are similarities in the underlying representations of number and 

area we need a direct test of children’s abilities to approximate area with stimuli that can 

disrupt attempts to use alternative dimensions like diameter or aspect-ratio as a proxy for 

area.

Evidence for (b)—that children verify sentences with area or number “more” at 

approximately the same age—is controversial. As reviewed above, Gathercole (1985) found 

that children do not verify via area until age 5 years, whereas Barner and Snedeker (2005) 

also found a number bias in their novel mass-noun conditions, thus suggesting that an 

interface between “more” and number may emerge prior to the interface with area 

representations. However, the methods used in paradigms such as Gathercole (1985) and 

Barner and Snedeker (2005, 2006) are not conclusive, as they require children to resolve a 

conflict between two number and area. If, independent of language, a child’s underlying 

representations of number and area are biased in favor of number (perhaps because number 

processing is easier or more salient, independent of language; see Cordes & Brannon, 2008, 

2009), then children’s competence at understanding “more” as applied to nonnumeric 

stimuli may be overshadowed by their inability to ignore the numbers of items in the scenes. 

In fact, several studies have demonstrated that 6- and 7-month-olds, when habituated to a 
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display of several boxes or circles, will dishabituate when the number of boxes changes but 

not when their total area changes, leading authors to suggest that numerical changes are 

more salient than changes in cumulative area (Cordes & Brannon, 2008, 2009, 2011).2 

Three-year-old children also find quantifying via number easier than area in nonlinguistic 

contexts. Cantlon, Safford, and Brannon (2010) played a match-to-sample game and showed 

children a card with a standard object, and then two cards as choices for the match. 

Critically, neither of the two cards were identical to the standard— one had the same 

number of objects as the standard but was vastly off in area, and the other had the same area 

as the standard but a different number of objects. Preschoolers consistently chose to match 

by number in this language-neutral context, once again demonstrating a preference for 

processing number rather than area in the presence of discrete stimuli (and for evidence that 

even 6-, 8-, and 10-year-old children are swayed by number over cumulative area, see 

Jeong, Levine, & Huttenlocher, 2007). The existence of a nonlinguistic bias toward number 

over area may make a linguistic task that pits number against area particularly difficult for 

young children.

In the present experiment, we asked children to verify sentences with “more” applied to 

either area or number in nonconflicting stimuli. In the area condition (e.g., “is more of the 

goo blue or yellow”), the stimuli clearly resembled a continuous mass of stuff with two 

colors that did not create a conflict between number and area (see Figure 2). In the number 

condition (e.g., “are more of these dots blue or yellow”), the stimuli clearly resembled two 

groups of discrete objects where total surface area was always equated, thereby removing 

any conflict between number and total surface area (see Figure 2). Additionally, the stimuli 

used in the area condition were not geometric figures, thereby promoting surface area as the 

only reliable cue to area. We tested a large group of children ranging from 2 to 4 years of 

age. By alleviating the potential conflicts between number and area representations, we 

sought to determine whether young children successfully verify sentences with both number 

and area “more” at approximately the same age. In addition, we relied on psychophysical 

modeling to determine if the cognitive representations of number and area had a similar 

underlying psychophysical character (i.e., Gaussian with scalar variability) that could 

support a single interface between a domain-neutral understanding of “more” and the 

cognitive representations of number and area. Answering this question is absolutely 

necessary for understanding the interface between the linguistic meaning of “more” and the 

cognitive systems that represent number and area information, and it has yet to be answered 

for nongeometric figures in any age group.

We expect that if children understand “more” as a domain-neutral greater-in-amount, they 

will approximate the relevant quantity that the noun is indicating (number for count-nouns 

and area for mass-nouns in our contexts), and their discrimination performance will adhere 

to the behavioral signatures of the extra-linguistic cognitive systems that represent quantity. 

Unlike previous work, we use psychophysical modeling to test whether each individual child 

understands “more.” If we find that children, at roughly the same age, demonstrate an 

2This may not always be the case, however, as both Clearfield and Mix (2001) and Feigenson and colleagues (Feigenson, Carey, & 
Spelke, 2002) found that when the number of objects is fewer than three and the objects are identical in appearance infants may prefer 
to quantify by area rather than by number (see also Feigenson, 2005).
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understanding of “more” in both mass-noun (area) and count-noun (number) contexts, and 

that performance in both contexts is consistent with children relying on Gaussian 

representations with scalar variability, this would support the proposal that “more” is learned 

as a domain-neutral comparative term from the earliest ages of comprehension and that this 

understanding is empowered by a single domain-neutral interface between the linguistic 

meaning of “more” and the Gaussian representations of approximate area and approximate 

number.

