
MAGE: Matching Approximate Patterns in Richly-Attributed
Graphs

Robert Pienta*, Acar Tamersoy*, Hanghang Tong†, and Duen Horng Chau*

Robert Pienta: pientars@gatech.edu; Acar Tamersoy: tamersoy@gatech.edu; Hanghang Tong: polo@gatech.edu; Duen
Horng Chau: thanghang.tong@gmail.com
*College of Computing, Georgia Institute of Technology, Atlanta, GA

†Department of Computer Science, Arizona Sate University, Phoenix, AZ

Abstract

Given a large graph with millions of nodes and edges, say a social network where both its nodes

and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find subgraphs of

interest (e.g., a ring of businessmen with strong ties)? We present MAGE, a scalable, multicore

subgraph matching approach that supports expressive queries over large, richly-attributed graphs.

Our major contributions include: (1) MAGE supports graphs with both node and edge attributes

(most existing approaches handle either one, but not both); (2) it supports expressive queries,

allowing multiple attributes on an edge, wildcards as attribute values (i.e., match any permissible

values), and attributes with continuous values; and (3) it is scalable, supporting graphs with

several hundred million edges. We demonstrate MAGE's effectiveness and scalability via

extensive experiments on large real and synthetic graphs, such as a Google+ social network with

460 million edges.

I. Introduction

Graphs are a convenient and ubiquitous means to represent many naturally occurring

patterns. Rich with information, many graphs contain subgraph patterns that capture

interesting dynamics among entities, but because of the size and complexity of these graphs,

spotting such interesting patterns can be a difficult task. An analyst may want to analyze an

intelligence network of various entities (e.g., people or events) connected with edges

denoting gathered intelligence (as in Figure 1). The analyst will have some ideas about the

structure of criminal behavior which drive the use of subgraph matching techniques to find

potentially dangerous individuals.

A Motivating Example—In Figure 1, the node attributes are the entity types, which can

be a Person (orange circle), an Event (green square), or a Location (purple triangle), and the

edge attributes are the confidence of intelligence for a pair of entities, which can be

Confirmed (dotted line), Suspected (wavy line), and Unlikely (line with pluses). The graph

labeled “Query ” shows a query that our analyst may issue, which looks for two indirectly

related people, who appeared at the same location (thus, “confirmed” to be linked to a

location), and were suspected of having attended an event together.

HHS Public Access
Author manuscript
Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

Published in final edited form as:
Proc IEEE Int Conf Big Data. 2014 October ; 2014: 585–590. doi:10.1109/BigData.2014.7004278.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

One challenge here is that the analyst might not know what values to assign to some of the

nodes and edges in the query; so instead of guessing or assigning an arbitrary value, the

analyst may want to assign a node or an edge with a wildcard attribute value, a feature that

would allow the analyst to explore different hypotheses. However, it is not supported by

many existing subgraph matching techniques.

The existing subgraph matching approaches that return only exact matches (if any) will not

help the analyst solve complex tasks where attribute uncertainty is present. For the query in

Figure 1, the system should be able to return a match filling in the wildcard, e.g., the person

entity corresponding to node 3 in the result. Even with the wildcard, the exact specified

structure may not exist in in the graph; under this scenario the system would return a “best-

effort” match or approximation of the query. By generating both exact and near matches, we

can provide the user with the top-k most closely matched subgraphs even if the initial query

was not exactly present in the input graph.

Limitations of Existing Techniques—A representative set of early work on inexact

pattern matching on graphs is G-Ray by Tong et al. [1], TALE by Tian and Patel [2], and

SIGMA by Mongioví et al. [3]. More recently, Khan et al. proposed the NeMa approach [4],

Fan et al. proposed a set of incremental pattern matching algorithms [5], [6] and the

TopKDiv approach [7], and Cheng et al. proposed the kGPM framework [8]. The main

limitations of these techniques are that they either (i) do not support edge attributes, (ii) need

computationally-heavy indexes precomputed for the input graph, or (iii) return results that

can significantly deviate from the query pattern, which may be difficult for users to

comprehend.

Our Contributions—We present MAGE, short for Multi-Attribute Graph Engine, a

pattern matching system for graphs with node and edge attributes that overcomes many of

the challenges and limitations outlined above. It produces top-k closest subgraph matches for

a variety of attributed input graphs. Our experimental evaluation shows that MAGE is a

scalable tool that works for graphs from different domains, from intelligence applications to

understanding the patterns of movie success. MAGE's major contributions include:

1. Support for node and edge attributes, expanding the effectiveness on real world

data and increasing the types of questions that can be answered through graph

querying.

