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Abstract

On-field monitoring of head impacts, combined with finite element (FE) biomechanical 

simulation, allow for predictions of regional strain associated with a diagnosed concussion. 

However, attempts to correlate these predictions with in vivo measures of brain injury have not 

been published. This article reports an approach to and preliminary results from the correlation of 

subject-specific FE model-predicted regions of high strain associated with diagnosed concussion 

and diffusion tensor imaging to assess changes in white matter integrity in the corpus callosum 

(CC). Ten football and ice hockey players who wore instrumented helmets to record head impacts 

sustained during play completed high field magnetic resonance imaging preseason and within 10 

days of a diagnosed concussion. The Dartmouth Subject-Specific FE Head model was used to 

generate regional predictions of strain and strain rate following each impact associated with 

concussion. Maps of change in fractional anisotropy (FA) and median diffusivity (MD) were 

generated for the CC of each athlete to correlate strain with change in FA and MD. Mean and 

maximum strain rate correlated with change in FA (Spearman ρ = 0.77, p = 0.01; 0.70, p = 0.031), 

and there was a similar trend for mean and maximum strain (0.56, p = 0.10; 0.6, p = 0.07), as well 

as for maximum strain with change in MD (−0.63, p = 0.07). Change in MD correlated with 

injury-to-imaging interval (ρ = −0.80, p = 0.006) but change in FA did not (ρ = 0.18, p = 0.62). 

These results provide preliminary confirmation that model-predicted strain and strain rate in the 

CC correlate with changes in indices of white matter integrity.
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INTRODUCTION

The incidence of sports-related mild traumatic brain injury (MTBI), also referred to as 

concussion, ranges from 1.6 to 3.8 million individuals each year in the USA, including those 

who do not seek medical care.34 These figures likely underestimate the magnitude of the 

problem, reflecting lack of appreciation of the medical implications of the symptoms and 

reluctance to report symptoms for fear of losing playing time.49 Concussions are particularly 

common in football and ice hockey.1,11 Concussed athletes typically have signs and 

symptoms initially but are free of symptoms within 7 days, although recovery may take 

longer in a small percentage of individuals.37,38 Concern has been raised about the effects of 

multiple concussions and the role they may play in the long-term sequelae (termed chronic 

traumatic encephalopathy) observed in some professional football players and other 

athletes,10,39,41,47 and recently observed in a young college football player without an 

identified history of concussion.53]

Despite its importance, there are some fundamental gaps in our knowledge of concussion—

including which specific brain regions are associated with the alteration in mental status that 

defines the injury and which components of biomechanical forces most affect those brain 

regions. These gaps reflect several important limitations in our ability to study MTBI. The 

first relates to the lack of accurate measures of head kinematics associated with human 

MTBI. Historically, small animal surrogates have been used to study brain tissue response to 

impact; however, these models often translate poorly to the human condition,12 and large 

animal models are limited due to a variety of concerns including ethical constraints for using 

primates and a lack of suitable cognitive and functional outcome measures most pertinent to 

human MTBI. In addition, anthropometric test devices (ATDs) have been utilized to 

simulate on-field impacts in sports; however, these devices are limited in their ability to 

replicate individual characteristics that influence impact response (e.g., directional neck 

strength, state of awareness at time of impact, player body differences, etc.), restricting their 

utility to primarily parametric evaluations. In the last 7 years, these limitations have been 

addressed by directly measuring head kinematics following impact of athletes during play 

with the Head Impact Telemetry (HIT) System.13

The second gap in our knowledge of human MTBI relates to attempts to visualize and 

quantify the neural effects of injury with neuroimaging. Conventional neuroimaging 

methods are unrevealing in the large majority of individuals with MTBI, particularly sports 

concussion.3 More recently. however, techniques, such as diffusion-weighted imaging [in 

particular diffusion tensor imaging (DTI)], which capitalize on the ability to detect the 

diffusion of water molecules in the brain have shown great promise in probing white matter 

integrity,44 particularly in mild and moderate TBI where white matter injury is believed to 

underlie the neuropathology of the disorder.14,33,36 Nevertheless, it is rarely feasible to study 

individuals both before and after their injury.
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Finite element (FE) modeling has been widely used as a numerical surrogate to simulate 

head mechanical responses under a variety of impact and inertial rotational conditions. A 

number of studies have utilized FE-modeling techniques to investigate brain mechanical 

responses during impact.30,31,58,66,67 For example, using an experimentally validated FE 

brain model, Kleiven30 reported that strain in the bridging veins, which correlates with 

occurrence and severity of subdural hematoma, varied with impact direction for purely 

translational and purely rotational impulses. Zhang et al.66,67 used biomechanical measures 

obtained from ATD simulations as inputs into another FE brain model to predict tissue 

responses during impact, including intracranial pressure and brain shear stress, and 

concluded that the occurrence of concussion was best predicted by shear stress at the 

midbrain. Viano et al.61 reported intracranial pressure, stress, strain, and strain rate data at 

various regions in the brain based on FE modeling of laboratory reconstructions from on-

field impacts associated with concussion in professional football players and correlated these 

results with clinical symptoms.