Method

Subjects

Ninety-six children from age 2.0 to age 4.0 (mean age = 3.2) were tested. Of these, 16 had to 

be removed from data analysis for the following reasons: nonnative English speaker (1), 

parental interference (2), refusal to participate (12),3 or technical problems with sound 

recording (1). Of the remaining children, 40 participated in the area task (i.e., testing mass-

noun “more”) and 40 in the number task (i.e., testing count-noun “more”). All children were 

learning English as their first language and were recruited from the greater Baltimore 

community and were tested with methods certified by the Johns Hopkins University Internal 

Review Boards. Children received a small gift for participating.

Materials

For the area task, the materials consisted of 16 color “goo” images each printed on a 8.5 X 

11" sheet of paper that was subsequently laminated (see Figure 2). The images were selected 

from a larger databank of two-colored, circular blob-like images that had been drawn by 

hand to instantiate a wide range of ratios. To calculate the ratio (i.e., difficulty) between the 

two colored areas in each image we created a program that counted the number of pixels of 

each color in each image; ratios were calculated by dividing the larger area by the smaller 

(e.g., a ratio of 2.0 had twice as many pixels in the larger color area). We chose 16 images 

from the larger databank that were grouped into four approximate ratio bins with four 

images in each bin: 1.22, 1.85, 2.5, and 4.2. To make the “goo” images more interesting, we 

varied the colors used on each trial. Children needed only to point during the task and were 

not required to know the names of the colors. Yellow, blue, red, orange, purple, and green 

were used randomly throughout, and all colors occurred equally often.

For the number task, we took the same goo images and used a custom-made program to 

extract individual dots from them (see Figure 2). This guaranteed that the relative spread of 

the two collections was matched to the spread in the goo images. Additionally, we made the 

ratio of the dots exactly the same as the ratio of the goo images (e.g., a 2.5 ratio on a blue 

and yellow goo card was converted into, for example, a card with 25 blue dots and 10 

yellow dots). For all dots cards, the cumulative area of the two sets was identical. For half of 

the cards, the larger set of dots appeared in the smaller area of the blob, thereby ensuring 

3In all but two cases, these children were younger than 2.5 and did not appear to understand the game—in most cases the child simply 
did not respond to our requests. We take this as evidence that these children did not understand the meaning of the comparative 
“more.”
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that neither cumulative area, nor the area envelope surrounding the dots, nor density of dots 

could serve as a stable correlate to number.

Procedure

Before the experiment, parents signed a consent form and filled out a version of the 

McArthur-Bates III vocabulary inventory (Fenson et al., 2007).

Children were brought into the room and played a short number titration warm-up game 

(“What’s on This Card”; see Le Corre & Carey, 2007; Halberda, Taing, & Lidz, 2008) with 

the experimenter, which involved counting pictures of animals on cards. After number 

titration, the experimenter said that she had some pictures of “goo” to show the child or 

some pictures of “dots” to show the child. The parents remained with the child at all times 

but were seated so that they could not see the cards presented.

In the area task, each trial began with the experimenter putting a single “goo” card on the 

table and saying, “Look at this goo. Some of the goo is blue, and some of the goo is green. 

Is more of the goo blue or green?” (Italics indicate increased prosodic stress on those 

words.) While naming the color, the experimenter ran her fingers over the color in a 

smudging motion in case the child did not know the color name. Children were allowed to 

respond by either pointing or saying the name of the color.

In the number task, each trial began with the experimenter putting a single dots card on the 

table and saying, “Look at these dots. Some of the dots are blue, and some of the dots are 

green. Are more of the dots blue or green?” While naming the colors, the experimenter 

would touch individual dots to make sure children knew which color was being referred to. 

Children were not allowed to count the dots and, if they attempted to, the experimenter 

removed the card and reminded the child that he or she should simply give the best guess 

without counting; all children complied with the instruction not to count.

Cards were presented in one of two possible orders with the ratio presented varying 

pseudorandomly from trial to trial. Because the dots cards were made from the goo cards, 

the order of the cards was identical across the two conditions. Whether the larger color was 

said first or second in the sentence was counterbalanced across trials. Every trial ended with 

neutral-positive feedback from the experimenter. The entire experiment was digitally audio–

video recorded and was later coded for whether the child indicated the correct or incorrect 

color.

