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Effects of inflammation on stem cells: together
they strive?
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Abstract

Inflammation entails a complex set of defense mechanisms acting
in concert to restore the homeostatic balance in organisms after
damage or pathogen invasion. This immune response consists of
the activity of various immune cells in a highly complex manner.
Inflammation is a double-edged sword as it is reported to have
both detrimental and beneficial consequences. In this review, we
discuss the effects of inflammation on stem cell activity, focusing
primarily on neural stem/progenitor cells in mammals and zebra-
fish. We also give a brief overview of the effects of inflammation
on other stem cell compartments, exemplifying the positive and
negative role of inflammation on stemness. The majority of the
chronic diseases involve an unremitting phase of inflammation
due to improper resolution of the initial pro-inflammatory
response that impinges on the stem cell behavior. Thus, under-
standing the mechanisms of crosstalk between the inflammatory
milieu and tissue-resident stem cells is an important basis for clini-
cal efforts. Not only is it important to understand the effect of
inflammation on stem cell activity for further defining the etiology
of the diseases, but also better mechanistic understanding is
essential to design regenerative therapies that aim at micromanip-
ulating the inflammatory milieu to offset the negative effects and
maximize the beneficial outcomes.
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Introduction

Etymologically, inflammation (in+ flamm�o) denotes a metaphoric

blaze caricaturized as sumptuous mythological creatures. A tale

about Phoenix for instance narrates the fire devouring its body into

ashes, from which a new bird arises. Thus, the state of torrid heat in

the myths is both devastating and revitalizing. In biological systems,

the situation may be quite similar. Inflammation in organisms

points to a non-homeostatic response of the vascular tissues to vari-

ous stimuli such as pathogens, injury or xenobiotics [1]. During

evolution, inflammation was developed as a mechanism of self-

defense and survival pertaining to both beneficial and detrimental

outcomes depending on the timing, cell types involved and the

severity of the insult to the tissue. Generically, the effect of inflam-

mation on tissues is therefore closely linked to how inflammation is

initiated, maintained and resolved (Fig 1).

Different phases of the inflammatory reaction are well defined

[1]. Acute period is the initial phase where the earliest reactions to

the insult set on with the help of resident immune cells such as

macrophages and dendritic cells [2]. Secretion of pro-inflammatory

cytokines such as IL-8 and TNF-a initiates a cascade of molecular

events in neutrophils, fibroblasts and endothelial cells: Macrophages

are recruited to the site, and the complement system is concomi-

tantly activated [3]. Acute inflammation contains an ensuing phase

of active resolution by anti-inflammatory agents such as steroids,

IL-10, nitric oxide, TGF-b or regulatory T cells [3]. During the acute

inflammation phase, the exudative component from the blood

plasma-containing immunoglobulins or fibrins flushes into the

inflamed site causing edema. This tissue swelling is relinquished by

the lymphatic system where antigens are recognized by the T and B

cells of the adaptive immune system, which is a recent evolutionary

invention in vertebrates [4]. Acuity of the reaction can be succeeded

by chronicity based on the resolution dynamics of the inflammatory

response. Chronic inflammation is hazardous to tissues, as exempli-

fied by its involvement in the onset or progression of neurodegener-

ative disorders, cardiovascular diseases, autoimmunity, cancer and

various metabolic diseases [5]. Therefore, the regulation of inflam-

matory response is of utmost importance for restoration of tissue

integrity and homeostasis.

In this review, we will focus specifically on the crosstalk between

inflammation and stem cells. Various tissue stem cells react differ-

ently to inflammation, and the interplay between inflammation and

stem cell activity is an immense research field. Here, we will mainly

concentrate on the relationship between neural stem cells and

inflammation, molecules known to be mediating this reciprocity and

the effect of the inflammatory milieu on the ability to regenerate

tissue.
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Tissue microenvironment and stem cells
during inflammation

Inflammation in a tissue is profoundly affecting the homeostatic

measures thereof and thus has a strong impact on nearby cells.

In adult organisms, tissues contain resident niches of stem cells

that are specialized to form new cells contingent with their

surrounding [6]. Stem cell activity is regulated by intrinsic mecha-

nisms and extrinsic cues that emanate from the niche environ-

ment, and inflammation is one of them. Inflammation was

documented to be negatively affecting tissue restoration in vari-

ous systems [7–10]. Therefore, understanding the crosstalk

between inflammation and stem cells is important to elucidate

the mechanisms of how stem cells respond to tissue damage.