2. Support for flexible queries with rich attributes, supporting queries with

wildcards and multiple categorical attributes.

3. A fast & scalable multicore algorithm, handling real and synthetic graphs with

hundreds of millions of edges, using random walk with restart (RWR) steady-state

probabilities as proximity scores between nodes to determine how well a subgraph

matches the query.

II. Problem Definition and Notation

Here, we formalize the subgraph matching problem that MAGE aims to solve. In its general

form, we are given two graphs and and we wish to know if contains a subgraph that is

Pienta et al. Page 2

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

equivalent to . Table I describes the symbols used in the paper. This problem is often

referred to as the subgraph isomorphism problem. Unfortunately, this problem is NP-

Complete [9], making all general solutions computationally infeasible for even modest sized

graphs. The problem we tackle is subtly different than the subgraph isomorphism problem

and can be formally stated as follows:

Given: (i) A graph whose nodes and edges have categorical attributes, (ii) a query graph

showing the desirable configuration of nodes connected with edges, each assigned one or

more attribute values (or a wildcard), and (iii) the number of desired matching subgraphs k.

Find: k matching subgraphs i (i = 1, …, k) that match query graph as closely as possible,

according to a goodness metric (which we cover in the Methodology section).

A. Preliminary: Querying on Node Attributes

Several approaches have been proposed to subgraph isomorphism problem. The work by

Tong et al. proposes the G-Ray algorithm [1], which is a best-effort inexact subgraph

matching approach that relies on RWR or personalized page rank values as the selection

criterion when constructing query results. This approach carefully uses nodes as restarts

when calculating the RWR values. We leverage this approach, but considerably modify it to

allow multiple attributes as restarts in the RWR approximations (see Section IV-D).

Approximate RWR is still a computationally expensive step that must be performed often.

In Section IV-A, we show our approach to reducing query latency by decreasing RWR

calculation times.

While G-Ray is an integral facet of MAGE, the limitations of the original algorithm are far

too constrictive. The G-Ray algorithm is inadequate in supporting expressive querying as it

does not support attributed edges, unknown query attributes, multiple attributes, and it incurs

sizable query latencies on large graphs. We address these issues with MAGE. Using our

linegraph augmentation approach, we support node and edge attributes with limited

information by offering, wildcards and multiple attributes. To address the speed and

scalability we utilize an approximate parallel RWR technique to quickly calculate the data

needed to find good candidate matches.

III. Mage Overview

In order to cover both edge and node attributes in we use an edge-augmentation method

based on intuition from the linegraph transformation [10]. Under the canonical linegraph

transformation, each vertex in the line graph of is an edge from . Two vertices in are

connected if and only if their corresponding edges (from) share a common endpoint in .

Figure 2 demonstrates an example transformation with the key linegraph transformation

occurring in (c).

By making use of the line-graph transformation on the starting graph , we can produce an

attributed line graph where each of the edges in is represented by a node in . Rather

than working with both and , we create which combines aspects of both and . We

insert a new edge-node on each edge of such that it is connected to the same vertices in

Pienta et al. Page 3

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that it connected to as an edge of . This process is illustrated with a toy graph in Figure 2d,

where the edge-nodes are the square nodes splitting each edge of . Under this formulation,

no two nodes in will be directly connected in . The same holds for all new edge-nodes in

. The newly created is bipartite between the set of original nodes and the set of new

edge-nodes; a fact we will use later in approach.

A. MAGE Subroutines

We divide the process of discovering matching subgraphs into several key steps: (i) finding

the initial nodes to start our localized search, then (ii) finding nearby nodes that fulfill or

approximate the desired attributes and (iii) approximating the structure of the edges

interconnecting nodes from steps i and ii.

Detect-Candidate—The first node of each query approximation is located in the graph

using Detect-Candidate in line 3 of Algorithm 3. This routine leverages attribute filtering,

but primarily subgraph centerpieces suggested in [11]. Detect-Candidate selects the most

central node of the query first to help narrow the scope of the candidate search.

