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Abstract

Extracellular matrix (ECM), a major component of the cellular microenvironment, plays critical 

roles in normal tissue morphogenesis and disease progression. Binding of ECM to membrane 

receptor proteins, such as integrin, discoidin domain receptors, and dystroglycan, elicits 

biochemical and biomechanical signals that control cellular architecture and gene expression. 

These ECM signals cooperate with growth factors and hormones to regulate cell migration, 

differentiation, and transformation. ECM signaling is tightly regulated during normal mammary 

gland development. Deposition and alignment of fibrillar collagens direct migration and invasion 

of mammary epithelial cells during branching morphogenesis. Basement membrane proteins are 

required for polarized acinar morphogenesis and milk protein expression. Deregulation of ECM 

proteins in the long run is sufficient to promote breast cancer development and progression. 

Recent studies demonstrate that the integrated biophysical and biochemical signals from ECM and 

soluble factors are crucial for normal mammary gland development as well as breast cancer 

progression.
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Introduction

Cells in vivo are surrounded by or adhere to the extracellular matrix (ECM). ECM is the 

non-cellular component present within all tissues and organs, and contains fibrous proteins 

and polysaccharides such as collagen, laminin, fibronectin and hyaluronan (Naba et al., 

2012). These ECM molecules are classified into two subgroups: basement membrane (BM) 

and interstitial/stromal ECM (Guo & Giancotti, 2004). Basement membranes are thin layers 

of ECM which usually underlie epithelial or endothelial cells, while the interstitial ECM fills 
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in the intercellular space. Cell-ECM adhesion is mediated by the ECM receptors, including 

integrins, discoidin domain receptors (DDR), dystoglycans, syndecans, CD44, and Rhamm 

(Xu, Boudreau, et al., 2009). Binding of ECM to the receptors induces a cascade of both 

biochemical and biomechanical signals which transmit from the cell membrane to the 

nucleus (Figure 1), necessary for cellular architecture and function (Xu, Boudreau, et al., 

2009).

The majority of mammary gland development occurs postnatally, which provides a powerful 

model to investigate role of ECM proteins in normal tissue development. In mammary 

tissue, luminal and basal epithelial cells form bi-layer tubular or acinar structures where 

basal cells adhere to a BM. The BM is comprised largely of laminins, type IV collagen, 

entactin/nidogen, and proteoglycans (Prince et al., 2002, Aumailley et al., 2005, Xu & Mao, 

2011). These proteins, especially laminin-111, are required for the milk protein expression 

and secretion. Outside of the BM, stromal cells, adipocytes, and immune cells can produce a 

variety of stromal ECM proteins and small molecules to affect epithelial behaviors. The 

stromal ECM proteins include a set of fiber forming collagens, such as type I, II, and III 

collagen, as well as fibronectin, vitronectin, and elastin (Akalu & Brooks, 2004). Fibrillar 

collagens have been detected mainly around large mammary ducts, and recently studies 

showed that orientation of collagen I directs epithelial branching (Ingman et al., 2006, 

Brownfield et al., 2013). Therefore, ECM not only provides mechanical cues to support 

mammary gland structure, but also serves as a communicating bridge between mammary 

epithelia and their local and global environment throughout this organ's development 

(Bissell et al., 1982).

As an important component of tumor microenvironment, ECM also plays critical roles in 

breast cancer development and progression. For instance, the BM acts as a mechanical 

barrier and prevent malignant cells from invasion during the breast cancer progression 

(Liotta et al., 1980), whereas fibril collagen I contributes greatly to the strength of tissues 

and promotes tumor growth, invasion, and metastasis (Provenzano et al., 2008, Conklin et 

al., 2011).

In this review, we discuss recent findings regarding the ECM in mammary gland biology. 

We focus on the roles of integrated ECM and other microenvironmental signals in regulating 

mammary-specific tissue function, mammary tissue morphogenesis, and breast cancer 

progression. And more specifically, we discuss how the biochemical and biomechanical 

cues from the ECM cooperate to dictate normal and malignant tissue architecture and 

function.

Roles of ECM in normal mammary gland development

During mammary gland branching, alveologenesis, lactation, and involution, the expression 

and/or activitation of collagens, laminin, and matrix metalloproteinases (MMPs) are tightly 

regulated both temporally and spatially (reviewed in (Xu, Boudreau, et al., 2009), Table 1). 