Additionally, tweaking the effects of inflammation on stem cell

behavior will constitute a possible intervention point for regenera-

tive therapies.

Inflammation was shown to regulate several stem cell niches

non-exhaustively including mesenchymal stem cells (MSCs),

intestinal stem cells (ISSs), satellite cells or myogenic precursors

of the muscle (MPCs), liver progenitor cells (LPCs), epidermal

stem cells and neural stem/progenitor cells (NSPCs). In this

review, we will mainly focus on NSPCs and their regulation by

inflammation.

Neural stem progenitor cells

Neural stem/progenitor cells (NSPC) are multipotent cells that

generate the cell types of the nervous system: neurons, glia and

oligodendrocytes [11]. In vertebrate development, multipotent

neuroepithelial cells progressively differentiate into cell types of the

nervous system, while sparing undifferentiated cells that maintain

glial identity and act as resident stem/progenitor cells of the adult

nervous system [12–15]. Stem cell niches in vertebrates show

diverse localizations. In adult mammalian brain, neurogenic stem

cell niches are restricted to the telencephalon [13], where neural

stem cells are found in the subventricular zone (SVZ) of the lateral

ventricles and in the subgranular zone of the dentate gyrus in the

hippocampus (SGZ) [12,16]. Non-mammalian vertebrates contain a

more widespread activity and distribution of stem cells in their

brains. Zebrafish, for instance, possesses sixteen different stem cell

niches that are distributed along the entire rostro-caudal brain axis

[17]. As a result, the regulation of the neural stem cell activity in

vertebrates is a highly complex interplay between intrinsic and

extrinsic cues [18–20].

Nervous system contains cells of immune system origin, called

microglia—the resident macrophages [21,22]. These cells have vari-

ous functions such as regulating developmental synaptogenesis

[23], homeostatic surveillance of the nervous tissue throughout life

[24], managing neuronal cell death [25] and eliciting an innate

immunity reaction upon various forms of pathogenesis [26]. Micro-

glia are main modulators of the inflammatory milieu in the nervous

system [25,27–29]. Homeostatically, microglia are ramified in shape

to fulfill its surveillance function. Upon pathology, pathogen inva-

sion or insults, they retract the protrusions, become amoeboid,

increase their migratory behavior and secrete molecules to retract

peripheral immune cells [30]. In mammals, the early phase of the

inflammation entails subsequent infiltration of neutrophils,

microglia/macrophages and T cells, while the later phase is an

extended prevalence of various cell types and consequent resolution

of inflammation over long periods of time (reviewed in [31]). In

regenerating organisms such as zebrafish or newt, initial events of

acute inflammation manifest similar to mammals, while prolonged

inflammation response is not observed [32,33]. In regenerating

organisms, neural stem/progenitor cells are also activated even in

inflammation conditions and fulfill regenerative neurogenesis—as a

striking difference to mammalian tissues [32,34–36]. Therefore, the

mutual interaction between inflammation and neural stem cells

has emerged as an important research area not only because

inflammation might exert different effects on stem cells in different

species, but also because a majority of neurological disorders or

neurodegenerative diseases in humans involve varying levels of

inflammation in the neural microenvironment [27,37]. Hypotheti-

cally, what we learn from regenerating organisms in terms of the

interplay between inflammation and stem cells could help design

regenerative therapies.

First studies elaborating on the instructive crosstalk of inflamma-

tion on neural stem cells showed that in a mouse model of multiple

sclerosis and experimental autoimmune encephalomyelitis (EAE),

transplantation of non-inflamed neurospheres ameliorated the

demyelination phenotype in various regions of the brain, suggesting

that inflammation impairs the neurophysiological properties of

neural stem cells and their descendants, such as oligodendrocytes

[38–40]. The exact role of inflammation on neural stem/progenitor

cells (NSPCs) has been controversial, because both detrimental and

beneficial effects have been assigned to inflammation [31,41],

suggesting that the interactions between immune cells and NSPCs

are context dependent. Interestingly, a recent study in adult mouse

brain showed that neural stem cells can improve the neuronal

survival at the host by transforming microglia from a harmful to a

neuroprotective phenotype [42].

