Skip to main content
. 2015 Apr 7;11(4):e1004969. doi: 10.1371/journal.pgen.1004969

Table 1. Regression of phenotype on predicted value for BayesR, BSLMM, LMM and GPRS in WTCCC data.

Disease BayesR BSLMM LMM GPRS
BD 1.13 (0.280) 1.09 (0.236) 1.12 (0.246) 2541 (1403.5)
CAD 0.96 (0.216) 0.92 (0.179) 0.99 (0.187) 1529 (919.0)
CD 0.98 (0.137 1.01 (0.134) 1.05 (0.341) 35.4 (15.50)
HT 1.08 (0.461) 0.98 (0.313) 1.04 (0.356) 2124 (1041.9)
RA 0.99 (0.080) 0.98 (0.096) 1.07 (0.330) 33.1 (20.2)
T1D 1.00 (0.037) 0.99 (0.096) 1.03 (0.169) 57.3 (14.8)
T2D 0.92 (0.265) 0.94 (0.188) 0.99 (0.322) 1894 (789.9)

For prediction assessment we performed 20 random 80/20 splits for each trait. The values parentheses are standard deviations over 20 replicates.