A variety of growth factors and hormones such as estrogen, progesterone, and prolactin also 

play important roles in mammary gland development by regulating cell proliferation and 

differentiation. However, the mammary epithelial cells have distinct responses to the growth 
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factors and hormones when adhering to different ECM molecules, suggesting that ECM 

receptors also play central roles in regulating these processes. In fact, a number of studies 

have shown that the signals from ECM and soluble factors cooperate to regulate acinar 

morphogenesis and mammary specific gene expression (Streuli et al., 1995, Wang et al., 

1998, Akhtar & Streuli, 2006, Guo et al., 2006, Xu, Nelson, et al., 2009), supporting the 

concept that tissue architecture and function are determined by integrated 

microenvironmental signals.

Laminin cooperates with prolactin to regulate mammary gland function

Prolactin, a lactogenic hormone mainly produced in the pituitary gland, is required for the 

alveologenesis and milk production (Goffin et al., 2002). Binding of prolactin to its receptor 

induces STAT5 phosphorylation through JAK2 (Gouilleux et al., 1994, Gouilleux et al., 

1995). Phosphorylated STAT5 dimerizes and translocates to the nucleus then induces the 

related milk gene expression. As a downstream transcription factor of prolactin receptor 

(PrlR), STAT5 is essential for maximal expression of milk protein genes. STAT5a is a 

principal obligate mediator of mammopoietic and lactogenic signaling. In STAT5a knockout 

mice, mammary lobuloalveolar outgrowth during pregnancy was curtailed, and females 

failed to lactate after parturition because of a failure of terminal differentiation (Liu et al., 

1997). The phenotype of the PrlR knockout mouse closely resembles that of the STAT5a 

knockout mouse (Ormandy et al., 1997).

Interestingly, prolactin treatment only induces a transient STAT5 phosphorylation and 

nuclear translocation when the mammary epithelial cells are isolated and cultured in 2D or 

in suspension, and the transient STAT5 activation fails to differentiate and turn on milk 

protein expression. When cultured in 3D laminin-rich ECM gels, the cells form polarized 

acinar structures with a central lumen and functionally differentiate and express milk 

proteins, such as β- and γ-caseins with the addition of lactogenic hormones (Barcellos-Hoff 

et al., 1989). Laminin-111 is required for the mammary epithelial cells to form polarized 

acinar structures and milk protein expression (Alcaraz et al., 2008). In the presence of 

laminin-111, prolactin treatment induced sustained STAT5 activation in mammary epithelial 

cells cultured in suspension, which leads to transcription of β- and γ-casein genes (Xu, 

Nelson, et al., 2009). Dystroglycan and β1-integrin are involved in cell-laminin interaction. 

The extracellular domain of dystroglycan binds to prominent extracellular matrix proteins 

including laminins, perlecan and agrin. Knockout of dystroglycan expression in the 

mammary gland impedes epithelial outgrowth and leads a failure of lactation in vivo. 

Dystroglycan regulates STAT5 signaling in a manner that is dependent on laminin-111 

binding (Leonoudakis et al., 2010). Knockout of β1-integrin also impairs function 

differentiation of mammary epithelial cells and inhibits STAT5 activation (Naylor et al., 

2005). These results indicate that integrated laminin and lactogenic hormone signals are 

critical for mammary specific function.

PI3K is an important mediator of integrin signaling to regulate cellular architecture and 

proliferation (Liu et al., 2004). PI3K is basally localized in polarized mammary gland 

epithelial cells in 3D culture (Liu et al., 2004, Xu et al., 2010). Rac1 is a downsteam target 

of PI3K (Cantley, 2002, Kolsch et al., 2008). PI3K-Rac1 signaling axis is required for the 
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activation of PrlR/STAT5 signaling cascade (Akhtar & Streuli, 2006, Xu et al., 2010). 

Laminin-111 treatment enhances the Rac1 activity and induces binding of Rac1 to STAT5. 

The inhibition of PI3K blocks laminin-dependent sustained STAT5 phosphorylation and 

mammary-specific gene expression (Xu et al., 2010). In addition, the PI3K pathway may 

induce secretion of autocrine prolactin and downstream activation of the PrlR-STAT5 

pathway via Akt (Chen et al., 2012).