Glossary

CCR2 C-C chemokine receptor type-2
CNS central nervous system
Cr complement receptor
Cystlr1 cysteinyl leukotriene receptor 1
EAE experimental autoimmune encephalomyelitis
FasL Fas ligand; tumor necrosis factor superfamily member 6
Gata3 GATA family zinc-finger transcription factor 3
IFN-c interferon gamma
IGF-1 insulin growth factor-1
IKKb nuclear factor NFjB inhibitor kinase beta
IL interleukin
JAK janus kinase
JNK c-Jun N-terminal kinase
LTC4 leukotriene C4
MCP-1 monocyte chemoattractant protein-1
MSC mesenchymal stem cell
NFjB nuclear factor kappa-light-chain-enhancer of activated B cells
NSPC neural stem/progenitor cell
SOCS3 suppressor of cytokine signaling 3
STAT3 signal transducer and activator of transcription 3
TGF-b transforming growth factor beta
TLR toll-like receptor
TNF-a tumor necrosis factor alpha
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Negative role of inflammation on neural stem cells

Several studies indicate that inflammation exerts a negative regula-

tion of NSPC proliferation [43–45] (Fig 2). In fetal mouse, maternal

inflammation reduces ventricular cell proliferation in developing

brain [46]. In a medial cerebral arterial occlusion model of mice,

chronic immunosuppression was shown to reduce the activation of

macrophages, which increased the number of newborn neurons in

mouse hippocampus [47]. TNFR1 null mice showed significantly

elevated levels of cell proliferation in the dentate gyrus and

increased number of newborn neurons in the granular zone [44],

suggesting that the pro-inflammatory cytokine TNF-a hampers

NPSC activity. NSPCs were shown to express the receptors for

proinflammatory cytokine IFN-c, which is secreted predominantly

by cytotoxic T cells and reduces the proliferative ability of NSPCs

through STAT1 signaling [48,49]. NSPCs of the hippocampus also

express the complement receptor 2 (Cr2) that binds to C3d and

INF-a. Cr2 null mouse showed increased basal neurogenesis in adult

hippocampus [50], suggesting that complement system might

suppress neural stem cell activity. In the adult subventricular zone

(SVZ) of the mouse brain, anti-inflammatory cytokine IL-10 keeps

NSPCs in undifferentiated proliferative state at the expense of neuro-

genic differentiation [51], an observation that could partially explain

why regenerative neurogenesis does not take place after injuries in

rodent brains while SVZ cells increase their proliferation as a reac-

tion to damage [48]. Leukotrienes were implicated in suppression of

NPSC activity in rodents, because blockage of cysteinyl leukotriene

receptor 1 (CYSTLR1) using the antagonist montelukast enhanced

NSPC proliferation in cultured rat neurospheres [52], suggesting that

lipid modifiers of inflammation negatively regulate NSPCs, possibly

due to post-inflammatory brain damage through upregulation of

TNF-a and IL-1b [53]. Consistent with this finding, in Parkinson’s

disease (PD) patients and MPTP-induced PD model in mice, CD8+

and CD4+ T cells were shown to contribute to dopaminergic toxicity

through expression of FasL and exacerbate the pathology [54].

Inflammation was also suggested to cause NSPC dysfunction and

lead to neurodegenerative disorders [55]. In an experimental auto-

immune encephalomyelitis model, inflammation results in reduced

neuroblast generation and alleviated olfactory bulb neurogenesis, a

phenotype reminiscent of multiple sclerosis (MS) patients [56]. One

reason of impaired neurogenesis in such an inflammatory condition

was suggested to be the hampered cell cycle progression of NSPC

and reduced migratory behavior of neuroblasts [57].