It is difficult to know how accurately these simulations reflect actual strains and strain rates 

within a live individual’s brain. Although numerous head FE models exist with varying 

complexity, most do not represent the true anatomic and physiologic details of the head. 

Each model is constructed with varying simplifications and/or approximations regarding 

anatomic geometry and structures, boundary and loading conditions, constitutive properties, 

and element formulations. For example, even though model’s head size significantly 

influences intracranial mechanical responses, FE computations are often based on a 50th 

percentile male head geometry. Further, mechanical loading data (translational and 

rotational accelerations of the head center of gravity) in these simulations are typically 

generated with ATD headforms during accident reconstructions of injuries captured on 

video. One approach to enhance accuracy of brain region-specific strain predictions is to 

utilize subject-specific FE models based on neuroanatomic data obtained by high field 

magnetic resonance imaging (MRI). In addition, the accuracy of the input to the model can 

be enhanced by means of actual head kinematics measured during an impact associated with 

a diagnosed concussion for that subject. To better understand regional effects of tissue 

mechanical responses on structural and functional alterations in the brain, we have 

developed an automatic meshing technique to generate subject-specific FE head models 

based on each individual’s own MR image scans.27 We hypothesized that regions of FE 

model predicted high strain would show disrupted white matter integrity when assessed with 

DTI.

METHODS

Overview

For the last 4 years, our group has studied the biomechanical basis of MTBI in collegiate 

and high school contact sport athletes. The collegiate athletes are varsity athletes on the 

Dartmouth College football and men’s and women’s ice hockey teams, and the high school 

athletes compete on the Hanover High School varsity football team. Participating athletes 

undergo cognitive assessment and neuroimaging both before and after a season of play. Any 

participants diagnosed by the team medical staff as sustaining a concussion are also studied 
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as soon as possible post-injury. The protocol was approved by the Dartmouth College 

Committee for the Protection of Human Subjects, and the college participants gave written 

informed consent. The high school athletes gave their assent, and consent forms were signed 

by their parents/guardians. In this article, we report on 10 male athletes who were diagnosed 

as having a concussion during their sport season.

Head Impact Measurement

During all practices and games, players wore either football (Riddell Inc., Rosemont, IL) or 

hockey (Easton S9, Easton Sports, Scotts Valley, CA; CCM Vector, Reebok, Saint-Laurent, 

QC) helmets instrumented with the HIT System (Simbex, Lebanon, NH). The HIT System is 

designed to record in vivo acceleration of the head following impact by integrating six 

single-axis linear accelerometers, a single electronics board combining data acquisition (10 

bit, 1000 Hz), radiofrequency (RF), and telemetry (903–927 MHz) components, and a 

rechargeable battery into each player’s helmet. Description of both HIT System function and 

validation has been previously described in the literature.8,13,21-24,35 In brief, each 

accelerometer is positioned against the head to differentiate head acceleration from helmet 

acceleration, and when any single accelerometer channel exceeds a pre-set threshold of 14.4 

g, 40 ms of data (8 ms pre-trigger and 32 ms post-trigger) were transmitted to a sideline 

receiver connected to a laptop computer. Accelerometer data recorded from each impact was 

then post-processed using a simulated annealing optimization algorithm to solve for the 

entire 40-ms three-dimensional linear and rotational accelerations at the head center of 

gravity.6 The Cartesian coordinate system was defined by right-hand rule with the X 

direction toward the front of the head, the Y direction toward the left ear, and the Z direction 

toward the top of the head. Accuracy of this approach was confirmed with laboratory 

validation experiments similar to those previously reported.23,50

Dartmouth Subject-Specific Head FE Model (SSM)

We have developed an automatic meshing technique to generate subject-specific FE head 

models based on the individual’s own MR images.27 High-resolution T1-weighted MR 

images from a single template defining subject were used to create an atlas mesh via a 

dedicated meshing script. Specifically, the brain images of the template subject were 

automatically segmented (FreeSurfer, Version 4.5.0) to generate a triangular outer-boundary 

surface with an in-house MATLAB (version 7.11/R2010b, The MathWorks Inc., Natick, 

MA) routine. The dedicated meshing script was developed using a commercial software 

package (TrueGrid, version 2.3; XYZ Scientific Applications Inc., Livermore, CA) that 

created a multi-block with its size and position determined by the triangular brain surface. 