Local-Search—Given a partially fulfilled set of query nodes, Local-Search (line 7 of

Algorithm 3) will locate a node in corresponding to an unfulfilled node from . We

generate heuristic scores (using RWR values) to pick the best candidate nodes. This

approach will select nodes closer to the approximated query, keeping the selected nodes in

the local area of the current approximated nodes.

Linker—The Linker, line 8 in Algorithm 3, approximates the query's edges in the

dictionary graph. If the two selected nodes of the real graph are connected the edge is

returned; otherwise, the shortest path is used as an approximation of the edge. This shortest

path may introduce additional nodes in order to complete the pattern.

IV. Methodology

A. Random Walk with Restart (RWR)

MAGE uses proximity scores between nodes in data graph and query graph to construct

a subgraph i approximating . Specifically, the proximity between nodes i and j in a graph

is the RWR value when node i is used as the restart point. The number of RWR values

needed to find a matching subgraph is significant, because we use them to rank possible

candidate nodes. Calculating RWR values is the most expensive step MAGE. Let F̂′ be our

RWR values (see Equation 1). They are used to rank the goodness of nearby candidate

nodes; unselected nodes that are near to the partially constructed query receiver higher RWR

values and are therefore more likely to be chosen.

We have implemented a parallelized, sparse, power method that allows the fast calculation

of RWR vectors. The canonical power-iteration method is a common approach to determine

the RWR values (see Equation 1). Decompose row-wise into p submatrices each with m/p

rows (call them 1 … p). Each i is zero everywhere except its m/p rows such that they sum

to , see Equation (2).

Pienta et al. Page 4

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(1)

(2)

(3)

For each node considered as a restart location the vector Ŷ is set to the random restart

probability 1 − α. Now using Equation (3) each submatrix-vector multiplication can be

calculated separately in parallel and the results aggregated. Each iteration Fk+1 is normalized

to unit length and used in the next iteration. In hopes to maximize memory bandwidth

during the calculation, we synchronize the parallel computation at the end of each iteration

rather than during it. We recommend choosing p as the number of available cores.

B. Primary Subsystems

Detect-Candidate and Local-Search—Both detecting the initial candidates and

searching for nearby candidates follow the same general approach in our algorithm. The

equation selects new nodes heuristically based on their RWR scores, higher scores means a

higher chance of being selected. Given two nodes from the Linker computes a path

connecting them. The implementation is an efficient modification of Prim's algorithm. We

consider the “best path” as the path connecting the two nodes with largest RWR value when

a direct link–one unused in the approximate solution–is not available. This score is the sum

of RWR values over the whole length of the path.

C. Supporting Edge Attributes

In order to support edge attributes, we have chosen to embed an edge-node in each edge of

. The Linegraph-Augmentation algorithm iterates over all original edges of and

appends new edge-nodes to . The algorithm operates in O(m) where m is the number of

edges from . This is precomputed a single time before querying begins and is then used as

the main input graph for querying.

This transformation creates , a (m + n) × (m + n) adjacency matrix. Expanding both

dimensions of our adjacency matrix by a factor of m may seem expensive in memory usage;

however, is guaranteed to be bipartite between the original nodes and the new edge-

nodes. Because only original nodes can be connected to edge-nodes, we have only the m × n

and n × m regions of our augmented matrix that can contain values. We can derive the

maximum matrix density, ρmax, as follows: ρmax = 2mn/(m2 + 2mn + n2) if the graph is

undirected only mn edges need to be stored. Because we use sparse data structures, the

memory for this augmentation grows at a linear rate with the number of edges.

The matched subgraph results produced by MAGE are embedded with edge-nodes and must

be converted to the original graph format. The linegraph-reverter converts the edge-nodes

back to edges from as the mapping is one-to-one.

Pienta et al. Page 5

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

D. Supporting Multiple Attributes and Wildcards

The categorical attribute matrix is an n × t sparse matrix where there are t distinct attribute

categories for each of n nodes. Each row of represents a node while each column

represents a single categorical variable. In general is sparse so it utilizes a minor amount

of memory. We support multiple attributes on each node and edge, and allow them to be

selected via logical OR. The attributes are leveraged during the attribute-centric RWR

carried out in line 5 of Procedure 4. By serving as restart sources during the RWR

calculations, the correctly attributed nodes are given larger proximity scores and therefore

are more likely to be selected as a result. Wilcards allow MAGE to effectively ignore the

attribute and use the most structurally coherent node or edge during approximation. To

support the wildcard attribute we have created a universal attribute applied to all nodes and

edges. The function labeled Wildcard-Attribute-Inserter on line 4 of Procedure 4 works

by inserting a new and distinct attribute node in the attribute matrix A that points to all

nodes. When there are multiple choices to fulfill a wildcard the one with largest RWR value

is selected, otherwise ties are broken by random selection.