Positive role of inflammation on neural stem cells

Neural stem/progenitor cells were also shown to be positively

affected by inflammatory conditions. In several disease models of

mice, grafting efficiency of transplanted NSPCs was shown to be

promoted by the inflammation milieu [58,59]. In hippocampal slice

cultures, grafted NSPCs migrate to the site of injury upon presenta-

tion of cytokines in the tissue and activation of the CCR2 signal

cascade [60]. In addition, monocyte chemoattractant protein-1

(MCP-1) knockout mice display deficient NSPC migration in vivo

and in neurosphere cultures [60,61]. NSPCs require stromal-cell-

derived inflammatory chemoattractant SDF1/CXCR4 signaling to

migrate to the infracted area of the brain upon lesions or neuro-

degenerative conditions [62,63]. NSPCs also increase proliferation

upon inflammation. After an immune response upon bacterial

enterotoxins, adult mice increase progenitor cell proliferation in the

hippocampus [64]. In postnatal rats, intrauterine infection using

E. coli increases NSPC proliferation at developmental stage P7 by

increasing the expression levels of BDNF, TrkB, p-Akt and survivin
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Figure 1. A simplified generic scheme of initiation and resolution of inflammation in six steps.
1) A tissue when compromised during its homeostatic state initiates inflammation programs, through damage cues (such as intracellular content, apoptosis and cytokines).
2) Breach of homeostasis triggers the morphological and functional transformation of the resident macrophages (green). 3) Acute inflammation is initiated upon secretion
of several pro-inflammatory cytokines and chemokines such as TNF-a, IL-1b, IL-6 and MCP-1. Complement system is also activated. 4) This process calls for peripheral
immune cells, and recruited immune cells potentiate the inflammation by secreting more pro-inflammatory factors. 5) The immune cells also partake in active resolution of
inflammation through secretion of anti-inflammatory factors such as IL-4, IL-10, C5a, IFN-c, TGF-b and NO. A stem/progenitor cell undergoes the influence of the dynamic
inflammatory milieu. The final outcome on the tissue manifests depending on the context.
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[65]. In vitro studies also suggest that inflammatory signals such as

TNF-a or IL-1b could trigger proliferation of NSPCs through NFjB
and JNK signaling pathways, respectively [61,62]. Interestingly,

NPSCs were also shown to exert immunomodulatory effects in a

way to promote NSPC activity. In a chemically induced demyelina-

tion assay in rats, transplanted NSPCs inhibited the proliferation

and activation of T lymphocytes through peripheral immuno-

suppression, which resulted in attenuated experimental autoimmune

encephalomyelitis [66]. In a mouse model of chronic CNS inflamma-

tion, systemically injected NSPCs start expressing antigens of

immune cells such as a4 subunit of integrin and various chemokine

receptors. These proteins were shown to be required for prolifera-

tion and long-term persistence of those stem cells in vivo through

induction of selective apoptosis of CNS-infiltrating pro-inflammatory

Th1 but not anti-inflammatory Th2 cells [65]. This effect is mediated

through inhibiting IL-2-mediated phosphorylation of JAK3 in Th1

lymphocytes [44], suggesting that NSPCs might hijack molecular

programs of immune cells to positively favor their own proliferation

and survival. In a mouse model of EAE, chronic inflammation was

suggested to impose a fate switch in spinal cord-derived neural

progenitor cells as they transit from being gliogenic to neurogenic

[67]. Several studies also showed that inflammatory cells exert a

protective effect on the neural stem cell function through helping

the resolution of the acute inflammation in an orchestrated manner

[68,69]. Thus, taken together, documented detrimental and benefi-

cial effects of inflammation clearly demonstrate a context- and

time-dependent contribution of inflammatory response to stem cell

activity (Table 1). The effect of inflammation on NSPCs is binary as

it can either support or inhibit proliferation, survival or differentia-

tion depending on the onset of the inflammation, the cell types

involved in the process and the chronicity of the response [58,70].

Therefore, studies aiming to determine the correct time of interven-

tion to inflammatory environment will provide an important insight

for designing therapeutic clinical strategies which could be custom-

ized to individual stem cell niches.

Inflammation in zebrafish nervous system

In zebrafish, several studies showed that chemokine signaling is

required for activity of NSPCs at different locations of the nervous

system [71–74], suggesting that an immune-neural crosstalk similar

to that of mammals might exist in non-mammalian vertebrates

(Fig 3). In adult zebrafish brain, acute inflammation through leuko-

triene C4 (LTC4) binding to its receptor Cystlr1 is sufficient and

necessary for activating NSPCs and priming them for regenerative

neurogenesis [32]. LTC4 seems not to be required for homeostatic

NSPC function, but it is necessary for injury-activated proliferation

response of the radial glial cells [32] that are the neurogenic progen-

itors in the adult zebrafish brain [75,76]. Upon cerebroventricular

microinjection into the brain fluid [77,78], LTC4 is also sufficient to

induce a regeneration-specific molecular program of zebrafish telen-

cephalon that includes the injury-induced activity of the zinc-finger

transcription factor gata3 [35]. gata3 is not expressed in the homeo-

static NSPCs of the adult zebrafish telencephalon but is induced

after injury and is required for regeneration of lost neurons as gata3

knockdown inhibits the reactive proliferation response of the NSPCs

[35]. In case of sterile inflammation using pathogenic cell wall

extract or LTC4 itself, gata3 expression can be induced [32].