The multi-block was subsequently subdivided and corner/edge nodes of each sub-block were 

projected onto the triangulated brain surface to generate whole-brain hexahedral elements.

Using the meshing script, a subject-specific FE mesh was generated for each of the 

remaining subjects via rigid body image registration. For each subject, the brain was 

similarly segmented and the corresponding MR images were rigidly registered with those of 

the template. Using the same meshing script but with the subject’s triangular brain surface 

transformed into the template space as geometrical input, whole-brain hexahedral meshes 
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were subsequently produced and transformed back into the subject’s MR image space using 

the inverse of the rigid body transformation.

The skull inner-surface was represented as a rigid body shell (1 mm thick), with the nodes 

produced by displacing the brain boundary nodes outward in the average nodal normal 

direction by 1 mm. The falx was manually segmented for each subject by tracing the 

boundary on the mid-sagittal MR image. A purpose-written MATLAB routine was utilized 

to identify brain nodes corresponding to the falx on the mid-sagittal MR image, and they 

were then duplicated and displaced by 0.5 mm along both directions perpendicular to the 

mid-sagittal plane to generate two hemispheres. The same set of brain nodes were 

subsequently used to represent the falx as a membrane (1 mm thick). A representative 

subject-specific brain mesh (subject 3863) is shown in Fig. 1.

Material Properties and Boundary Conditions

A hyperelastic material model of a second-order Odgen form recently employed by 

Kleiven31 was chosen for all subject-specific models:

(1)

where λi are principal stretches, and μi and αi are the material constants (Table 1). The 

density and the bulk modulus of the brain were set to 1040 kg/m3 and 2.19 GPa, 

respectively.

In addition, a Prony series of six terms was employed to characterize viscoelasticity for a 

dimensionless relaxation modulus of the form:

(2)

where gi and τi are the material constants, which are listed in Table 2. These material 

property values were derived in Kleiven31 by fitting the corresponding parameters using 

discrete spectrum approximation to include the non-linear elasticity described by 

Franceschini20 and Franceschini et al.19 as well as the high-frequency relaxation moduli 

determined by Nicolle et al.46 The falx was assumed to be linearly elastic in keeping with 

previous investigations in the literature (e.g., Kleiven31; Zhang et al.[ISP]67; Takhounts et 

al.57), and the corresponding material constants are listed in Table 3.

A frictional contact boundary condition (frictional coefficient of 0.243) was employed to 

simulate the interface between the brain and skull, and between the brain and the falx using 

a general contact formulation. In addition, the falx was tied to the skull using a node based 

approach at the interface. For all simulations in this study, the Abaqus/Explicit (Version 6.8; 

Dassault Systemes Simulia Corp., Providence, RI) simulation package was employed.
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Model Validation

The most recent head impact tests performed on inverted and re-pressurized cadavers by 

Hardy et al.26 provide valuable experimental data for dynamic response of the human brain 

under impact loading conditions. High-speed X-ray was employed to measure relative 

brain–skull motion by placing a cluster of neutral density targets at representative locations 

within the cadaveric brain. In order to validate simulations of the Dartmouth SSM, two 

representative cadaver impact tests were selected (288-T1: occipital impact and C380-T5: 

temporal impact) against which the model-simulated relative brain–skull motion over the 

course of impact was compared with experimental measurements. For both simulations, the 

atlas mesh was used and scaled to match the reported head dimension of the cadaver used in 

the test. Biomechanical head acceleration traces were applied to the rigid body skull, and 

relative brain–skull trajectories at two neutral density target locations (corresponding to 

NDT 4 and 11 in Hardy et al.26, respectively) were obtained and compared with those 

measured (Fig. 2). SSM-computed brain–skull relative motion for both cases was correlated 

in all directions of motion with measures obtained through high-speed X-ray, and was also 

found to be in agreement for measures of maximum displacement (difference in peak values 

<2 mm relative to the measurements, which was similar to that found in Kleiven and 

Hardy32). Interestingly, the agreement between the measured and simulated displacement 

was noticeably better for the temporal impact (i.e., C380-T5 in Fig. 2, bottom), while the 

discrepancy in displacement phase was more evident for the occipital impact (i.e., C288-T1 

in Fig. 2, top). This outcome was likely because the SSM explicitly included the falx 

(expected to be more important in a temporal impact) but not the tentorium (expected to 

have more influence in an occipital impact). In this study, we did not include the tentorium 

because techniques for automatic and accurate segmentation of this structure from T1-

weighted MRI scans are not presently available.48 Nonetheless, these validation results 

demonstrate that the Dartmouth SSM is able to reproduce intracranial displacement 

responses that agree with measurements from representative cadaver tests. Enhancing the 

anatomical sophistication of the SSM to include important structures (such as the tentorium) 

is, no doubt, important for future development and is expected to improve both the accuracy 

and completeness of the validation results presented here (e.g., against the relative brain–

skull displacement data as well as intracranial pressure data from Nahum et al.45 and 

Trosseille et al.60).