V. Evaluation

We evaluated multiple important aspects of MAGE, such as speed, memory usage, and

effectiveness on both large real and synthetic graph datasets, e.g., 460 million edge Google+

graph [12], [13]. Experimenting on real graphs allows us to better understand how MAGE

works in practice, while experimenting on synthetic ones let us carefully control

experimental parameters and observe MAGE's responses. Besides investigating how

MAGE's speed scale with the graph size, we also study how supporting wildcards and

multiple attributes in the graph queries would affect speed. All tests were run on Linux using

an Intel Core i5-4670K (3.8 GHz) and 32GB of RAM.

A. Graph Datasets

Real Graphs—We have examined the scalability of our system using the attributed social

network from Google+ [12], [13]. The dataset consists of four snapshots (ranging in size

from 4.6M nodes, 47M edges to 28M nodes, 460M edges) each taken at different months of

2011. In order to test the practicality of MAGE, we also queried an undirected graph

constructed out more than 20,000 of the Rotten Tomatoes (RT) movies in Figure 6. We used

RT movie similarity to form the edges; however, MAGE operates on categorical attributes,

so continuous fields must be encoded categorically by any approach to discretize continuous

fields; we used quartiles.

Synthetic graphs—We used stochastically generated Erdős-Rényi (ER) random graphs

(parameterized by the number of nodes n and edges m) and Watts-Strogatz (WS) graphs

(parameterized by the number of nodes n, the node degree k, and the rewiring probability p)

[14], [15]. All WS graphs used p = .01 rewiring chance. Their attributes were chosen

uniformly at random.

Pienta et al. Page 6

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B. Scalability and Speed

RWR requires two parameters; the fly-out or restart-probability and the number of iterations,

which we set to 0.15 and 10 respectively. MAGE performs queries in linear time with the

number of edges in each graph. For both synthetic graph types, the increase in query time is

linear in the number of edges, suggesting good scalability. Three general query structures

are explored for various sizes of graph; a 5-node 4-edge linear query, a 5-node 4-edge star,

and a 5-node clique.

1) RWR Results: The timely calculation of RWR values are essential to the MAGE

algorithm. We test our approach on synthetic graphs and various G+ snapshots. The

synthetic graphs were generated with increasing numbers of edges. Each measurement is an

average of the runtime for multiple networks at each m. The results for our parallelized

RWR implementation are presented in Figure 5b. The ER graphs exhibit worse performance

than WS graphs due to the constant random memory accesses during the parallelized matrix

multiplication. Our experimental results, both on real and synthetic graphs suggest excellent

scalability of the core RWR algorithm.

2) Wildcard and Multi-attribute Cost: We tested the overhead introduced by increasing

the number of wildcards in a fixed set of queries. Figure 5c shows the query time, when

using wildcards, relative to a query with only normal attributes. The wildcard overhead

increases linearly with each new wildcard, suggesting that large queries can safely

incorporate wildcards.The queries used were a 6-node linear query, a 6-node star and a 5-

clique. Each data point is an average over multiple runs where the wildcards were assigned

at random over edges and nodes. Multi-attributes are represented as multiple 1's in and

can be easily added for little overhead. Data-rich graphs can be queried in MAGE with

minor increases in query latency and memory footprint.

C. Memory Usage

We performed an experiment to measure the memory usage of edge-augmentation, a

memory-intensive step. In the directed case the full augmented matrix must be stored;

however, in the undirected case only half of the matrix is necessary. In Figure 5d, we

compare the memory footprint of each graph before and after edge augmentation (as

previously explained in Secton IV-C) for graphs of increasing size.

D. Effectiveness

Measuring the effectiveness of approximate graph queries is a nontrivial task with two major

challenges. The first problem stems from measuring similarity between the result and query,

considering both structure and attributes. The second challenge is that the usefulness of a

result is highly subjective. Human evaluation will be important in proving the overall

effectiveness of our approach and we plan to perform it in our future work.