Furthermore, partial immunosuppression using dexamethasone

significantly reduces the reactivity of NSPCs to injury and

suppresses the induction of gata3 expression in NSPCs [32],
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Figure 2. Mammalian neural stem/progenitor cells are generally negatively affected by inflammation.
Signaling cascades through Cystlr1, IFN-a and IFN-c receptors and Cr2, which are expressed by neural stem/progenitor cells (orange, NSPC), as well as macrophage-derived
TNF-a and IL-1b, suppress self-renewal. IL-10 secreted by monocytes blocks neuronal differentiation, while CCR2 and MCP-1 hamper neuronal survival, migration and
maturation. T cells secrete BDNF to positively regulate neurogenesis from stem cells through its receptor TrkB and intracellular cascades of phosphorylated Akt and survivin.
CXCR4/SDF1 chemokine signaling is required for directed migration of neural stem/progenitor cells and neurons.
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demonstrating that acute inflammation is positively affecting the

NSPCs in zebrafish brain and is involved in activating molecular

programs that enable efficient tissue regeneration, which is poorly

manifested in mammals.

Effects of inflammation on stem cells outside the
nervous system

The binary role of inflammation in neural stem/progenitor cells also

holds true for other stem cell niches. In this section, we will give

brief information on the documented effects of inflammation in

other stem cell niches outside the nervous system.

Mesenchymal stem cells are multipotent stromal cells that are

found in a variety of tissues such as bone marrow, adipose, umbili-

cal cord and muscle. They can differentiate into bone, cartilage and

fat cells. In vitro studies showed that MSCs react to the inflamma-

tory milieu. IL-1b-conditioned macrophage medium converts

adipose-derived MSCs to smooth muscle cells through a prostaglan-

din F(2a)-mediated mechanism [79]. In an experimental allergic

encephalomyelitis model of CD70-transgenic mice, endogenous

MSCs were shown to be mobilized dependent on IFN-c [8]. In

another study using a mouse model of liver fibrosis, the regenera-

tive role of MSCs was revoked upon immunosuppression with the

steroid dexamethasone [80]. MSCs also prevent allorecognition

and impede macrophage function to modulate different immune

Table 1. An overview of the effects of inflammatory cues on various stem cell niches.

Stem cell niche Model
Cytokine/chemokine
signaling involved

Effect on stem cell proliferation,
migration or engraftment References

Neural stem/progenitor cell Rodent TNF-a � [44,114,115]

IFN-c � [48,49]

C3d, IFN-a � [50]

LTC4 � [52]

IL-1b � [53]

IL-2 � [44,65]

CCR2 + [60,61]

SDF1 + [63,138]

IL-10 + [51]

Zebrafish LTC4 + [32]

SDF1 + [71]

Cxcr5 + [72]

Satellite cells Rodent CX3CR1, IL-10, CCL2 + [86]

TNF-a � [112,113]

Pancreatic b-cell Rodent IL-1b, IL-6, TNF-a, CXCL8 � [88,139]

TGF-b + [93]

Intestinal stem cells Rodent IL-6, epimorphin + [94]

IL-17 + [95,98]

Liver progenitor cell Rodent IL-22 + [102]

C3, TNF-a, IL-6 + [103,104,120,121]

IFN-c + [105]

Hair stem cell Rodent TNF-a, MCP-1 � [106,107]

NEUROGENESIS

SELF-
RENEWAL

Cxcr5Cystlr1

NSPC Gata3

LTC4

Figure 3. Inflammation promotes neurogenesis and regeneration in
zebrafish.
In zebrafish, inflammationelicitedby immunecells leads to secretionof leukotriene
C4 (LTC4, green circles), which bind to its receptor Cystlr1 on neural stem/
progenitor cell (NSPC). LTC4/Cystlr1 signaling leads to transcriptional activation of
zinc-finger transcription factor Gata3, which is a key molecule that promotes
proliferation and regenerative neurogenesis. Chemokine signaling through Cxcr5 is
also required for differentiation of proliferating NSPCs into neurons.