Clinical Diagnosis

For this analysis, concussion was defined as an alteration in mental status that was reported 

or observed by the player or team’s medical staff and associated with a blow to the head. A 

certified athletic trainer or team physician diagnosed and treated all instances of concussion 

at their professional discretion. As is typical of sports-related concussion,42 none of the 10 

cases of diagnosed concussion was associated with loss of consciousness, and so to identify 

the impact most likely associated with the injury, the medical staff provided the date of 

injury, the suspected time of injury, and the approximate time of diagnosis. In addition, 

anecdotal observations of the events surrounding injury (e.g., description of the impact, 

method of identifying the injury, and comments from coaches, trainers, teammates, or 

parents) were provided. An impact recorded by the HIT System was retrospectively 
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associated with each case of diagnosed injury by cross-referencing the information provided 

by the team with the time stamp of each impact sustained by the player on the day of injury. 

Processed time series data (X, Y, and Z linear and rotational acceleration) for each impact 

associated with concussion was used as input for the subject-specific FE model.

Neuroimaging

All scans were acquired in the Dartmouth Advanced Imaging Center, which houses a 

research-dedicated 3T Philips Achieva magnet. This 3.0T system has a Quasar Dual gradient 

set with strengths up to 80 mT/m and slew rates up to 200 T/m/s and an anatomic landmark 

based longitudinal repositioning system (SameScan/SmartScan). A Philips 8-channel 

SENSE Head Coil was used.

Diffusion Imaging

Diffusion imaging was carried out using 46 diffusion directions (collected with b = 1000 

s/mm2, NEX = 1) plus one volume without diffusion gradients (b = 0). The scan data were 

used to estimate a second order symmetric diffusion tensor at each voxel, from which scalar 

diffusion parameters (FA, etc.) were then computed. Calculation of tensors was carried out 

using FDT 2.0 (FMRIB Software Library (FSL) package,56 version 4.1.6) which corrected 

the raw diffusion images for eddy currents and motion prior to fitting a tensor model, and 

subsequently brain-masked the results using BET.54 The DTI ToolKit (DTI-TK)65 was 

employed to generate DTI scalar diffusion parameters.

Diffusion tensor imaging processing also included a sequence of custom MATLAB scripts 

for preprocessing, quality assessment, and configuration of FSL programs. Preprocessing 

included gradient vector correction, which adjusts the vectors used in analysis to account for 

any offset in the imaging data relative to the magnet bore.15 Quality assessments consisted 

of manual verification of the correct appearance of all images plus tests using ExploreDTI59 

and additional tests based on Tournier et al.59 Scans with significant corruption (affected b = 

0 image or 3+ affected diffusion images), all ascribed to motion, were discarded (N = 1), 

while scans with 1–2 affected diffusion images were run without those images (N = 4).

Anatomic Reference

An MPRAGE (Magnetization Prepared Rapid Gradient Echo) T1-weighted sequence was 

used in each session with the following parameters: 140 contiguous 1.2 mm sagittal slices, 

TR: 6.8 ms, TE: 3.3 ms, TI: 852.9 ms, TFE prepulse delay: shortest, flip angle: 8 °, NEX: 1, 

BW/Pixel: 241, FOV: 256 mm, matrix 256, and 1.0 × 1.0 mm in-plane resolution. This 

series balances scan time, signal-to-noise ratio, high gray/white tissue contrast, and high 

spatial resolution, and the near-isotropic acquisition allows re-slicing in any plane without 

significant loss of volumetric information.

Individual Anatomic Labeling

FreeSurfer was employed to generate automatic subcortical segmentations of one anatomic 

reference scan for each individual17,18,25 and to carry out bias correction and skull stripping. 

Each FreeSurfer processed brain was then coregistered with an unweighted diffusion image 

from each of the subject’s DTIs after it had been skull-stripped with BET (v2.1)54; this step 
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used the Statistical Parametric Mapping package (SPM5) with the nearest-neighbor 

interpolation (other options at defaults) to propagate the FreeSurfer anatomic labels to each 

DTI image.

Template based Analysis

Individual FA images were non-linearly registered onto the FSL MNI template (2-mm 

version) using the FSL FNIRT tool (build 416), and the individually calculated alignment 

transforms were applied to all other DTI maps. Since strain and other SSM-derived maps are 

generated in the subject’s MPRAGE space, we also generated and applied an MPRAGE to 

DTI transform (using the b = 0 image as a reference for DTI) for each scan and combined 

that with the FA to MNI transform to warp SSM results to the same space. After alignment, 

all SSM and DTI maps were smoothed with a 3D Gaussian filter with δ = 2 (FWHM = 4.7 

mm) to allow for minor alignment inaccuracies.