Transcription of mammary-specific genes requires not only activation of transcription 

factors, but also chromatin remodeling. Histone modification and ATP-dependent chromatin 

remodeling are two types of chromatin remodeling that contribute to transcriptional 

regulation of milk gene expression. Acetylated histones are associated with ‘open’ 

chromatin structure and promote gene transcription (Shahbazian & Grunstein, 2007). 

Laminin- and prolactin-dependent sustained STAT5 phosphorylation is necessary for 

histone acetylation in the promoters of casein genes, and also enhances binding of the 

SWI/SNF ATP-dependent chromatin remodeling complex to the promoters of β- and γ-

casein (Xu et al., 2007). These findings reveal a pathway (Figure 1) in which integrated 

ECM and hormone signals regulate functional differentiation of mammary epithelial cells 

via modulating transcription factor activity and chromatin remodeling.

Roles of Collagen and MMPs in mammary gland branch morphogenesis

The mammary ducts remain quiescent until the beginning of puberty. During puberty, the 

mammary ductal epithelial cells proliferate and invade into stromal fat pad, forming 

extensive branches (Sternlicht et al., 2006), and cell-matrix interactions have a critical role 

throughout this process.

Fibrillar collagen is mainly produced by stromal cells in mouse mammary glands. Collagen I 

fibers in the mammary pad are axially oriented prior to branching morphogenesis (Ingman et 

al., 2006). This orientation of collagen fibers is crucial for the branching morphogenesis. 

Macrophage deficiency reduces the amount of collagen I organized into long fibers and 

shortens terminal end buds, indicating that macrophages contribute to collagen 

fibrillogenesis and organization of the structure of terminal end buds (Ingman et al., 2006). 

Using the prestretched malleable wells to direct orientation of collagen fibers, a recent study 

demonstrates that collagen fiber orientation is sufficient to control the branching direction of 

mammary epithelial cells (Brownfield et al., 2013). Rac1 is activated at the leading edge of 

nascent branches and required for branch extension (Zhu & Nelson, 2013). Expression of a 

constitutively-active form of Rac1 decreased branch orientation of mammary epithelial 

aggregates, indicating that Rac1 is a modulator of collagen I orientation during branching 

morphogenesis (Brownfield et al., 2013). Meanwhile, ROCK-mediated contractions 

contribute to generation collagen I fiber orientation (Brownfield et al., 2013). The Rho-

ROCK pathway is a potential mediator of ECM signals in regulating mammary epithelial 

cell tubulogenesis. ROCK-mediated contractility diminished Rho activity in a floating 3D 

collagen gel, which in turn promotes mammary tubulogenesis. A decrease in focal adhesion 

formation is also observed in in vitro breast epithelial tubulogenesis (Wozniak et al., 2003).

Although it remains obscure how the orientation of collagen directs branching 

morphogenesis, accumulated evidence suggest that PI3K is involved in this process. There 
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are two ubiquitously expressed PI3K isoforms: p110a and p110b (Engelman et al., 2006, 

Vanhaesebroeck et al., 2010). Homozygous ablation of p110a dramatically impaired 

mammary duct outgrowth and branching during puberty and significantly decreased post-

partum lactation. In contrast to p110a, p110b is dispensable for the development of a 

functional mammary gland (Utermark et al., 2012). In vitro study shows mechanical stress 

leads to sustained phosphorylation of Akt at branch sites, and this activation is required for 

branch initiation (Zhu & Nelson, 2013). The levels of pAkt are controlled by PTEN, which 

in turn is regulated by mechanical signaling via SPRY2 (Zhu & Nelson, 2013). Through a 

PI3K phosphotyrosine-binding site, ErbB3 is able to recruit PI3K and initiates the 

PI3K/AKT signaling pathway (Soltoff et al., 1994). Mice with a mutant ErbB3 allele 

lacking the PI3K-binding sites exhibit an initial early growth defect and a dramatic 

impairment of mammary epithelial outgrowth (Lahlou et al., 2012). These results suggest 

that PI3K integrates collagen and growth factor signals to direct mammary branching 

morphogenesis.