EMBO reports Vol 16 | No 4 | 2015 ª 2015 The Authors

EMBO reports Inflammation and stem cells: together they strive? Caghan Kizil et al

420



phenotypes and cell fate decisions [81], indicating that inflammation

orchestrates patterning of the local tissue and its restoration. One

example to this phenomenon is seen in satellite cells, which are the

resident stem cells of the adult skeletal muscle and give rise to

myofibers. Monocytes/macrophages play an intricate role in regulat-

ing proliferation and differentiation capacities of satellite cells in

muscle tissue [9,82]. Macrophages that are co-injected with

myoblasts into injured skeletal muscle led to a significantly

improved survival as well as expansion and migration to the

dystrophic muscle [83]. Myogenic precursor cells crosstalk with

monocytes/macrophages to recruit them to the site of injury in

order to elicit a chemotactic response, which in turn favors muscle

growth and fiber reconstitution [84,85]. This communication is

established through chemokine and growth factor signaling such as

CX3CR1, IL-10, CCL2/MCP-1 and IGF-1, suggesting that satellite cell

behavior is licensed by inflammatory cues secreted by monocytes/

macrophages [86].

The role of the inflammatory milieu in generating a micro-

patterning environment can also be observed in other organs, such

as the pancreas. Elevated release of several pro-inflammatory

chemokines and cytokines including IL-1b, IL-6, TNF-a and CXCL8

from the macrophages accumulated around the adipocytes results in

activation of stress-induced kinases IKKb and JNK [87,88] and initi-

ates a signaling cascade involving NFjB and NLRP3 in b-cells
[5,89]. This signaling, in turn, activates FAS ligand on the surface of

b-cells, which consequently undergo apoptosis [90], suggesting a

negative effect of inflammation in pancreas. Pathogen-related

inflammation through TLR4/TLR9 signaling has also been shown to

induce b-cell death and insulin resistance through induction of pro-

inflammatory cytokines by M1 macrophages [91]. Several clinical

studies aiming to block pro-inflammatory signaling have been

designed to treat T2D [92], suggesting that inflammation has a

profound effect on the progression of metabolic diseases. Interest-

ingly, a recent study showed that TGF-b signaling is required for

baseline b-cell proliferation by promoting the overall mass of b-cells
[93], suggesting that homeostatic and pathological inflammatory

state in pancreas might have different effects on progenitor cell

proliferation and tissue homeostasis.

Inflammation has been described to play a crucial role in prolifer-

ation of intestinal progenitors. Upon damage, IL-6 is secreted by the

intestinal myofibroblasts and dendritic cells leading to inflammation

and increased proliferation of the crypt cells through epimorphin

signaling [94]. IL-6 mediates STAT3 activation through SOCS3,

which is required for bringing back the injury-induced crypt hyper-

proliferation to constitutive levels [10]. The proliferation of crypt

epithelium is also regulated by the cytokine IL-17 secreted by

T-helper lymphocytes in the intestine [95]. Similar to what leuko-

cytes and other monocytes do, paneth cells, the niche-organizing

secretory epithelial cells located at the apex of the crypts [96],

secrete proteolytic enzymes and cytokines such as alpha-defensin,

NOD2, and TNF-a into the lumen [7], suggesting that modulation of

local inflammatory milieu in the intestines is important for stem cell

function. In a recent study, it was shown that after intestinal tissue

damage, the soluble IL-22 receptor (IL-22BP) was downregulated

and thereafter its ligand IL-22 remained in excess in the surrounding

environment. For the repair of the intestine, this is a crucial step,

but in uncontrolled conditions, during the recovery phase, excess of

IL-22 promoted tumor development [97]. In another study, by using

a mouse model of colorectal tumorigenesis, it was shown that IL-23

signaling promotes tumor growth and initiates an IL-17-dependent

neoplastic response [98]. A recent study identified STAT5 as a factor

mitigating the effects of inflammation, namely reduced LGR5-

positive intestinal epithelial stem cell proliferation and their

regenerative capacity [99], suggesting context-dependent effects of

inflammation on intestinal stem cells.

