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Abstract

The unfolded protein response (UPR) has traditionally been viewed as an adaptive response 

triggered upon accumulation of unfolded proteins in the endoplasmic reticulum (ER), aimed at 

restoring ER function. The UPR can also be an anticipatory response that is activated well before 

the disruption of protein homeostasis. UPR signaling intersects at many levels with the innate and 

adaptive immune response. In some immune cell types like dendritic cells and B cells, particular 

UPR sensors appear constitutively active in the absence of traditional UPR gene program 

induction, necessary for antigen presentation and immunoglobulin synthesis. The UPR also 

influences Toll-like receptor signaling and NF-κB activation, and some pathogens subvert the 

UPR. This review summarizes these emerging non-canonical functions of the UPR in immunity.

The endoplasmic reticulum (ER) is the production and folding factory of secreted and 

transmembrane proteins of the cell. It is well adapted for this function and performs complex 

protein modifications, such as glycosylation and disulfide bond formation1. Quality control 

ensures that only properly folded proteins exit the ER via the secretory pathway, while 

improperly folded proteins exit the ER through ER-associated degradation (ERAD) or via 

autophagy2. Depending on the physiological and environmental demand, the protein 

production rate in the ER can increase very rapidly3. An imbalance between the folding load 

of nascent proteins entering the ER and the capacity of the ER to handle this load causes ER 

stress. This is detected by three sensors that face the ER lumen: inositol-requiring enzyme 1 

(IRE1 also known as ERN1, ER to nucleus signaling 1), protein kinase R-like ER kinase 

(PERK) and activating transcription factor 6 (ATF6) (Fig. 1). They trigger the unfolded 

protein response (UPR), an adaptive response aimed at restoring protein-folding homeostasis 

by three main mechanisms: transient reduction in protein translation4, 5, 6; increase in the 

folding capacity and ERAD7; and initiation of programmed cell death, when ER stress 

cannot be resolved8.
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IRE1α is a bifunctional type I transmembrane protein that harbors a serine/threonine kinase 

domain and a unique ribonuclease (RNAse) domain in its cytoplasmic domain. The luminal 

domain senses unfolded proteins and is responsible for high-order oligomerization of 

IRE1α. Oligomerization activates the RNase domain, which cleaves XBP1 (X-box binding 

protein) mRNA at two discrete stem loop structures through an unconventional cytoplasmic 

splicing reaction9, 10. The resulting fragments are ligated by an as yet unidentified – at least 

in mammals – RNA ligase, yielding an active transcription factor of the bZIP family, 

XBP-1s9, 10. XBP-1s plays a major role in the induction of genes involved in lipid 

biosynthesis, ERAD and chaperone production11, 12, 13, 14. In Saccharomyces cerevisiae, the 

XBP1 homolog HAC1 mRNA is the only known substrate of IRE1. In fission yeast (S. 

pombe) and metazoans however, the IRE1 has more promiscuous endonuclease activity, 

cleaving many mRNAs that are localized to the ER membrane6, 15. IRE1 dependent decay 

of mRNAs (termed RIDD) presumably represents another mechanism for the attenuation of 

protein translation5. Upon oligomerization, IRE1α autophosphorylates via the activity of its 

kinase domain. The physiological significance of this is unclear, as only nucleotide binding 

and not phosphotransfer appears to be required for RNase activity16, although 

phoshorylation may drive further oligomerization17. Alternatively, phosphorylated sites in 

IRE1α might serve as docking sites for TRAF2 and enable ER stress-induced JNK 

activation18. Mammals have a second isoform of IRE119. Unlike IRE1α, IRE1β does not 

cleave XBP1 mRNA and its expression is restricted to epithelial cells lining the gut and 

lung20, 21, 22, where it may control RIDD22, 23, 24.

The ATF6 sensor is a type II transmembrane protein with its carboxy-terminus facing the 

ER lumen and a bZIP transcription factor in its amino-terminus25, 26 (Fig. 1). In response to 

ER stress, ATF6 is transported via COPII vesicles to the Golgi apparatus where it undergoes 

regulated intramembrane proteolysis by sequential cleavage by site 1 and site 2 proteases 

(S1P and S2P) in a manner reminiscent of SREBP transcription factor activation27. This 

releases the amino-terminal transcription factor fragment pATF6-N that moves to the 

nucleus and directs expression of UPR genes involved in ER membrane expansion, the 

ERAD pathway and folding26, 28, 29. Several other bZIP transcription family members, such 

as OASIS or CREB3, are related to ATF6 and are also cleaved by regulated intramembrane 

proteolysis30. Some of them such as CREBH, do not trigger genes that enhance capacity of 

the ER but rather trigger acute phase proteins, representing an intriguing link between ER 

stress and inflammation31.