Method—Taking inspiration from related pattern matching work (e.g., [16]), we chose to

modify graphs by injecting new patterns into them and then seeking those patterns with

MAGE. We tested our approach against synthetic graphs and the RT movie graph. The

Pienta et al. Page 7

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

synthetic graphs were generated as before (see Section V-A); however, the patterns were

generated with 6 edge and 12 node attributes, which were assigned randomly during graph

generation. In the RT graph, attributes were randomly sampled from the empirical

distributions. In Table II, we present 5 general query types: (i) a short line of 6 nodes, (ii) a

long line of 15 nodes, (iii) a star with 15 spokes, (iv) a barbell with two 3-cliques connected

by a path of length 3, and (v) a 7-clique [1].

Table II displays the average %-difference in size between the queries and their matches

over the top 20 results. We measure the quality of results using λ, a modified Jaccard Index

over categorical variables which was used in [17]. We compose the λ-similarity by taking

the size of the set-intersection of nodes and edges from the query with the result and

normalize it by the size set-union of the same query-result pair. When a result closely

matches the query, λ → 1, if the result has either extra nodes or nodes with different

attributes then λ < 1.

MAGE's goal is to detect approximate matches to a user's desired query; Table II shows that

the algorithm is capable of extracting results with good similarity. The WS graphs work well

with linear queries, because their construction guarantees consistent paths. The RT queries

generally perform worse than the synthetic graphs, because the RT contains several very low

occurrence attributes that often require an approximation include, decreasing the λ-

similarity. Detecting exact and approximate cliques is a very challenging problem. When

discovering initial candidate nodes for the results, MAGE may pick a structurally coherent

(likely to be a clique) match, but with only some exactly matched attribute nodes. This

means that some of the edges or nodes of the result will not be directly connected and will

introduce some new nodes and edges. Even with the complexity of approximating 7-clique

MAGE is still able to return good approximations, albeit with many extra nodes and edges,

demonstrating MAGE's main strength is in finding approximate matches to help the user

explore different hypotheses.

For the purposes of demonstrating the semantic result quality, we present visualized query

results from the RT movie data in Figure 6. To demonstrate MAGEs effectiveness, our

evaluation used multiple graphs, including a real RT movie similarity graph, where MAGE

finds movies matching interesting criteria (e.g., finding a cult movie that has horror and

comedy ingredients). MAGE was able to find the movie Carrie that fits this query (see Fig

12, bottom row), which is mostly horror, with a few funny scenes; it indeed generated a cult

following. Similarly, we also used MAGE to find movies that occupy the intersect of the

genres of drama, sci-fi and action (as seen in Figure 6, top row) and it returned two popular

films Underworld and Beowolf that fit this description very well. This experiment with the

RT graph suggests that MAGE has the potential to be used in consumer-facing, main-stream

applications such as movie recommendation.

VI. Related Work

Our work draws from several research areas including, subgraph matching, graph similarty,

and graph databases. Methods in indexing have been proposed to improve the capabilities

and responsiveness of graph query tools [18]. Some graph proximity measures include

Pienta et al. Page 8

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

random-walk based approaches [19], [20], conductance-based approaches [21], and meta-

path based approaches [22], [23], among others.

Matching attributed graphs has been studied in [24] again as an approach for the intelligence

industry. With this idea an analyst to specify a particular pattern in an attributed relational

graph and scour a much larger dataset for occurrences of such a structure. Approximate

matching is a common relaxation to the subgraph isomorphism problem and has been

researched heavily [2], [3].

There are a host of purely structural graph matching systems exploring polynomial time

solutions to variants of the subgraph isomorphism problem [25]-[27]. These approaches

generally do not utilize any semantic content from the graphs themselves, making it

challenging for these approaches to extend fully to our problem formulation.

There are few algorithms that combine the aforementioned techniques to tackle inexact

matching in large, attributed graphs with highly variable content. Recent works include [7]

and [4], however the former requires the user to specify a “focus”node in the query and the

latter returns results that do not adhere to the query structure. The closest work is that by

Tong et al. [1], which proposes graph X-ray or G-Ray, a method that finds approximate

subgraphs. G-Ray uses RWR to estimate the quality of a match between a subgraph and a

query graph [19] which is used to rank the results extracted from the graph. G-Ray also uses

the CenterPiece Subgraphs idea [11]. The main drawback of G-Ray is that it only supports

graphs with node attributes. This is a significant limitation, considering the additional

semantics contributed to the graphs by the edge attributes. We have leveraged some of the

ideas and techniques proposed in this work to create MAGE.