A well-known example of the supportive effect of inflammation

in stem cell proliferation is seen in liver, which contains resident

stem cells that generate a transient niche of precursor cells called

liver progenitor cells (LPC) [100]. Macrophages and inflammatory

response are potent determinants of liver progenitor cell (LPC)

expansion [101]. Recent findings suggest that IL-22 produced by

inflammatory cells promotes LPC proliferation via STAT3 [102].

TNF-a secreted from resident macrophages upon liver damage or

pathology is required for the proliferation of liver progenitor cells

through binding to TNFR1 [103]. Pro-inflammatory complement

system signaling is also required for LPC proliferation. C3-null mice

show impaired liver regeneration due to attenuated production of

TNF-a and IL-6, which induces NFκB/STAT3-dependent priming of

the hepatocytes [104]. A second wave of inflammatory signaling is

initiated by cytotoxic T cells that secrete IFN-c, which induces LPC

proliferation [105]. Thus, the inflammatory milieu in liver is neces-

sary for stem cell activity during growth and regeneration.

Finally, a clear negative effect of inflammation is seen in hair

follicle stem cells. Inflammation has been shown to negatively

regulate epidermal stem cell activity in keratin-15/CD34-positive

hair follicle cells [106]. In a mouse model of permanent hair loss,

immunoprivileged hair follicle sac shows elevated levels of

inflammation with increased TNF-a and MCP-1 upon macrophage

and dendritic cell invasion, whereas immunosuppression rescues

the normal physiology of the stem cells [107]. Several chronic

inflammatory states compromise the function of the hair stem cell

niche through modulation of interferon-inducible cytokine

expression [108], suggesting that inflammation negatively affects

epidermal stem cell activity.

Collectively, inflammation entails a plethora of factors acting in

concert in a highly context-dependent manner to regulate the behav-

ior of various stem cell compartments. One practical conclusion

emanating from these studies is that besides alleviating negative

effects in a given tissue, systemic modulation of inflammation will

certainly have other—possibly unwanted—collateral effects in other

tissues and stem cells. Given that most age-related diseases manifest

concomitantly, clinical therapies aiming at certain diseases should

consider either local modulation of immune response or should take

into account the effects in other stem cell niches. A more thorough

understanding of spatiotemporal dynamics of individual inflamma-

tory cells and stem cell compartments is likely to improve clinical

practice as well as efforts toward regenerative therapies.

Inflammation as a regulator of stem cell activity
underlying the regenerative capacity

Regeneration is a mechanism that restores lost cells or tissues analo-

gous to the original forms of the precedent structures [109]. The

capacity of regeneration differs widely among animals. In phylog-

eny, regeneration capacity tends to decrease or become more
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restricted [110]. Inflammation is generally believed to be a

by-product of damage or pathology, and it has been considered to

impair tissue regeneration in vertebrates. For instance, TNF-a was

shown to impair repair in liver [111], muscle [112,113] and nervous

system [114,115]. Presence of inflammation was suggested to

counteract the regenerative capacity in vertebrates [116–118]. Thus,

regenerative therapies generally aimed to block inflammation for

tissue restoration to take place. However, there is a growing body of

evidence for positive regulation of regenerative capacity by inflam-

mation in different tissues due to beneficial effects of the early

inflammatory response. Hydrogen peroxide as a stable reactive

oxygen species (ROS) is necessary for mounting a regeneration

program via recruitment of leukocytes to the injured site in zebra-

fish [119]. TNF-a, IL-6 and complement system are required for

regeneration of murine liver by the activation of liver progenitor

cells [103,120,121]. Anti-inflammatory macrophages and their

cytokine secretome promote muscle precursor cell proliferation and

myogenesis [113] in part by CCR2 and IGF-1 signaling [122,123].

During zebrafish fin regeneration, ablation of macrophages impairs

regenerative outgrowth through reduced resolution of inflammation

[36,124]. After optic nerve crush, sterile inflammation enhances

axonal regeneration in mice [125,126]. T-cell activity can protect

nervous system from secondary damage after axotomy [127]. Acute

inflammation in adult zebrafish brain through LTC4/Cystlr1 signal-

ing initiates reactive proliferation of NSPCs and activates injury-

induced molecular programs including gata3, which enables

regenerative neurogenesis [32,35].

Inflammation has also been associated with various disease

conditions, such as metabolic disorders, progressive neurodegenera-

tion and cancer [128]. In all these conditions, rampant or elevated

inflammation plays a role in either exacerbating the pathophysiol-

ogy or eliciting the onset of the phenotypes. Regenerative therapies

to circumvent the disease state largely aim to either supply cells

externally or activate the endogenous stem cells of the patient to

replenish the lost cell types. In both cases, the inflammatory milieu

and its crosstalk to stem cells are important parameters to consider.