Finally, PERK, is another type I transmembrane protein kinase that shares about 20% 

similarity in its luminal domain with IRE14, 32. Unlike IRE1, PERK has a well-established 

cytoplasmic kinase substrate, the eukaryotic initiation factor 2 alpha (eIF2α)(Figure 1)33. 

Phosphorylation of eIF2α leads to an inhibition of the guanine exchange factor eIF2B that 

recycles eIF2 to its active GTP bound form. As such, there is a delay in ternary complex 

formation and a strong reduction in cap-dependent translation, which is thought to be 

essential for cell survival in conditions of ER stress34, 35. A few transcripts with short 

upstream open reading frames (uORFs) in their 5’ UTR escape inhibition of translation 

under conditions of high eIF2a phosphorylation and mediate a PERK-dependent 

transcriptional response33. ATF4 is a bZIP transcription factor induced in this manner. 
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ATF4 directs the expression of CHOP, a proapoptotic factor33 and GADD34, a negative 

feedback regulator of eIF2α phosphorylation36. Additionally, ATF4 coordinates a gene 

program needed for amino acid metabolism, glutathione biosynthesis and resistance to 

oxidative stress37. The latter pathway was discovered based on its homology to the amino 

acid starvation control response in yeast (38 and Box 1).

Detection of stress and activation of the UPR

Facing the ER lumen with their sensor domains are PERK, ATF6 and IRE1 which can sense 

ER stress in different ways. Originally, it was proposed that ER stress was perceived as a 

drop in the amount of free BiP (binding immunoglobulin protein, also known as Grp78 or 

Hspa5), the most abundant ER chaperone43, 44. BiP binds all three sensors but detaches upon 

ER stress to assist the folding of nascent proteins43, 44. Consistent with this model, release of 

BiP would be sufficient to allow formation of high molecular mass complexes of activated 

PERK and IRE143. However, there were a few limitations to this model45, 46 and 

alternatively, it was suggested that unfolded proteins bind IRE1 directly. Crystallization of 

yeast IRE1 revealed the presence of a peptide-binding groove in the luminal domain of 

active oligomerized IRE1 that was very reminiscent of the one present in MHC-molecules47. 

Binding of unfolded proteins to the inactive conformation triggered a conformational change 

in the sensor domain, opening the peptide groove and inducing oligomerization16, 48. In this 

latter model, it is thought that the function of BiP is to keep PERK and IRE1 in a free, 

monomeric state (reviewed in16). The crystal structure of the PERK luminal domain has not 

been solved yet, but based on structural and functional homology with IRE1, PERK could 

also be activated by higher order oligomerization49. How ATF6 senses unfolded proteins 

remains as yet unknown. BiP dissociates from ATF6 upon ER stress44 by an active 

regulatory mechanism, and this leads to a conformational change from an oligomeric to 

monomeric form50.

The UPR as a part of normal cellular physiology

While most of the signaling cascades of the UPR have been unraveled in conditions of ER 

stress - defined as an excess of client load to folding capacity – most likely this does not 

represent the prime function of the UPR51. Especially in vertebrates with complex secretory 

functions, the UPR provides flexibility to ensure the multitude of ER functions across a wide 

range of physiological demands. If the UPR would be launched only after misfolded 

proteins accumulate in the ER, this would be a highly inefficient system, causing 

unnecessary impairment of the ER before homeostasis is restored. An anticipatory response 

would be more desirable, especially when high ER client load handling is part of normal 

physiology51. In some immune cells, activation of the UPR is part of the normal 

differentiation program of a cell. The differentiation of antigen triggered B cells into 

antibody-producing plasma cells requires the expansion of the ER membrane, a response 

previously assumed to be triggered by the accumulation of unfolded heavy chains52. 

However, more recent data showed that the activation of the UPR occurs before the onset of 

Ig chain synthesis53 and even in the (engineered) absence of Ig molecules altogether54. 

Reporter gene studies in vivo showed constitutive activation of the IRE1 pathway in specific 

cell types, like CD8α+ dendritic cells and developing B and T cells without any sign of 
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activation of any of the other UPR cascades55, 56. Similarly, activation of Toll-like receptors 

(TLR) impinges on UPR signaling cascades57, 58. This most likely reflects an anticipatory 

response of the cell to prepare the ER to combat infection. It is at present still unclear how 

IRE1 or other UPR sensors are activated in these conditions, however perturbations in the 

composition of the ER lipid bilayer have been demonstrated to directly trigger IRE1 and 

PERK independently of their luminal sensor domain59. In addition, the flavonoid component 

quercetin activates IRE1 by binding to a pocket at the dimer interface of the RNase 

domain60. Thus, alternative ways to trigger ER stress sensors exist. These act independently 

of defects in protein folding homeostasis.