Results

We first analyzed the data by averaging performance across all 16 trials (i.e., ignoring ratio). 

Across all children, the average accuracy on the area task was 63% (SE = 3.17%), which 

was significantly above chance, t(39) = 4.01, p < .01, indicating that the children, as a group, 

succeeded on the task. Across all children, the accuracy on the number task was 60% (SE = 

2.98%), which was also significantly above chance, t(39) = 3.352, p < .01. There was no 

significant difference in accuracy between the two tasks, t(78)= −0.618, p = .54.
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We computed a stepwise linear regression with accuracy as the dependent variable and age, 

task, vocabulary, what’s-on-this-card performance, and order as the independent variables 

(IVs). Age was the only IV that significantly predicted the dependent variable (β = 0.450, p 

< .01, r2 = 0.20; see Figure 3), that is, once age was entered as an IV, none of the other IVs 

were significant predictors of average performance. Examining the scatter plot, it appears 

that children can perform above chance on the area and the number task starting between the 

ages of 3.3 and 3.5.

This method of analysis—relying on overall percentage correct—is standard in the word-

learning literature (e.g., Barner & Snedeker, 2006). However, a more sensitive measure of 

children’s word knowledge is possible when we consider the psychophysics of the 

underlying area and number representations. We next used psychophysical modeling to 

determine which individual children succeeded at the task and whether their performance 

was consistent with Weber’s law.

We predicted that if children understand “more” as greater-in-amount, children would rely 

on a cognitive system that encodes the approximate area or approximate number on each 

trial (depending on the syntax and stimulus context), and that discrimination performance 

would be consistent with Weber’s law in the following sense: Performance should be ratio 

dependent and well modeled by a Gaussian cumulative density function (see modeling 

details below; Halberda & Feigenson, 2008; Lidz et al., 2011; Pica, Lemer, Izard, & 

Dehaene, 2004).

For each child, performance was grouped into four ratio bins, with four trials falling into 

each of these bins ranging from harder trials (ratio bin = 1.22) to easier trials (ratio bin = 

4.2).4 Performance was fit by a standard psychophysical model of Weber’s law (Barth et al., 

2006; Green & Swets, 1988; Halberda & Feigenson, 2008; Pica et al., 2004; Pietroski, Lidz, 

Hunter, & Halberda, 2009). We have previously applied this model to adult area and number 

perception with good results (Odic et al., 2012):

The model assumes that the underlying representations of area or number are distributed 

along a continuum of Gaussian random variables (with one value for the trial having a mean 

of n1 and the other having a mean of n2). An important implication of this model is that the 

two different numbers (or areas) on each trial will often have overlapping representations. In 

other words, as the means of the two distributions become increasingly similar (i.e., as the 

numbers become closer and the ratio moves closer to a ratio of 1.0), their Gaussian 

representations should overlap more and participants should have a more difficult time 

4The data were grouped because each ratio was presented only once, but the model expects accuracy for each ratio to range between 
50% and 100%. The results are identical without binning, although the r2 values are much lower.
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determining which is larger, thus resulting in decreasing accuracy at the task as a function of 

ratio—in accordance with Weber’s law.

This model has only a single free parameter—the Weber fraction (w)—which indicates the 

amount of noise in the underlying Gaussian representations (i.e., the standard deviation of 

the n1 and n2 Gaussian representations where SDn = w X n). Larger w values indicate higher 

representational noise and, thus, poorer discrimination across ratios (i.e., lower Weber 

fractions indicate better discrimination performance). If a child is successfully 

discriminating in a manner consistent with Weber’s law, the model will determine the most 

plausible w for the child. If a child is not successfully discriminating in a manner consistent 

with Weber’s law, the model will fail to find a value for w.

In the area task, the model returned a w value for 22/40 children with an average w of 0.62 

(SE = 0.11; approx. 3:2 ratio), and in the number task the model returned a w value for 19/40 

children with an average w of 0.63 (SE = 0.12; approx. 3:2 ratio). For the remaining “nonfit” 

children, the model could not settle on a minimum least-squares value and, thus, could not 

provide a w value that correctly fit the data. Figures 4 and 5 display the average percentage 

correct in each ratio bin for the children who were successfully fit by the model and for 

those who were not. It is clear that children who could not be fit simply guessed at every 

ratio: Not only was there no improvement with ratio, but also the highest percentage correct 

amongst the nonfit children was at chance levels given a binomial test with 16 trials (best 

nonfitter in area was at 63%, and best nonfitter in number was at 57%; above-chance is 

around 69%). For the children who could be fit, the smooth curve is the least squares value 

for the cumulative density function for the group. Agreement between the psychophysical 

model and children’s performance was quite good for both area (r2 = .92) and for number 

( r2 = .82), suggesting that children did rely on the ANS and on approximate representations 

of area that are consistent with Weber’s law (i.e., an Approximate Area System, or AAS). 