Statistical Analysis

We used Spearman’s ρ (rho), a nonparametric (rank-based) correlation measure suitable for 

small sample sizes, non-normal distributions, and nonlinear associations to assess 

correlations between FA and MD, and strain and strain rate in the corpus callosum (CC).5 

Our assumption is that the collected preseason DTI scans represent a personal baseline for 

each subject, and that the effects of a concussion will result in changes detectable on these 

maps. We hypothesized that injury effects would correlate with the strain experienced in 

each brain region (i.e., effects are assumed for simplicity not be variable within a given 

region), and thus used FA-strain and MD-strain correlation as our fundamental measures. To 

assess whether DTI would provide sufficient precision and reliability to track individual 

concussion-induced changes, we acquired two DTI scans per subject back to-back on a 

separate group of 27 mild TBI subjects and used a one-way ANOVA model to estimate 

within and between subject variance. We found that the CC mean FA had a within-subject 

standard deviation of 0.0152 and a between-subject SD of 0.0624 (mean MD: 0.00041 

within and 0.101 between).

RESULTS

Participants

Demographics for the ten athletes diagnosed with a concussion and with completed pre- and 

post-injury neuroimaging are summarized in Table 4. Five participants were college football 

players, four were high school football players, and one was a college ice hockey player. All 

participants were right handed and male. The mean peak linear and rotational resultant 

acceleration associated with the ten cases of concussion were 73.6 ± 21.3 g and 5,025 ± 

1,226 rad/s2. Contributions of linear and rotational accelerations at the head CG in the X, Y, 

and Z directions of the head coordinate system at the time of peak resultant acceleration are 

summarized in Table 5 along with the peak maximum principal strain (mean, 0.280 ± 0.089) 

and peak maximum principal strain rate (mean, 54.3 ± 33.9) in the corpus callosum 

associated with each of the impacts. Corresponding mean FA and MD values for each 

subject are also summarized for each subject.

MCALLISTER et al. Page 8

Ann Biomed Eng. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Subject-Specific FEM Strain Maps

The Dartmouth SSM27 was used to generate strain maps for each impact associated with a 

concussion. Figure 3 shows a representative strain map from Subject 3863. In addition, the 

strain maps from all 10 concussive impacts were used to generate a group concussive strain 

map. Figure 4 shows the pattern of regional strain displayed in a normalized brain. Of note 

is the significant overlap between the concussion associated high strain regions and the CC.

FA and MD Maps

Preseason and post-concussion DTI scans were utilized to generate FA and MD change 

maps for each subject. Figure 5 shows a representative FA change map, also from Subject 

3863. In addition, FA change maps were generated for the group. Figure 6 shows the pattern 

of FA change associated with all 10 concussions displayed in a normalized brain.

Relationship of Strain Parameters to DTI Change in Corpus Callosum

FreeSurfer segments the CC into five subregions, which we used together to create a CC 

region. We also tested the anterior and posterior regions separately. Table 6 shows that 

either the mean or maximum strain rate within the CC ROI correlates significantly with FA 

changes, and to a lesser extent strain does as well.

In addition, we used the MNI normalized mean maps similar to those shown in Figs. 4 

(strain) and 6 (FA) to calculate the correlation of strain or strain rate with FA or MD on the 

Wake Forest University MNI Brodmann atlas CC region of interest. The results (Table 7) 

show that strain rate is a significant predictor of FA changes, while strain is a significant 

predictor of MD changes, but a weaker predictor of ΔFA.

Relationship of Injury-to-Imaging Interval and DTI

Recent evidence suggests that changes in DTI parameters may be sensitive to the time 

interval between injury and post-injury imaging.7,33,36 Therefore, we also assessed the effect 

of this variable on the correlation of strain parameters and DTI parameters. Figure 7 shows 

that there is a significant correlation between change in MD and injury-to-imaging interval, 

but this did not hold for change in FA. Table 7 provides a revised version of CC ROI 

correlations of note when data are adjusted for the injury-scan interval.

DISCUSSION

Results from this pilot study suggest that integration of directly measured head impact data 

with a corresponding subject-specific FE head model and advanced white matter imaging 

techniques may provide additional insights into the biomechanical basis of MTBI. Our study 

provides a first attempt to correlate FE model-predicted regional strains and strain rates 

associated with concussion with indicators of white matter change as measured by diffusion 

imaging. The finding that model-predicted strain rate correlated with change in FA in the 

CC using two different approaches for segmenting this structure is encouraging. The 

relationship between strain and MD in the MNI CC is also reassuring. FA and MD are the 

most widely used DTI measures in the literature44 and so were selected here as the most 

useful values for comparison to existing work.
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The overall relationship between FA and MD is typically negative (i.e., as one increases, the 

other decreases); MD is maximized when diffusion is unrestricted and FA is maximized 

when it is narrowly restricted to a single orientation, and so they are in that sense opposites. 