The UPR shows conserved functions in immune responses

As IRE1 is the only UPR sensor in yeast, and HAC1 its only known target, it was long 

assumed that the most ancient function of the UPR was a transcriptional response intended 

to increase ER folding capacity. However, further data challenged this concept. In most 

fungi, the IRE1-HAC1 branch is conserved (Fig. 2)61. However in S. pombe, no HAC1 gene 

could be found and activation of IRE1 mainly leads to RIDD. RIDD may thus be the 

ancestral function of IRE115. In pathogenic fungi, a fully competent UPR is linked to 

pathogen virulence, facilitating secretion of toxic compounds or mediating adaptation of the 

fungus to a host microenvironment that triggers a UPR62.

In plants, the ATF6 and IRE1-XBP1 branch of the UPR appear to be conserved, while 

PERK is absent. In A. thaliana, the transcription factor bZIP60 is spliced by one of two 

IRE1 homologs at two stem-loop structures, which leads to the removal of a transmembrane 

domain and the nuclear localization of bZIP6063. Two ATF6 like factors, bZIP28 and 

bZIP17 are cleaved by S1P and S2P in response to ER stress and mediate the induction of 

BiP64. In addition, ER stress-induced downregulation of mRNAs has been observed65, and 

this RIDD-like mechanism was suggested to compensate for the lack of translational 

regulation by PERK. Intriguingly, in plants the UPR is not only activated in response to 

increased ER client protein load (e.g. during seed development), but also in response to 

abiotic stress, like heat shock or salt stress. In addition, IRE1 and bZIP60 is activated in 

response to plant pathogens and is required for antibacterial defense66, 67. Also in plants, the 

UPR response is anticipatory. During plant pathogen responses, foldases and chaperones are 

produced before defensive hydrolases are secreted68.

In Caenorhabditis elegans, the three branches of the UPR are conserved69. The IRE1-

XBP-1 branch is specifically triggered by p38 homolog pmk in response to infection and is 

essential for larval survival in response to pathogens70. XBP-1 did not control the infection 

itself but rather was needed to prevent the detrimental effect of an overwhelming innate 

immune response on ER fitness. This suggests an evolutionarily-conserved role of the IRE1-

XBP-1 arm to mediate protection against ER toxicity caused by inflammatory pathways71.

While the different branches of the UPR became fully established at the metazoan level only 

in the face of increasing complexity in the secretory functions of the ER, the integrated 

stress response is much older34, 61. Translational control as a proper response to nutrient 

deprivation was already established in yeast34, and most of the UPR sensors developed from 
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more ancient metabolic regulators. As such, the PERK sensor is closely related to the GCN2 

and GCN4 systems in unicellular eukaryotes and the regulated intramembrane proteolysis of 

ATF6-like factors is very similar to the system in which SREBP transcription factors control 

cholesterol metabolism27, 37.

Intriguingly, the integrated stress response and the UPR appear closely intertwined with host 

immune responses. Several microarray studies have shown a marked, though partial, overlap 

between genes induced by the UPR or ISR and genes induced by microbial infection or 

stimulation with TLR ligands72, 73. Compelling data on the activation of the ISR by 

bacterial72 or viral74 infection showed that metabolic responses controlling translation and 

autophagy most likely represent an ancient host defense response against invasive 

pathogens, that might predate the development of more dedicated pattern recognition 

receptors belonging to the NLR or TLR family72, 75.

The IRE-1-XBP-1 branch in differentiation of immune cells

In cells that have mainly a secretory function it is no surprise that genetic deletion of UPR 

sensors or their signaling intermediates also affects the cellular differentiation process. The 

analysis of PERK deficient mice revealed a crucial role for the UPR in exocrine pancreas 

acinar cells, endocrine pancreas insulin producing β-cells, chondrocytes and 

osteoclasts76, 77. XBP-1 plays a similar regulatory role in the development of exocrine 

pancreas acinar cells and intestinal Paneth cells78, 79. In the immune system, XBP-1 is 

essential in the terminal differentiation of B cells to plasma cells. It controls the expansion 

of the ER and its secretory function to enable the massive increase in immunoglobulin 

synthesis80,81. In B cells, the absence of XBP-1 led to hyperactivation of IRE-1, triggering 

RIDD and decay of secretory immunoglobulin µ mRNA, further curtailing IgM responses82. 

XBP-1 turned out to be downstream of Blimp-1 and IRF4, and was proposed to be the 

central hub in the physiological UPR of plasma cells11.

Further studies with RAG-2 blastocyst complementation systems showed that XBP-1 is also 

needed for the development and survival of other immune cell types, such as splenic 

conventional and plasmacytoid dendritic cells (cDCs and pDCs respectively)83. By making 

use of an IRE-1 activity reporter mouse (termed ERAI84), one study could confirm the 

constitutive but subset-specific activation of the IRE1 branch in CD8α+ cDCs55. Splenic 

macrophages and NK cells also activate the IRE1-XBP-branch at baseline, while naive T 

and B cells, monocytes and neutrophils do not show any basal IRE1 activity55. The 

physiological role of IRE1-XBP-1 in certain DC populations at baseline is still unclear. 