VII. Conclusion

To the best of our knowledge, MAGE is the first approach that supports exact and

approximate subgraph matching on graphs with both node and edge attributes, for which

wildcards and multiple attribute values are permissible. Our experiments on large real and

synthetic graphs (e.g., 460M edge Google+ graph) demonstrate that MAGE is both effective

and scalable. Using multiple node or edge attributes in a query incurs negligible costs, and

MAGE scales linearly with the number of wildcards. To demonstrate MAGE's

generalizability, our effectiveness evaluation used multiple graphs, including a real Rotten

Tomatoes movie similarity graph, where MAGE finds movies matching interesting criteria

(e.g., finding a cult movie that has horror and comedy ingredients). We believe MAGE can

be a helpful tool for exploring large, real-world graphs.

Acknowledgments

This work is supported by NSF IIS-1017415, ARL W911NF-09-2-0053, DARPA W911NF-11-C-0200 and
W911NF-12-C-0028, Region II UTRC 49997-33 25, and Symantec Research Labs Graduate Fellowship
2014-2015.

Pienta et al. Page 9

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

References

1. Tong H, Faloutsos C, Gallagher B, Eliassi-Rad T. Fast best-effort pattern matching in large
attributed graphs. KDD. 2007

2. Tian Y, Patel J. Tale: A tool for approximate large graph matching. ICDE. 2008

3. Mongioví M, Natale RD, Giugno R, Pulvirenti A, Ferro A, Sharan R. Sigma: A set-cover-based
approach for inexact graph matching. JBCB. 2010; 8(2)

4. Khan A, Wu Y, Aggarwal CC, Yan X. Nema: Fast graph search with label similarity. PVLDB.
2013; 6(3)

5. Fan W, Li J, Luo J, Tan Z, Wang X, Wu Y. Incremental graph pattern matching. SIGMOD. 2011

6. Fan W, Wang X, Wu Y. Incremental graph pattern matching. TODS. 2013; 38(3)

7. Fan W, Wang X, Wu Y. Diversified top-k graph pattern matching. PVLDB. 2013; 6(13)

8. Cheng J, Zeng X, Yu JX. Top-k graph pattern matching over large graphs. ICDE. 2013

9. Cook SA. The complexity of theorem-proving procedures. STOC. 1971

10. Whitney H. Congruent graphs and the connectivity of graphs. AJAM. 1932; 54(1)

11. Tong H, Faloutsos C. Center-piece subgraphs: problem definition and fast solutions. KDD. 2006

12. Gong NZ, Xu W, Huang L, Mittal P, Stefanov E, Sekar V, Song D. Evolution of social-attribute
networks: Measurements, modeling, and implications using google+ CoRR. 2012

13. Gong NZ, Talwalkar A, Mackey LW, Huang L, Shin ECR, Stefanov E, Shi E, Song D. Predicting
links and inferring attributes using a social-attribute network (san). CoRR. 2011

14. Erdös P, Rényi A. On random graphs, I. Publicationes Mathematicae-Debrecen. 1959; 6

15. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393

16. Pandit S, Chau DH, Wang S, Faloutsos C. Netprobe: A fast and scalable system for fraud detection
in online auction networks. WWW. 2007

17. Guha S, Rastogi R, Shim K. Rock: a robust clustering algorithm for categorical attributes. ICDE.
1999

18. Zhao P, Han J. On graph query optimization in large networks. PVLDB. 2010; 3(1)

19. Tong H, Faloutsos C, Pan JY. Fast random walk with restart and its applications. ICDM. 2006

20. Fujiwara Y, Nakatsuji M, Onizuka M, Kitsuregawa M. Fast and exact top-k search for random
walk with restart. PVLDB. 2012; 5(5)

21. Koren Y, North SC, Volinsky C. Measuring and extracting proximity in networks. KDD. 2006

22. Yu X, Sun Y, Norick B, Mao T, Han J. User guided entity similarity search using meta-path
selection in heterogeneous information networks. CIKM. 2012