Roles of ECM in breast cancer development and progression

Breast cancer development and progression requires extensive remodeling of the ECM 

microenvironment. As a major component of the tumor microenvironment, ECM regulates 

many pathways in cancer cells, including Wnt, PI3K/AKT, ERK, JNK, Src-FAK, and Rho-

GTPases(Levental et al., 2009, Malanchi et al., 2012). In addition, increased deposition and 

crosslinking of collagens associated with tumor formation enhances the tissue stiffness 

(Provenzano et al., 2008, Levental et al., 2009). These ECM-dependent biochemical and 

biomechanical signals together compose the complex environmental cues to promote breast 

cancer development and progression (Cox & Erler, 2011).

ECM-dependent biomechanical cues in cancer progression

Increasing mammographic density is associated with breast cancer risk (McCormack & dos 

Santos Silva, 2006). Breast cancer tumors are more rigid compared to normal mammary 

tissue because they have a stiff stroma. It has been shown that enhanced collagen 

crosslinking and deposition correlates with dense mammography and rigidity in tumor tissue 

(Martin & Boyd, 2008, Levental et al., 2009). Lysyl oxidase (LOX) is a copper-dependent 

amine oxidase (Kagan & Li, 2003) that initiates the process of collagen crosslinking 

(Yamauchi & Shiiba, 2008). LOXs can be induced by hypoxia inducible factor and TGF 

(Postovit et al., 2008). Upregulation of LOXs promotes mammary tumor growth and 

metastasis by enhancing collagen crosslinking and stiffness (Levental et al., 2009, Pickup et 

al., 2013). The stiff ECM substrata elevate Rho-dependent cytoskeletal tension, disrupt 

tissue polarity, and enhance tumor growth (Paszek et al., 2005). Collagen prolyl 

hydroxylases, an enzyme necessary for collagen synthesis, is also highly expressed in breast 

cancer tissues and correlates with poor clinical outcomes. Silencing collagen prolyl 

hydroxylases reduced collagen deposition and alignment, resulting in decreased invasion 

and metastasis to lymph nodes and lungs (Gilkes, Bajpai, et al., 2013, Gilkes, Chaturvedi, et 

al., 2013, Xiong et al., 2014). Thus, increased ECM stiffness caused by collagen deposition 

and crosslinking may be considered a driving force of tumor progression.
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Mechanotransduction from ECM to cytoskeleton enables cells to sense and adapt to external 

forces and physical constraints, which in turn modulate a variety of cellular functions (Vogel 

& Sheetz, 2006). It has been shown that stiff ECM induces integrin clustering and enhances 

growth factor-dependent ERK activation (Paszek et al., 2005). Activated ERK could 

facilitate malignant transformation by increasing focal adhesion assembly through Rho 

(Paszek et al., 2005). Expression of clustered integrin in mammary epithelial cells enhances 

EGF-stimulated Akt activity (Levental et al., 2009). Introducing auto-clustered integrin β1 

(V373N) also promotes invasion of a Ha-ras mammary epithelium (Levental et al., 2009). 

Therefore, integrin clustering may be the key mediator of mechanotransduction to promote 

breast cancer progression.

A recent study demonstrates that matrix stiffness regulates a switch in prolactin signals from 

normal mammary function to protumorigenic. In a soft laminin-rich matrix, prolactin 

treatment stimulates milk protein expression via inducing STAT5 activation (Alcaraz et al., 

2008). However, in stiff matrices, prolactin treatment increases SRC phosphorylated FAK, 

stimulates MMP-2 expression and activity (Barcus et al., 2013), and subsequently enhances 

cell invasion. Matrix stiffness also modulates activity of YAP and TAZ transcriptional 

regulators. This regulation requires Rho GTPase activity and tension of the actomyosin 

cytoskeleton, but is independent of Hippo/LATS cascade (Dupont et al., 2011). YAP 

regulates the expression of several cytoskeletal regulators, including ANLN, DIAPH3, 

MYL9, and MYH10 (Calvo et al., 2013). Together these downstream targets may generate a 

positive feedback loop to maintain cellular tension.

Altering cell tension has been show to regulate nuclear morphology and chromatin structure. 