Spontaneous UPR could be linked to the capacity of pDCs to produce type I interferon83. In 

CD8α+ cDCs, it could be related to antigen cross-presentation, as well as to an adaptive 

strategy to combat infection55.

The UPR triggers inflammation

Defects in protein folding, either environmentally induced or caused by genetic defects in 

individual branches of the UPR, spontaneously induce an inflammatory phenotype. This has 

been described particularly in models of inflammatory bowel disease (IBD)71, metabolic 

disease85 or lung respiratory disease86. Loss of XBP-1 in intestinal epithelial or Paneth cells 
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leads to enteritis, associated with strongly increased nuclear factor κB (NF-κB) activation. 

This is dependent on the hyperactivation of IRE-1 (and consequent RIDD), rather than on 

the loss of XBP-171. Interestingly, polymorphisms in both XBP1 and AGR2, a protein 

disulfide isomerase needed for mucin folding, have been found in Crohn’s disease and 

Ulcerative Colitis patients, suggesting that unresolved ER stress due to improper functioning 

of major UPR branches could indeed contribute to the inflammatory pathology typically 

observed in IBD87. This and many other studies, especially in diabetes85, 88, have led to the 

paradigm that dysregulated UPR signaling underlies chronic low-grade inflammation89.

The UPR intersects at various levels with inflammatory pathways, such as reactive oxygen 

species (ROS) production, and the activation of NF-κB, c-Jun N-terminal kinase (JNK), and 

IRF3 (Fig, 3 and Fig. 4)90. Activation of PERK and concomitant translational inhibition 

leads to a disequilibrium in the ratio of the short-lived IκB protein (inhibitor of NF-κB) to 

the longer-lived NF-κB protein, resulting in activation of NF-κB, independent of IκB 

phosphorylation91. On the other hand, IRE-1 directly triggers IκB kinase and as such IκB 

phosphorylation, in a TNF receptor associated factor (TRAF)-2 dependent manner92, 93, 

while ATF6 activates NF-κB via AKT phosphorylation94. IRE-1 also mediates 

phosphorylation of JNK in a TRAF2-ASK dependent pathway18, which was linked to 

insulin receptor substrate (IRS)-1 phosphorylation and the development of insulin resistance 

in type II diabetes95. ER stress and lipids also trigger the eIF2α-kinase PKR that coordinates 

activation of JNK and IRS-1 phosphorylation in a complex termed the 

‘metaflammasome’85, 96. Also other innate immune pathways leading to IRF3 activation 

become activated in response to ER stress97.

There is limited evidence that the UPR by itself is sufficient to trigger production of 

inflammatory mediators such as interleukin-6 (IL-6), IL-8 or the proangiogenic factor 

VEGF. This appears highly cell type specific and can be mainly observed in cancer cells, 

epithelial or endothelial cells98, 99, 100. In DCs, the induction of IL-6 by tunicamycin was 

observed at the transcriptional but not at the protein level (Tavernier et al., unpublished 

data). Increased production of IL-1β upon UPR activation has been suggested to rely on 

IRE-1α mediated degradation of the micro RNA miR-17, causing the stabilization of 

thioredoxin interacting protein (TXNIP), and activation of the NLRP3 inflammasome101.

Several reports have shown that cytokine secretion by stimulation of the UPR requires a 

second signal57, 102. Concomitant activation of the UPR clearly amplifies the cytokine 

response induced by several TLR ligands57, 73, 103, 104, 105. According to the specific 

stimulus, this synergism depends on the IRE1-XBP-1s axis57, CHOP103 or the ATF4-

GADD34-axis73. Synergism can be regulated at the transcriptional level, entailed by binding 

of XBP-1s106 or CHOP103 to particular cytokine promoters, but can also be regulated at the 

translational level73.

ER stress can also make cells refractory to inflammatory stimuli107, 108. For example it was 

proposed proposed that NF-κB activation resulting from ER stress occurs in a biphasic 

manner, with an early positive feedback loop and a later negative feedback loop109. 

Inhibition of NF-κB mediated signaling was shown to depend on TRAF2 downregulation90 

and on induction of C/EBP-β by ER stress110, which acts as a transcriptional repressor of 
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cytokine expression. This was confirmed in a recent study showing C/EBP-β dependent 

downregulation of IL-4 and IL-13 signaling upon ER stress111. Also other inflammatory 

pathways can be downregulated by UPR signaling components. ATF4 inhibits type I IFN 

expression, by interfering with TBK-IKKε-mediated phosphorylation of IRF7112.