However, they are not coupled tightly, since the eigenvalues from which both are derived 

can vary up or down based on local diffusivity and the tensor fit, potentially resulting in 

decrease or increase in both measures in some situations.

The differential relationship of injury-to-imaging interval and changes in MD and FA may 

account for some of the differences found between correlations of strain measures and FA 

and MD in this relatively small sample. It is now recognized that, after injury, FA may 

initially increase substantially (up to 1 week) but subsequently decrease over time, and FA 

as well as other DTI parameters (e.g., axial diffusivity and radial diffusivity) may also be 

affected differently at different stages because of a variety of biological processes acting 

over different time intervals.7,33,36 The explanation of these differences is not immediately 

apparent, though it has been hypothesized that FA reductions result from misalignment of 

fibers, cytotoxic edema, fiber disruption, or axonal degeneration (see e.g., Kumar33 and 

Mayer36 for a useful discussion). With respect to our cohort, it may be that these subjects 

did not experience injuries severe enough to trigger all of these contributory mechanisms. 

MD changes, on the other hand, may result from loss of microstructural integrity in early 

stages or expansion of extracellular space in later stages (both resulting in a net increase) 

and from decreased water content in extracellular space due to axonal swelling (a net 

decrease),7 and it has been suggested that MD may be more sensitive to minor diffuse 

axonal injury than FA.9 Further study is needed to refine the definition of these temporal 

relationships as this may be an important variable when looking for small signal change in 

white matter integrity. For example if confirmed, our results would suggest that changes in 

MD will become more apparent over a 10–14-day interval, whereas changes in FA appear 

somewhat less sensitive to timing over this window.

The fact that these athletes’ structural scans were read as normal despite the noted changes 

in white matter associated with measures of strain is consistent with what is known about the 

neuropathology of brain injury including MTBI.14 Furthermore, the CC is a common site for 

axonal injury of varying severities including mild injury,4,55 and thus the observed 

correlations of change in white matter indices with strain measures in this structure are 

consistent with the known neurobiology of MTBI. It is important to note, however, that the 

clinical descriptions of these ten concussions suggested that they were quite mild injuries 

(symptom resolution 11.4 ± 17 days) and the biomechanical parameters associated with 

these injuries were in the lower percentile of all impacts associated with concussion when 

compared with larger samples of on-field injury data previously reported in the literature. 

For example, from a sample of 32 collegiate football players clinically diagnosed with 

concussion, Rowson et al.51 reported a mean linear acceleration of 105 ± 27 g for impacts 

associated with those injuries compared to 74 ± 21 g for the impacts modeled in this study. 

While head kinematics after impact have yet to be correlated with injury severity, lower 

head acceleration has been previously correlated with a reduction in brain tissue strain, 

which could affect the outcome of our results. The finding of a relationship between strain 

and white matter change is noteworthy in individuals with injuries of this mild degree.

MCALLISTER et al. Page 10

Ann Biomed Eng. Author manuscript; available in PMC 2015 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An important issue is the specificity of our findings. Figures 3 and 4 suggest brain regions 

other than the CC might also be subject to relatively high strains and contribute to the injury 

process. In this pilot study, we have chosen to focus on the CC in that our primary 

hypothesis was that we would find correlations between indices of white matter change and 

model-predicted strain in this region. From a biological perspective, the CC is known to be 

vulnerable to diffuse axonal injury in more severe forms of TBI, thus it seemed to be a 

compelling region to focus on. Second, (and related to the first), the CC is a large white 

matter structure. This allows us to be confident that the segmentation and normalization 

techniques used are reasonably reliable and valid, and that we are sampling white matter 

indices from a large volume of predominantly white matter tissue. This is particularly 

important in our relatively small sample of concussed individuals, where a single outlier 

could have undue influence on results of smaller regions or regions with a smaller ratio of 

white to gray matter. Preliminary secondary analyses in other brain regions with higher 

model predicted strain, showed some interesting trends that might reach significance with a 

larger sample; however, none achieved statistical significance with the current sample under 

this study. There are several potential reasons for this including the modest sample size of 

our study and/or regional inaccuracies in model’s predicted strain. Data collection is 

ongoing to increase our sample size. In addition, correlation of DTI output with strain and 

strain rate maps from additional FEM head models is planned as part of a newly funded 

project to assess variability in FEM model outputs and relationship to white matter changes.

It is also possible that high impacts not associated with diagnosed concussion might result in 

changes in white matter measures, and that those changes could correlate with model-

predicted strain. This was not tested in this study but is an important next step.