Cells cultured in 3D matrigel or cells in suspension show reduced levels of both acetylated 

histones H3 and H4 when compared to cells cultured in the stiff microenvironment of 2D 

culture (Le Beyec et al., 2007). The results suggest low intracellular tension has profound 

effect on chromatin structure. Increased cell tension also reduces the turnover of lamin A in 

the nuclear lamina, which subsequently causes accumulation of YAP (Swift et al., 2013). An 

increase in lamin A also triggers the serum response factor (SRF) signaling pathway and 

drives translocation of the retinoic acid receptor into the nucleus to regulate gene expression 

and lineage differentiation (Swift et al., 2013). These findings reveal a novel link between 

ECM-controlled cell tension and nuclear structure. (Figure 2) However, how this link 

contributes to breast cancer development and progression still remains to be determined.

Biochemical signals from the ECM niche in cancer progression and metastasis

A number of ECM proteins, such as periostin and tenascin C, are important components of 

the metastatic niche. Periostin is mainly produced by fibroblasts in the tumor stroma (Gillan 

et al., 2002, Contie et al., 2011). Deletion of periostin has little effect on normal tissue 

development and primary tumor growth (Saga et al., 1992, Malanchi et al., 2012); however, 

periostin promotes colonization of cancer stem cells in the distant organ by recruiting Wnt 

lignads and inducing Wnt signaling (Malanchi et al., 2012). Therefore, reducing its 

expression prevents metastasis (Malanchi et al., 2012). Tenascin C has been detected in both 

primary breast cancer and the invasive front of lung metastasis nodules (Oskarsson et al., 

2011). Both cancer and stromal cells express a significant amount of tenascin C (Oskarsson 

Zhu et al. Page 6

Histol Histopathol. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2011). Tenascin C modulates cancer cell stem cell signaling by enhancing expression 

of musashi homolog 1 (MSI1) and leucine-rich repeat-containing G protein-coupled receptor 

5 (LGR5). These two proteins are key regulators of the Notch and Wnt pathways, 

respectively (Oskarsson et al., 2011). Cancer cell-derived tenascin C promotes the survival 

and outgrowth of breast cancer cells at distance organs, such as the lung (Oskarsson et al., 

2011). These findings link ECM molecules to biochemical signaling that supports the 

survival and proliferation of tumor initiating cells at metastatic sites.

Increased expression and deposition of fibronectin and collagen have been detected in breast 

cancer tissue (Christensen, 1992, Provenzano et al., 2008). Fibronectin is a marker of 

epithelial-mesenchymal transition (EMT) and has been detected in the stem cell niche. 

Through Src kinase and the ERK/MAP kinase pathway, fibronectin induces cells to undergo 

EMT and enhances cancer metastasis (Saad et al., 2002, Park & Schwarzbauer, 2013). 

Binding of type I collagen to DDR enhances SNAIL stability by stimulating ERK2 activity. 

Activated ERK2 directly phosphorylates SNAIL1 leading to SNAIL1 nuclear accumulation, 

subsequently promotes breast cancer cell invasion and metastasis (Zhang et al., 2013). These 

studies indicate that ERK is critical a pathway downstream of ECM cues to promote breast 

cancer progression.

ECM proteins have a profound effect on stromal cells in tumor tissue. This has been well-

demonstrated in the angiogenesis process. For instance, binding of fibroblast growth factors 

(FGFs) and vascular endothelial growth factors (VEGFs) to heparin– a component of ECM 

proteoglycans–mediates sequestration, stabilization and high affinity receptor binding and 

signaling of the factors (Vlodavsky et al., 1996). The initial burst of MMP production, 

especially of MMP-9, releases BM-bound VEGF and other factors that initiate tumor 

angiogenesis (Bergers et al., 2000). In addition, ECM is involved in angiogenesis signal 

transduction as precursor of biologically active signaling fragments. A large group of 

functional fragments, including endostatin, arrestin, vastatin, tumstatin and canstatin are 

derived from collagen XVIII, IV, and VIII and demonstrate anti-angiogenic effect (Colorado 

et al., 2000, Xu et al., 2001, Mott & Werb, 2004). Enrichment and differentiation of immune 

cells are also influenced by ECM microenvironment during cancer progression. Selective 

cleavage of collagen I by coordinated efforts of MMP-8, MMP-9 and prolyl endopeptidase 

produces tripeptide Pro-Gly-Pro (Gaggar et al., 2008). N-acetylated Pro-Gly-Pro shares 

sequence and structure homology with CXCL8 (Weathington et al., 2006), and causes 

chemotaxis and promotes neutrophil recruitment to the inflammation sites (Weathington et 

al., 2006). Therefore, cancer development and progression may require the coordinated 

action of ECM and stromal cells in the tumor microenvironment.