Pathogens trigger the UPR

Both in plants and in C.elegans, infection is sufficient to trigger rigorous activation of UPR 

pathways66, 70. Also in mammals, several viruses, invasive bacteria and parasites elicit ER 

stress responses113, 114. Many pathogens interfere with the function of the ER as part of their 

infectious life cycle. Viruses like hepatitis C virus (HCV), poliovirus, human 

cytomegalovirus or herpes simplex virus strictly depend on the ER for assembly and 

budding of virion particles112. For successful replication of bacteria like Brucella or 

Legionella pneumophila and parasites like Toxoplasma inside the host cell, extensive 

interactions are required between the ER and the membranous compartments in which these 

pathogens reside114. Some bacterial toxins, like Shiga toxin, are retrogradely transported to 

the ER and as such interfere with ER homeostasis114. Unfolding of the A1 subunit of 

cholera toxin in the ER activates IRE1 and triggers the RIDD pathway, leading to the 

accumulation of small single stranded RNA products that launch a RIG-I dependent immune 

response115 (see Box 2).

As some pathogens hijack the ER during their life cycle for assembly or exit, it is easy to 

understand how they activate the UPR. However, in other settings the mechanism is less 

obvious. Listeria monocytogenes has been found to induce ER expansion prior to host 

entry116, while HCV activates the UPR independent of viral replication. A direct interaction 

between HCV viral hydrophobic non-structural proteins and IRE-1 was proposed to trigger 

activation of the IRE1-XBP-1 arm117. Finally, stimulation of TLR2 and TLR4 by bacterial 

ligands in macrophages has been demonstrated to trigger specifically the IRE1-XBP-1 arm 

by a TRAF6 and NADPH oxidase 2 (NOX2) -dependent mechanism57.

Pathogen associated molecular patterns often activate a specific arm of the UPR, while 

actively suppressing the other arms118, 119, 120. TLR stimulation in macrophages induces 

XBP-1 splicing, but inhibits PERK or ATF6 activation57. Furthermore, LPS induces no 

canonical XBP-1s gene signature, but specifically triggers XBP-1s for optimal cytokine 

secretion57. This has also been observed in the case of HCV, CMV or West Nile virus 

infection117, 121, 122. TLR signaling suppresses the ATF4-CHOP branch by enhancing 

eIF2B guanine exchange activity and as such counteracting the inhibitory effects of 

phosphorylated eIF2α on ternary complex formation and protein translation58, 123. This TLR 

effect occurs via the adaptor molecule TRIF and allows for uninterrupted protein synthesis 

in response to pathogen infection in innate immune cells123. As a consequence, LPS 

pretreatment also prevented ER stress-induced CHOP expression and hence apoptosis, while 

GADD34 expression remained unaffected123. This was confirmed in other studies124, 

although the mechanism is likely to be more complex. In DCs for example, stimulation with 

lipopolysaccharide (LPS) does induce CHOP expression103, while stimulation with the 

TLR3 ligand poly(I:C) leads to upregulation of CHOP mRNA, but not protein73. The timing 

of LPS or poly(I:C) addition to DC cultures and UPR treatment determines whether CHOP 
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is induced or not. Pretreatment with microbial stimuli appears to block subsequent UPR 

signals, while post-treatment with microbial stimuli leads to synergistic enhancement of the 

UPR response and CHOP expression, without causing cell death (Tavernier et al., 

unpublished data). This suggests that there are multiple mechanisms to modulate the UPR 

during immune responses. Induction of ATF4, ATF3, CHOP or GADD34 by microbial 

triggers can also occur in a PERK-independent manner, via TRIF, PKR or RIG-like 

receptor-MAVS pathways125. Furthermore, activation of these molecules downstream of the 

UPR or downstream of microbial stimulation yields a completely different functional 

outcome. Hence, pIC poly(I:C)-induced GADD34 is not sufficient to relieve the block on 

translational inhibition in immune cells, but rather plays a role in selective induction of 

IFN73. All these studies point towards an intimate link between pathogen detection, 

translation regulation and the UPR or ISR. It has been proposed that the term “microbial 

stress response” should be used to define these stress pathways. They are activated by 

pathogens, hijack some of the main components of the UPR for slightly adapted functions, 

without fully activating all arms of the UPR125.