The good fit also confirms that these systems share an underlying Gaussian scalar variability 

format (cf. Cantlon et al., 2009). Further validating the performance on the number task, the 

least-squares value for w for the group (w = .63) is in agreement with previously 

documented developmental trends for this age group (Halberda & Feigenson, 2008; Piazza 

et al., 2010) where no understanding of the word “more” was required. There are no 

previously documented developmental trends for area discrimination for these ages as our 

study is the first to test children’s abilities with blob-like stimuli.

Even more remarkably, the distributions of w scores for area and number are extremely 

similar (see Figure 6). In the quantity representation literature, some have argued that 

similarity in observed w scores in two tasks suggests quite strongly that a shared 

representational system is responsible for the similar performance (Cantlon et al., 2009; 

Meck & Church, 1983). Weber fractions (w) have been found for many discrimination tasks 

and can range from very poor performance (e.g., w = 1 in 6-month-olds for number and area; 

Brannon et al., 2006) to very accurate performance (w = .03 in adults for line length; Coren, 

Ward, & Enns, 1994)—a difference of nearly two orders of magnitude. With this in mind, it 

is particularly noteworthy that the observed w scores in our area and number tasks were so 

similar. This is consistent with the proposal that children initially learn “more” as a domain-

neutral comparative term that, in the case of area and number, maps to a single shared 
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approximation system or to a system that shares a common psychophysical character for 

area and number.5

Next, we turn to the question of the immediate acquisition of a domain-neutral “more.” The 

average age of children who were fit in the area task was 3.4 (SE = 0.09) and in the number 

task was 3.5 (SE = 0.10) suggesting that, by at least age 3.5 years, children understand 

“more” in both count- and mass-noun contexts. Additionally, the average age of children 

who were successfully fit was significantly higher than those who could not be fit for both 

area, t(38) = −3.35, p < .01, and number, t(38) = −3.27, p < .01. The similar age of success 

in area and number contexts presents difficulty for the incremental acquisition of “more” (cf. 

Gathercole, 1985).

The presence of children who could not be fit by the model provides a convenient control 

for methodological concerns about our tasks. For example, it could be argued that, because 

even infants can make discriminations of area (Brannon et al., 2006) and number of items 

(Izard et al., 2009) in visual displays—without language—it is possible that our stimuli were 

such that children of any age would simply settle into choosing the greater area or number 

without having to understand the word “more” at all. In fact, young children in the area and 

number tasks performed at chance and failed to choose the greater area or number. If it were 

solely a default behavior or a bias to choose the greater quantity— observable in young 

infants—it would be mysterious why younger children in our task would perform at chance 

and why the estimated age of acquisition of understanding “more” would be so similar in 

our tasks and other reported studies (e.g., Barner & Snedeker, 2006; Beilin, 1968; Weiner, 

1974).

Our final question concerns developmental changes in the acuity of the two approximate 

systems. Our age range afforded us the opportunity to ask whether the precision of area and 

number representations improves during the late preschool years. In fact, area w for children 

who were successfully fit by the model improved (i.e., went down) with age as revealed by a 

linear regression, r(21) = −0.53, p < .05; see Figure 6), but a linear regression with age and 

number w did not reach significance, r(18) = −0.34, p = .16; see Figure 6). The 

improvements in area w are most likely a result of developmental improvements in the 

acuity of the AAS rather than any change in children’s understanding of the word “more,” 

and the nonsignificant result for number w is likely a function of power (n = 19) as other 

studies that did not involve linguistic contrasts have demonstrated developmental 

improvements in w for number across these same ages (Halberda & Feigenson, 2008; Piazza 

et al., 2010).