Conclusions

Microenvironmental signals generated from ECM, hormones, and growth factors are 

integrated at the extra- and intracellular level. This synergetic action of microenvironmental 

cues is crucial for both normal mammary gland development and for breast malignancy. 

ECM-dependent biochemical and biomechanical signals are transduced by cell surface 

receptors to modulate nuclear structure and gene expression. Further investigation how these 
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signals are integrated to regulate mammary gland morphogenesis and breast cancer 

progression is crucial for the comprehensive understanding of ECM function.
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Figure 1. 
Mammary gland epithelial cells form polarized acinar structures when cultured in 3D 

matrigel. Treatment with prolactin can activate JAK2-STAT5 pathway. Without 

laminin-111, STAT5 only shows a transient phosphorylation, which is not suffcient for 

chromatin remodeling and milk gene expression. After laminin-111 binds integrins and 

dystroglycan, PI3K re-localize to the basal surface. Rac1 is a downsteam target of PI3K and 

required for sustained activation of STAT5. Prolactin, together with laminin-111, induces 

histone acetylation, binding of the SWI/SNF and transcription factors to the promoter and 

initiates transcription of casein.
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Figure 2. 
Matrix stiffness induces integrin clustering and activation of PI3K and Rho in breast cancer 

cells. Integrin clustering enhances growth factor-dependent ERK activation and increases 

ROCK expression lever. Increased cell tension reduces turnover of lamin A. Accumulation 

of lamin A drives translocation of the retinoic acid receptor (RARG) into nucleus and 

RARG lead the transcription of Lamin-A. Rho and Lamin-A can translocate YAP/TAZ. 

YAP regulates the expression of several cytoskeletal regulators, including MLC.
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Table 1
Components of ECM in mammary gland development and breast cancer

Development Tumor

Collagens

Collagen I
Abundant around larger mammary ducts (Keely et 
al., 1995), direct branch orientation (Brownfield 
et al., 2013)

Promote tumor progress (Kauppila et al., 1998)

Collagen III Promote tumor progress (Kauppila et al., 1998)

Collagen IV Regulate ERα expression and function (Novaro et 
al., 2003)

Promote tumor progress (Nakano et al., 1999)

Collagen V Regulate expression of apoptotic and stress response genes (Luparello et 
al., 2003, Luparello & Sirchia, 2005)

Collagen VI Contribute to tumor growth at early stages (Iyengar et al., 2005)

Collagen XV Lost early in the development of invasive tumors (Amenta et al., 2003)

Glycoproteins

DMBT1 Suppress breast cancer (Mollenhauer et al., 2004)

FN
Increased in puberty and sexual maturity, 
remaining high during pregnancy and lactation 
(Woodward et al., 2001)

Stimulate proliferation and promote EMT (Williams et al., 2008, Park & 
Schwarzbauer, 2013)

Laminin 111

Expressed near growing end buds and alveoli 
(Keely et al., 1995), necessary for formation of 
acinar structure and β-casein expression (Xu, 
Nelson, et al., 2009)

Laminin 332 Induce adhesive contacts in epithelial cells 
(Ewald et al., 2008)

Associated with aggressive features (Carpenter et al., 2009)

Nidogen Promote the ability of Laminin-111 inducing β-
casein expression (Pujuguet et al., 2000)

Periostin Elevated serum level with bone metastases (Sasaki et al., 2003), allow 
cancer stem cell maintenance (Malanchi et al., 2012)

SPARC Highly expressed in breast cancer tissue (Watkins et al., 2005). SPARC 
expression inhibits cancer cell metastasis (Koblinski et al., 2005).

Tenascin C Promote the survival and growth of pulmonary metastases (Oskarsson et 
al., 2011)

Vitronectin IGF-I binds vitronectin enhance breast cell migration and survival 
(Kashyap et al., 2011)
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