This article presents preliminary findings, and there are important limitations that we would 

like to acknowledge. In any study involving concussion, the recognition or diagnosis of 

“concussion” is not fool-proof. Although there are generally agreed criteria,40 the limitations 

of on-field diagnosis and self-reporting mean that they are unevenly applied. Furthermore, 

while our study is predicated on the assumption that we can match each concussion to a 

single impact that causes it, based on on-field recordings and player debriefings, this 

relationship is sometimes challenging. For example, in many cases, a player may sustain 

multiple impacts before an identified concussion (the majority being of relatively low 

magnitude) leading to a suspicion that earlier harder impacts may have played a contributory 

role. We are evaluating methods for modeling multiple impacts and combining the resulting 

strains to address this. There are other factors involved in concussion identification. Recent 

attention to the issue has heightened the desire of some athletes to hide or not report 

symptoms suggestive of concussion, out of concern for loss of playing time. Conversely, 

other athletes, as well as parents and athletic training staff may reports symptoms leading to 

the diagnosis of concussion that would have been ignored several years ago.

The reproducibility of FA and MD in DTI is sufficient to track relatively small changes 

longitudinally in a single subject,15 but there are of course limits to the size of changes that 

can be detected, and physiological motion, image registration, and inherent noise combine to 

make assessing the precision with which comparisons can be made in any individual case 

difficult. Furthermore, a limitation that must be recognized in any study involving 
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conventional DTI is its inability to properly measure diffusion in “crossing fiber” areas,62 

which occur in about 5–15% of the human brain.2 New techniques, such as HYDI (Hybrid 

Diffusion Imaging), a q-space imaging technique, which carries out diffusion imaging in 

multiple HARDI shells63 have been developed to address these issues and will be 

incorporated in further studies in this area.

FE model validation is important to ensure its simulation accuracy and relevance. Our 

current Dartmouth SSMs are generated automatically based on the individual’s own MR 

images (with the exception of the falx that requires manual segmentation) with high mesh 

quality,27 which is especially important when studying a pool of subjects and provides a 

direct link between model simulation outputs and subject-specific neuroimaging data. 

However, the automation of SSM as applied here comes at the cost of having relatively few 

internal structures compared to other anatomically more sophisticated models (e.g., Zhang et 

al.67; Kleiven31; Takhounts et al.57). Although certain model simplifications are not 

expected to influence the simulation results (e.g., exclusion of the facial and neck 

components, rigid skull assumption in mild accelerations where no skull deformation was 

observed, etc.) and are, perhaps, desirable for model simulation efficiency, the tentorium 

(which is structurally similar to the falx) may play an important role in intracranial response 

that our SSM did not capture. Unfortunately, segmentation of the tentorium from T1-

weighted MRI scans remains a challenging task (3–4 hours manual segmentation for an 

expert, or at least 20 min for a trained rater using a semi-automatic segmentation approach 

according to a recent study48) and we opted to exclude it from these studies in favor of the 

efficiencies gained from automation which are essential when evaluating a multiplicity of 

individual subjects. We expect that exclusion of the tentorium will influence model 

responses in the inferior region of the brain, but may not significantly alter the results in the 

CC region, which is structurally closer to the falx but farther away from the tentorium. Other 

structures such as the ventricles or differentiation of the gray/white matter may also 

influence the modeled brain response to some degree. However, their effects on the 

computations in the CC region may be negligible compared to those from the falx/tentorium 

because much larger strain/stress concentrations are expected in this vicinity due to the 

much higher rigidity of these structures.

Nonetheless, we have validated the model by comparing relative brain–skull displacements 

with measurements from the latest cadaver head impact tests.26 A new study is currently 

underway to further improve model sophistication, and as these improvements occur, 

additional steps to validate the model will be taken (e.g., against Nahum et al.45 and 

Trosseille et al.60 pressure data). However, it is important to note that whether an FE model 

validated against these cadaver tests is sufficiently representative of brain biomechanics in 

live subjects remains an open question because experimental data derived from cadavers are 

not entirely suitable for head model validation64 because of significant tissue property 

deterioration and loss of perfusion and vasculature pressure; nonetheless, at present 

measurements from cadaver tests are essential for validation of any head FE model subject 

to high rate impact. Although experimental in vivo brain mechanical data are emerging with 

the use of high-resolution MR techniques, it warrants further investigation whether an FE 

model validated against these in vivo data under quasi-static28,29 and/or low-magnitude 
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impact (2–3 g and ~100 to 200 rad/s2)16,52 settings is suitable for application under much 

higher magnitude impact conditions (e.g., ~100 g and ~10 k rad/s2 typical for injured 

subjects).