Subversion of the UPR by viruses

There are several reasons why viruses would benefit from triggering the UPR. An increase 

in folding capacity and chaperones could sustain viral replication. Activation of lipid 

biosynthesis pathways through the UPR could help the formation of membrane associated 

replication complexes113. However, the UPR can also have adverse effects on viral 

propagation. Both the PERK dependent block in protein translation, the IRE-1-RIDD 

dependent degradation of glycoprotein-encoding mRNAs, the induction of IFN and the 

degradation of nascent viral proteins by ERAD pathways are likely to have a negative 

impact on viral replication113. Emerging evidence indicates that viruses selectively modulate 

specific branches of the UPR to maximally benefit from the UPR while circumventing the 

detrimental effects. Hepatitis C virus (HCV) triggers the UPR, which in turn activates the 

autophagic pathway that promotes viral replication126. The cytomegalovirus protein M50 

specifically constrains IRE1-dependent ERAD pathways by binding to and degrading 

IRE1121. On the other hand, the IRE1 pathway is specifically activated by Japanese 

encephalitis virus (JEV) and influenza to support viral replication119, 127. In the case of JEV, 

the beneficial effect of IRE1 was found to depend on activation of the RIDD pathway127. 

RIDD led to cleavage of host transcripts, without any effect on the JEV RNA whereas 

inhibition of RIDD activity led to a reduction in JEV viral protein translation by an unknown 

mechanism127. In contrast, IRE1-dependent RIDD has been shown to degrade Respiratory 

syncytial virus (RSV) mRNAs and as such IRE1 activation blocks RSV replication118. How 

RIDD activity and target selection is regulated is far from clear (Box 2).

ER stress pathways and antigen presentation during vaccination

There is a generally unappreciated link between activation of the UPR and ISR pathways in 

DCs and antigen presentation to CD4 and CD8 T cells. XBP1 binds to a cyclic AMP-

response element (CRE)-like sequence in the genes encoding MHC class II HlA-DPB and 

HlA- DRA135. Also H2-M2, a murine MHC class Ib gene with as yet unknown function, 

appears to be dependent on XBP-1 expression55. Several studies have shown that ER stress 
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interferes with MHC-I surface expression, most likely linked with a defect in antigen supply 

due to an inhibition in protein translation136, 137. For example, activation of RIDD, but not 

loss of XBP-1s, interferes with the crosspresentation ability of CD8α DCs due to the 

degradation of several components in the crosspresentation machinery, notably tapasin55. 

Since CD8α DCs show high constitutive IRE1 endonuclease activity, it is possible that 

RIDD represents an alternative mechanism to prevent constitutive presentation of 

autoantigens and as such avoid autoimmunity. Phosphorylation of the PERK-eIF2a branch 

favors the translation of so-called cryptic antigens, initiated by CUG rather than AUG-

codons138. As such, ER stress might change the peptide repertoire presented by MHC 

molecules, an area that certainly deserves further attention.

Finally, studies using systems biology approaches in humans have revealed that the live 

attenuated yellow fever vaccine 17D induced the expression of GCN2 in peripheral blood 

mononuclear cells within a few days after vaccination. This expression strongly correlates 

with the magnitude of the later CD8+ T cell response to the vaccine139. Subsequent 

mechanistic studies using GCN2 deficient mice demonstrated a critical role for virus-

induced GCN2 activation in programming DCs to initiate autophagy and enhance antigen 

presentation to both CD4+ and CD8+ T cells74. These results reveal an unappreciated link 

between virus-induced ISR in DCs and the adaptive immune response. Furthermore, these 

results suggest that vaccine adjuvants that activate GCN2 in DCs may be efficient at 

inducing enhanced antigen presentation to T cells. Induction of the ISR or UPR might be 

predictive of good vaccine responses in humans. Consistent with this notion, the same 

vaccinology study showed that in human subjects vaccinated against influenza, the early 

expression of XBP-1 and other genes related to the UPR are robust biomarkers for the later 

occurrence of protective antibody titers139. In cancer, immunogenic cell death is favorable 

for anti-tumor responses and is accompanied by expression of the ER chaperone calreticulin 

on the cell surface of dying cells. The expression of calreticulin was shown to depend on 

PERK140.

Concluding remarks

The UPR is more than just an adaptive response to accumulation of unfolded proteins in the 

ER. In some immune cells, like plasma cells and DCs, as well as in barrier epithelial cells 

that are increasingly implicated in the regulation of the mucosal immune response, parts of 

the UPR and the ISR seem to be crucial for normal cellular differentiation and function. In 

the coming years, there will be a need to explore in greater detail how the UPR, or selective 

arms of this response, are activated as part of this normal physiology. It is possible that 

lineage-specific transcription factors drive the expression of certain UPR sensors, but this 

needs more study. Alternatively, some specialized cellular functions like crosspresentation 

require poorly studied cell biological processes, like the fusion of ER components with 

phagosomes. This might also lead to exploitation or triggering of certain UPR pathways like 

ERAD, or expansion of ER membranes or ER to Golgi transport. The degradation of RNA 

by IRE1 (RIDD) is emerging not only as a novel means of gene regulation in conditions of 