5For our purposes here—arguing that children learn the comparative “more” as a domain-neutral comparative that can interface with 
either number or area—it is enough that successful performance in both the number and area tasks was well fit by the psychophysical 
model of Weber’s law. But taking a broader view, there are other dimensions besides number and area that will be of interest for 
investigating the acquisition of “more,” and not all of these will share the same Weber fraction. Just so long as these other systems 
share a common abstract format with number and area (e.g., Gaussian scalar variability; see Discussion) the interface between “more” 
and these dimensions will remain transparent. We note the similarity in Weber fractions for area and number in the present article 
because many authors are currently interested in the possibility that dimensions like time, space, and number may rely on a single, 
more general Analog Magnitude System that may have a single common Weber fraction (Bueti & Walsh, 2009; Dehaene & Brannon, 
2011). Our results are consistent with this possibility, though we caution that any such shared system would still require 
representations that allow one to distinguish, for example, number thoughts from area thoughts.
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Discussion

Theories on the acquisition of comparative “more” fall into two categories: some, like 

Gathercole (1985), advocate the incremental learning account, where the child’s earliest 

understanding of “more” is consistent with meaning greater-in-number and only later 

enriched to include an understanding of other dimensions (e.g., area) that generalizes to 

greater-in-amount; others, like Barner and Snedeker (2005) and Mehler and Bever (1967), 

have argued that children immediately understand “more” to mean greater-in-amount. We 

have highlighted an important challenge for the latter (immediate, domain-neutral) account 

that has not been the focus of previous investigation: namely, in order to use and understand 

“more” across various contexts (e.g., area and number), children must also master an 

interface between the meaning of “more” and the various cognitive representations of 

quantity. We noted that if each quantity representation had a different underlying format, 

learning each of these interfaces immediately would be unlikely. Here, we sought to 

determine (a) whether there are underlying similarities in the cognitive representations of 

area and number that could support the immediate acquisition of a domain-neutral meaning 

of greater-in-amount, and (b) whether there is developmental evidence that children can 

successfully verify sentences with area and number “more” at approximately the same ages. 

Positive evidence for each of these would serve as evidence in favor of an immediate 

acquisition of a domain-neutral “more.” The present experiment provides support for the 

immediate acquisition of a domain-neutral “more.” First, we found a close relationship 

between representations of number and area: We found that both representations obey 

Weber’s law and are, thus, represented as mental magnitudes with Gaussian tuning and 

scalar variability. This was known for representations of approximate number (Halberda & 

Feigenson, 2008) and not entirely surprising given suggestions about area (e.g., Brannon et 

al., 2009), though it had yet to be demonstrated for amorphous stimuli in children. We also 

found that area representations, like number representations (Halberda & Feigenson, 2008; 

Piazza et al., 2010), improve in acuity over the preschool years. Perhaps of even greater 

note, we found that children had very similar Weber fractions (w) for number and area, 

suggesting the possibility of a shared underlying system. This similarity between number 

and area representations supports the possibility that children might immediately learn a 

domain-neutral “more” meaning greater-in-amount as it may support a single interface 

between the meaning of “more” and the cognitive systems that represent number and area.

Next, we showed that children begin to understand “more” as applied to both count- and 

mass-nouns (and, in the context of our experiments, number and area) at the same ages (3.3 

years). Thus, not only do children have the kind of representations that would support the 

learning of a dimension-neutral “more,” but we also found evidence that they immediately 

understand “more” as applying to either number or area. Our estimate of 3.3 years as the age 

of first understanding number and area “more” is consistent with the findings of Barner and 

Snedeker (2006) and contrasts with those of Gathercole (1985), and suggests that children of 

this age know that “more” can be applied to both numeric and nonnumeric stimuli. 

Children’s success with our stimuli that remove any conflict between number and area also 

suggests that some of the number bias in the Gathercole (1985) study and in the Barner and 

Snedeker (2006) novel-noun condition may have been due to a general cognitive bias toward 
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number over area whenever these dimensions are placed in conflict (i.e., this number bias 

may be independent of children’s language understanding). This too is consistent with an 

immediate acquisition of a domain-neutral “more” meaning greater-in-amount.

Our data also have implications for word learning accounts more generally. First, 

incremental and immediate learning accounts of word learning have been prevalent in the 

acquisition of nouns (Bowerman, 1978; E. V. Clark, 1973), number words (Carey, 2009; 

Wynn, 1992), and quantifiers (H. H. Clark, 1970). This debate has often focused on learning 

strategies used by children and on identifying the basic components of lexical meaning 

available to children early on (Gathercole, 2008). In the context of our findings, evidence 

suggests that children are capable of learning the comparative “more” without having to first 

understand it as having a more general (e.g., H. H. Clark, 1970) or a more specific meaning 

(cf. Gathercole, 1985). Furthermore, our findings suggest that the comparative operation 

necessary for the domain-neutral lexical meaning of “more” is available to children early on 

and that the interface between this lexical meaning and cognition may be simple for children 

to resolve.