23. Tong H, Faloutsos C, Koren Y. Fast direction-aware proximity for graph mining. KDD. 2007

24. Coffman T, Greenblatt S, Marcus S. Graph-based technologies for intelligence analysis. CACM.
2004; 47(3)

25. Messmer B, Bunke H. Subgraph isomorphism detection in polynomial time on preprocessed model
graphs. Recent Developments in Computer Vision. 1996; 1035

26. Ullmann JR. An algorithm for subgraph isomorphism. JACM. 1976; 23(1)

27. Washio T, Motoda H. State of the art of graph-based data mining. SIGKDD Explorations. 2003;
5(1)

Pienta et al. Page 10

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
An illustrative example of how MAGE finds patterns in an intelligence graph (left) with

node and edge attributes. Node attributes: Person, Event, or Location. Edge attributes

(amount of gathered intelligence for a pair of entities): Confirmed, Suspected, or Unlikely. A

query (middle) looks for two indirectly related individuals, who were both confirmed at an

event location and are believed to have attended the event (two lines connecting the

corresponding nodes). The node with a star indicates a wildcard, which can take any

attribute value. (All figures best viewed in color.) The rightmost figure shows an

approximate match.

Pienta et al. Page 11

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Linegraph transformation and edge augmentation used to support edge and node attributes in

MAGE. (a) Input graph. (b) Intermediate step of linegraph transformation of , where a

node for each original edge is created. (c) () or is the linegraph of in which all edges

from that shared a node in are now connected as nodes of . (d) Edge augmentation

wherein we embed the edge-nodes of () directly into to create .

Pienta et al. Page 12

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
An overview of the approach used in finding an approximate subgraphs.

Pienta et al. Page 13

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4. Detailed MAGE Algorithm

Pienta et al. Page 14

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
(a) MAGE query time on real and synthetic graphs of varying sizes for a linear, star, and

clique query. The average query time, over 10 runs, increases linearly with the (augmented)

graph's size for each query type. (b) The runtimes for 10 iterations of the random walk with

restart module over Erdős-Rényi, Watts-Strogatz, and Google+ graphs of varying sizes,

which increase linearly with the number of edges, even into several hundred millions nodes

and edges. (c) The relative response time for queries containing wildcards tested on an

Erdős-Rényi graph with 10M nodes and edges, compared against the baseline query without

wildcard (horizontal black dotted line). Query time is linear in the number of wildcards in

the query. (d) MAGE memory usage for Erdős-Rényi and Google+ graphs, before and after

edge augmentation, which increases linearly with the number of edges.

Pienta et al. Page 15

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Rotten Tomatoes queries and results. Nodes are movies; an edge connects two similar

movies. Edge classes (see legend) were derived from user-contributed similarity scores.

Exact matches are in green, partial matches in purple.

Pienta et al. Page 16

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pienta et al. Page 17

Table I
Symbols and terminology used in this work

Symbol Description

n × n adjacency matrix for

n × t node-attribute matrix for graph

Query subgraph to be extracted from

(m + n) × (m + n) linegraph-modified bipartite graph

Node-edge-attribute matrix for graph

Query subgraph after edge augmentation

M A bijective mapping between edges of and edge-nodes in

〈s, t〉 An edge leading from node s to node t

n Number of nodes in

m Number of edges in

t Number of distinct categorical attributes

i,j & u,v Indices of nodes in and in respectively.

λ Ratio of approximated nodes and edges with correct attributes to the total number in a result

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pienta et al. Page 18

Table II

The similarity between the query and first 20 results. The λ similarity is a modification of the Jaccard index.

Values close to 1 mean the results matched exactly, while lower scores mean a worse approximation. MAGE

produces results with high similarity to the query.

Graph Type Query Shape % Extra Nodes % Extra Edges A Score

Erdős-Rényi (ER) Line (short) 11 ± 0.7 14 ± 0.9 0.89

Line (long) 20 ± 0.8 26 ± 1.1 0.81

Barbell 18 ± 0.7 18 ± 0.6 0.84

Star 39 ± 0.8 44 ± 1.1 0.71

Clique 64 ± 1.8 17 ± 0.1 0.77

Rotten Tomatoes (RT) Line (short) 66 ± 1.8 30 ± 1.3 0.73

Line (long) 84 ± 1.6 87 ± 2.2 0.54

Barbell 96 ± 2.9 95 ± 1.9 0.51

Star 104 ± 2.8 109 ± 2.6 0.50

Clique 110 ± 3.4 103 ± 4.9 0.49

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2015 April 07.