ER stress, but also could constitute an ancient pattern recognition pathway that senses ER 

resident pathogens and triggers immunity via the RIG-I pathway. It will be crucial to 

understand when exactly this pathway gets triggered and how pathogens subvert it.
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Activation of innate immune receptors like TLRs or RIG-I receptors intersect with the UPR 

signaling pathways. We need to understand better if and how this represents a cellular 

adaptation to prepare the cell for secretion of cytokines, inflammatory mediators or other 

defense mechanisms. Given the fact that genome-wide studies of genetic risk have identified 

key UPR regulators to be associated with the risk of asthma, IBD and diabetes, we also need 

to understand in much greater detail how alterations in the UPR lead to chronic 

inflammatory disease, and whether these UPR related polymorphisms mainly affect 

inflammatory or structural cells. Ultimately, interfering with the UPR might constitute a 

novel way of promoting immunity or alternatively to circumvent chronic immune activation. 

Much more research is needed before we can exploit this new knowledge to the design of 

better vaccines or forms of immunotherapy.
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Box 1: The integrated stress response (ISR)

In mammalia four eIF2α kinases, termed general control nonderepressible (GCN) 2, 

heme-regulated eIF2α kinase (HRI), protein kinase R (PKR) and PERK jointly constitute 

the integrated stress response, an ancient stress response that is highly conserved from 

yeast to mammals39, 40. It is known to modulate protein biosynthesis by integrating 

various types of stress signals, including ER stress, amino acid deprivation, infection 

with double stranded RNA viruses, and oxidative stress41. These diverse signals activate 

specific stress kinases, resulting in the phosphorylation of serine 51 of the alpha subunit 

of the eukaryotic initiation factor 2 (eIF2), which has GTPase activity. This modification 

changes the capacity of eIF2α to be recharged by the nucleotide exchange factor eIF2B, 

which subsequently leads to a reduction in the availability of active initiation complexes, 

and thus attenuates translation. In addition, the expression of proteins responsible for 

damage repair is increased, whereas translation of constitutively expressed mRNA is shut 

down by redirection of these mRNAs from polysomes to discrete cytoplasmic foci known 

as stress granules (SGs) for transient storage42. Defects in the ISR are associated with 

several diseases including those caused by viral infections, diabetes and Alzheimer’s 

disease39, 40.
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Box 2: RIDD - an ancient IRE1 function?

The RNAse domain of D. melanogaster IRE-1α was found to have a more promiscuous 

function than just splicing of HAC1 or XBP16. Upon prolonged ER stress, IRE1 

degrades diverse ER-localized mRNAs via RIDD. Though this function of IRE1 is now 

widely accepted and has been recognized in many different phyla, its exact physiological 

role and its regulation remain largely unclear128, 129. The free 5’ and 3’ ends of the 

RIDD-derived mRNAs become substrates for cellular exoribonucleases and as such are 

targeted for degradation23. It is still enigmatic what determines recognition by the IRE-1 

endonuclease domain, but based on all validated substrates to-date a consensus sequence 

is emerging that shows similarity with the cleavage site in the stem loop structure of 

XBP-1 and that is highly conserved128. IRE-1 also degrades several miRNAs, and as 

such indirectly affects the expression of many hundreds of mRNAs130.

The physiological roles for RIDD have mainly been uncovered in genetic models of 

XBP-1 deficiency that lead in most - but not all - cells to strong activation of the RIDD 

pathway55, 131, 132. RIDD has a cytoprotective function in pancreatic beta cells in where 

it reduces the secretory load by degrading proinsulin131, or in liver cells by mediating 

protection from acetaminophen toxicity through the degradation mRNAs encoding 

cytochrome P450 enzymes132. In other systems, RIDD appears to play a cytotoxic role 

and it has been proposed that in conditions of unmitigated ER stress, RIDD triggers 

apoptosis17, 130, 133. In macrophages cholera toxin triggers the RIDD pathway upon 

unfolding of the A1 chain115. This leads to a rapid activation of the RIG-I pathway and a 

strong inflammatory cytokine response means IRE1α is the first pathogen receptor found 

surveying the lumen of the ER115. Further, the RNA helicase SKIV2L normally 

metabolizes intracellular RNA ligands generated upon activation of the UPR and as such 

limits activation of RIG-I134. In patients with genetic deficiencies in these RNA-

metabolizing enzymes, a chronic inappropriate antiviral response would be triggered 

leading to gradual immune-mediated destruction of secretory cells with high constitutive 

UPR.