Although our work focused on the relationship between the lexical meaning of “more” and 

representations of area and number, it is clear that the comparative “more” can refer to many 

other dimensions (e.g., time, happiness). Work in psychophysics has demonstrated that not 

all dimensions obey scalar variability (e.g., Bizo, Chu, Sanabria, & Killeen, 2006; Grondin, 

2012) and, given this difference, we should not expect the interface to be as easily 

generalizable to these dimensions as to those that do share a common representational 

format. Future work should, therefore, compare how children learn the interface between the 

comparative “more” and these dimensions. At the same time, some work has shown that 

some dimensions are, perhaps surprisingly, represented as Gaussian estimations with scalar 

variability (e.g., happiness, gender, and facial expression; de Fockert & Wolfenstein, 2009; 

Haberman & Whitney, 2007). One possibility is that we come to understand most scales and 

dimensions through the use of the magnitude systems, which themselves obey scalar 

variability (Bueti & Walsh, 2009; Lourenco & Longo, 2010).

Finally, although we identified early-to mid-3s as the age of acquisition for the comparative 

“more,” many corpus studies have shown that children begin producing the word “more” 

much earlier (Carter, 1975; Harris et al., 1988). As discussed in the introduction, these 

studies have shown that children produce the additive form of “more” (e.g., “More juice!”), 

and not the comparative form. Nevertheless, this raises the possibility that the two forms 

may be related and that children first learn “more” in some limited contexts, and only extend 

it to the context we tested much later on. We doubt this possibility for two reasons. First, as 

discussed earlier, the two forms of “more” are unlikely to be tightly related given both 

semantic (Thomas, 2010) and cross-linguistic evidence (Odic et al., 2012). Second, our age 

of acquisition for the count-noun comparative “more” agrees with previous findings in the 

literature that have used different sentence frames and different contexts (Barner & 

Snedeker, 2006; Beilin, 1968; Gathercole, 1985, 2008; Weiner, 1974). Thus, it is likely that 

the two forms of “more” are largely unrelated and that children could not perform our task 

because they simply had no meaning for the “more” in the comparative position.
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One important future direction is to determine the relationship between approximate 

representations of area, number, and other quantities. For example, does the similarity 

between number and area discrimination performance reflect two distinct cognitive systems 

that are similar in format or a single unified magnitude system (cf. Bueti & Walsh, 2009; 

Cantlon et al., 2009)? At present, our data are consistent with either account, although the 

highly similar Weber fraction has, in the past, been used as evidence for a single system 

(e.g., Meck & Church, 1983). Likewise, the similar growth pattern in the acuity of these 

systems may be used as evidence for their identity, although we stress that changes in acuity 

may be either due to changes of the representation of number and area or due to more 

peripheral factors, like changes in attention, working memory span, and so on (see Halberda 

& Feigenson, 2008).

More generally, our findings highlight the potential value of studying the interface between 

linguistic meanings and the extra-linguistic cognitive representations used during 

verifications of these meanings. The study of such an interface can shed important light on 

our interpretations of both psycholinguistic data (e.g., the meaning and acquisition of 

quantifiers, comparatives, gradable adjectives) and on cognitive theories of quantity 

representation and selection (e.g., developmental changes in the precision of quantity 

representations). Although linguistics and psychology remain independent disciplines, new 

questions may arise and become answerable in light of evidence for how language and 

psychology interface with each other.
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Figure 1. 
Two prominent theories of “more” acquisition.
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Figure 2. 
On the top are four examples of the “dots” cards, and on the bottom are four examples of the 

“goo” cards.
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Figure 3. 
The average performance across all 16 cards over age for both the dots and area task. The 

pattern shows a clear linear increase in performance with age and a high degree of overlap 

between the two tasks.
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Figure 4. 
The average performance across the four ratios for children in the area task whose data 

could be fit by the Weber’s law model and those who could not. Error bars are standard 

error of the mean.
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Figure 5. 
The average performance across the four ratios for children in the number task whose data 

could be fit by the Weber’s law model and those who could not. Error bars are standard 

error of the mean.
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Figure 6. 
The fit Weber fraction of each fitted child over age for the area and number task. As can be 

seen, there is a clear downward trend for lower Weber fractions (i.e., better area 

discrimination) with age.
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