Nevertheless, in this proof-of-concept study using data from 10 subjects diagnosed with 

concussion, we have found that mean and maximum strain rate correlated with change in 

FA. The correlation trend for mean and maximum strain vs. change in FA as well as for 

maximum strain vs. change in MD was similar. Change in MD was correlated with injury-

to-imaging interval but not for change in FA. These results provide promising evidence that 

our Dartmouth SSM, in conjunction with DTI, can provide important information regarding 

the mechanism of sports-related concussion.
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FIGURE 1. 
Illustration of a subject-specific brain mesh showing the falx and head CG (a and b), and a 

coronal (c) and a sagittal (d) view of the mesh corresponding to Figs. 3, 4, 5, 6. The skull 

inner-surface (seen in (c) and (d)) was generated based on the brain outer boundary elements 

(see text for details).
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FIGURE 2. 
Comparison of simulated and measured brain–skull relative motion over the course of 

impact for two representative cadaver impact tests (top: C288-T1; bottom: C380-T5; The 

left and right columns correspond to location of NDT-4 and NDT-11 in Hardy et al.,26 

respectively).
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FIGURE 3. 
Peak maximum principal strain map for subject 3863 in the mid-coronal (left) and mid-

sagittal (right) views superimposed on his post-concussion T1 scan, showing that the highest 

peak maximum principal strains occur in and around the CC region during the simulated 

impact.
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FIGURE 4. 
Peak maximum principal strain map averaged for all 10 subjects in the mid-coronal (left) 

and mid-sagittal (right) view, superimposed on the MNI template brain. Note elevated peak 

maximum principal strains in and around the CC region during the simulated impacts.
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FIGURE 5. 
FA changes from preseason to post-concussion scans for subject 3863 on mid-coronal (left) 

and mid-sagittal (right) slices of the MNI template brain. The top gray area reflects a 

difference in scan boundaries between scans.
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FIGURE 6. 
Mean FA changes for all 10 subjects on mid-coronal (left) and mid-sagittal (right) slices, 

superimposed on MNI template brain after normalization and smoothing (δ = 2, FWHM = 

4.7 mm).
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FIGURE 7. 
Relationship of FA and MD changes in CC ROI to injury-scan interval. FA: ρ = 0.18, ρ = 

0.62. MD: ρ = −0.80, p = 0.006.
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TABLE 1

Material constants (identical to the “average model” in Kleiven31.

μ1 (Pa) α 1 μ2 (Pa) α 2

271.7 10.1 776.6 −12.9
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TABLE 2
Material constants corresponding to the 6-term Prony series

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

g i 7.69E–1 1.86E–1 1.48E–2 1.90E–2 2.56E–3 7.04E–3

τi(s) 1.0E–6 1.0E–5 1.0E–4 1.0E–3 1.0E–2 1.0E–1
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TABLE 3
Material property constants for the linear elastic falx

Young’s modulus (Pa) Density (kg/m3) Poisson’s ratio

3.15E+7 1130 0.45
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TABLE 4
Demographic variables for study athletes

ID Sport Age Educ. Hand. Gender WRAT READ

3861 CF 19 13 R M 124

3863 CF 18 12 R M 116

3867 CF 21 15 R M 105

3879 CH 23 15 R M 123

3911 CF 18 12 R M 113

3915 CF 18 12 R M 131

9216 HSF 16 9 R M 131

9218 HSF 15 9 R M 117

9224 HSF 15 9 R M 92

9231 HSF 15 8 R M 145

CF, college football; CH, college hockey; HSF, high school football; Educ., years of schooling completed; WRAT READ, Wide Range 
Achievement Test, Reading subtest, an indicator of general intellectual function.
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TABLE 6
Selected correlations in FreeSurfer CC region and subregions (Spearman correlation)

ROI Values Correlation

Corpus callosum ΔFA vs. strain 0.56 (p = 0.096)

ΔFA vs. strain rate 0.77 (p = 0.014)

ΔFA vs. max. strain 0.60 (p = 0.073)

ΔFA vs. max. strain rate 0.70 (p = 0.031)

All values refer to ROI mean if not specified.

Bold values indicate statistically significant findings defined by p < 0.05.
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TABLE 7

Correlations between mean DTI change (FA, MD) and mean FEM (strain, strain rate) values in an MNI 

corpus callosum ROI (2685 voxels).

DTI
value FEM value Correlation

(Spearman)
Correlation
(Pearson)

ΔFA Strain −0.11 (p < 0.001) −0.05 (p = 0.35)

ΔFA Strain rate 0.24 (p < 0.001) 0.23 (p = 0.01)

ΔMD Strain −0.34 (p < 0.001) −0.34 (p < 0.001)

ΔMD Strain rate −0.02 (p = 0.30) 0.0 (p = 0.87)

Because the justifications for the Spearman correlation may be weaker with this larger number of values, both Spearman and Pearson correlation 
results are included.
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