IRE-1β is typically expressed in epithelial cells lining mucosal interfaces, such as bronchi 

or the colon86. Its predominant RIDD activity might endow this molecule with an 

enhanced capacity to exert immune surveillance and control the interface between the 

host and many trillions of microbes present in the colon or airways115.
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Figure 1. Three different sensors jointly coordinate the UPR in mammals
IRE1 and PERK are activated by oligomerization and transphosphorylation upon binding of 

unfolded proteins and release of the chaperone BiP. The endonuclease domain of IRE1 

cleaves XBP-1 mRNA in an unconventional splicing reaction to generate XBP-1s mRNA, 

and the resulting product encodes a transcription factor of the bZIP family. In addition the 

endonuclease activity of IRE-1 also contributes to Regulated IRE-1 dependent decay 

(RIDD), the degradation of mRNAs that are recruited at ribosomes at the ER. PERK is a 

transmembrane kinase that phosphorylates eukaryotic initiation factor 2 alpha (eIF2α). This 
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leads to a transient inhibition of protein translation. Some mRNAs that encode small 

upstream open reading frames (uORFs) in their 5’ UTR escape the translation stop, the most 

prominent being the transcription factor ATF4. ATF4 in turn triggers expression of CHOP, 

GADD34 and additional factors important for amino acid metabolism and redox control. 

ATF6 is activated upon release of BiP and translocated to the Golgi where it undergoes 

sequential cleavage and removal of its luminal domain. The remaining transactivation 

domain of ATF6 moves to the nucleus and coordinates expression of genes involved in 

chaperone pathways or lipid biosynthesis.
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Figure 2. Evolution of the UPR shows conserved functions in immune responses
Eukaryotic phylogenetic tree of the main species mentioned in the text. In S. pombe and S. 

cerevisiae only the IRE1 branch is present. In S. pombe the IRE-1 endonuclease is involved 

in RIDD (red color in endonuclease domain), in S. cerevisiae the IRE1 endonuclease is 

needed for splicing of the yeast XBP-1 homolog HAC-1 (blue color in endonuclease 

domain). In most fungi, a fully competent UPR is required for pathogen virulence. In 

protozoa, no recognizable orthologs of IRE1 and XBP1 can be found, however, some of 

them express an ER-based transmembrane kinase, called TgIF2K-A, that has the ability to 

phosphorylate eIF2α in response to ER stress, and exert some degree of translational 

control141. In plants, 2 branches of the UPR, ATF6 and IRE1, are represented. The plant 

UPR is also activated in response to pathogens and is needed for proper antibacterial 

defense. In C.elegans, the three branches of the UPR are found and mediate protection 

against overwhelming hyperinflammatory reactions. In mice and humans the three branches 

of the UPR are fully established and interact at different levels with inflammatory pathways.
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Figure 3. IRE1 intersects with inflammatory pathways
TLRs stimulate IRE1 mediated XBP-1 splicing in a TRAF6 and NOX2 dependent manner. 

XBP-1s binds at the promoter of several cytokines and is needed for optimal cytokine 

expression. Phosphorylated IRE1 interacts via TRAF2 with the IKK complex and with 

ASK/JNK. In this way, IRE1 controls activation of NF-κB and AP-1, 2 major inflammatory 

transcription factors. IRE1 also serves as a host defense receptor, surveying the lumen of the 

ER for pathogens. In response to cholera toxin, IRE1 is activated and starts degrading 

mRNAs at the translocon complex. This generates several short RNA stretches that ligate 

RIG-I and trigger IFN-α via RIG-I. These RNA species can in turn be degraded by the 

SKIV2L exosome to prevent inappropriate inflammatory responses. RIDD also leads to 
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degradation of specific mRNAs like that encoding tapasin as well as microRNAs such as 

miR-17. Degradation of tapasin and other components of the MHC-I loading machinery 

interfere with antigen presentation. Degradation of miR17, leads to degradation of TXNIP 

and subsequent stabilization of the NLRP3 inflammasome which causes enhanced IL-1β 

release. In addition to IRE-1α, a second isoform called IRE-1β is specifically expressed in 

epithelial cells lining mucosal interfaces, such as bronchi or the colon. Its RIDD function 

appears to predominate its capacity to splice XBP-1. This might endow IRE-1β with an 

enhanced capacity to exert immune surveillance and control the interface between the host 

and microbes present in the colon or airways.
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Figure 4. Pathways downstream of PERK are tightly controlled by inflammatory signals
PERK-mediated translational inhibition leads to a shutdown of IκB de novo synthesis and as 

such leads to activation of NF-κB. ATF4 is involved in IFN and IL-23 cytokine expression 

via activation of GADD34 and CHOP respectively. On the other hand, it has also been 

reported that ATF4 interferes with TBK-IKKε mediated phosphorylation of IRF7 and IFN 

production in embryonic fibroblasts. TLRs tightly control the ATF4-CHOP branch and 

prevent induction of CHOP in macrophages, in a TRIF-dependent manner. In general, 

several microbial stress signals also lead to activation of ATF4, ATF3, CHOP or GADD34 

in a PERK-independent, but TRIF, PKR or RLR-MAVS dependent manner. This microbial 

stress response hijacks components of the UPR, but has a different functional outcome.
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