Several studies addressed the interaction between inflammation and

disease states in different contexts.

Specifically in the nervous system, non-resolving inflammation

is associated with nervous system pathologies [129,130].

Macrophages—the resident immune cells of the CNS—switch to

production of pro-inflammatory cytokines and chemokines

(e.g. TNF-a, IL-1b and TGF-b) following pathogen invasion or

damage [55]. This acute response impinges on neuronal viability by

elevating the reactive oxygen species and subsequently causing

apoptosis in neurons. When the acute inflammation is resolved,

anti-apoptotic factors start to be expressed leading to increased

neuronal survival [55]. In neurodegenerative disorders such as

Alzheimer’s disease (AD), Parkinson’s disease (PD) or amyotrophic

lateral sclerosis (ALS), formation of non-physiological protein

aggregates exacerbates the inflammation, which in turn leads to

reduced NSPC activity despite neuronal death [55]. In AD, amyloid

plaques recruit macrophages [131] and lead to elevated levels of

pro-inflammatory cytokines and astrogliogenesis [132], which may

lead to neuronal death [133]. In PD, microglia engulf extracellular

a-synuclein aggregates and induce production of neurotoxic reactive

oxygen species (ROS) [134], which potentiates the recruitment of

CD4+ T cells and expression of pro-apoptotic FasL in neurons [54].

Motor neuron degeneration in ALS also involves a feed-forward

loop of inflammation through pro-inflammatory cytokines TNF-a
and IL-1b, recruitment of M1 macrophages and CD4+ and CD8+

T-cell accumulation, nitric oxide (NO) synthesis, expression of

FasL and cell death [135,136]. Several therapeutic applications

for counteracting neurodegeneration are devised to reduce

inflammation [130].

Conclusion and outlook

The role of inflammation on stem cells and tissue regeneration is

multi-faceted. The general belief that early pro-inflammatory signal-

ing is detrimental while anti-inflammatory signaling is beneficial for

stem cell activity has been challenged by findings of positive conse-

quences of pro-inflammatory cytokines and negative effects of anti-

inflammatory signaling for tissue recovery. In zebrafish brain, upon

deployment of immune cells into the tissue, leukotriene signaling—

a part of the acute inflammatory response—mounts a special cros-

stalk to the stem cells urging them to generate more neurons even

in the absence of damage [31,32] by initiating a special regeneration

program that does not prevail during homeostasis [35,74,76].

Leukotriene signaling is an evolutionarily conserved mechanism

that is also present in mammals [137]. This raises the question

whether the crosstalk between immune system and stem cells in the

organisms that have regenerative ability could be used to learn how

mammalian immune system and inflammation should be tweaked

to provide the stem cells a permissive environment and coax them

into re-forming the lost cells. Such an approach would have

profound ramifications in treatment of chronic diseases that involve

progressive degenerative conditions. By performing an in silico

comparison of the epistatic targets of inflammatory pathways (e.g.

leukotriene signaling and gata3) and their interaction partners in

high-throughput expression datasets in mammalian and zebrafish

brain, several candidate genes and pathways that could constitute

the difference between the regenerative capacities of mammals and

zebrafish might be identified [74]. In conclusion, as we dwell more

on the effects of inflammation on stem cells in various model organ-

isms and disease models, possible spatiotemporal micromanipula-

tion of the inflammatory milieu may emerge as a means of

reactivating or unlocking the regeneration potential of mammalian

tissues and herald new possibilities for regenerative therapies.

Sidebar A: In need of answers

(i) What are the inflammatory factors affecting the stem cell
activity?

(ii) What is the underlying reason why inflammation affects stem cell
behavior differently in different tissues?

(iii) What are the molecular signaling cascades inflammation initiates
in stem cells?

(iv) What is the relationship of inflammation with regeneration?
(v) Can regeneration be activated in mammals via immunomodulation?
(vi) What are the points of intervention to tweak the inflammation

and increase the beneficial outcomes?
(vii) Can we learn from regenerating organisms how inflammation

enables tissue restoration?
(viii) Can inflammation be harnessed for regenerative therapies?
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