@'PLOS ‘ ONE

®

CrossMark

dlick for updates

E OPEN ACCESS

Citation: Suyundikov A, Stevens JR, Corcoran C,
Herrick J, Wolff RK, Slattery ML (2015) Accounting
for Dependence Induced by Weighted KNN
Imputation in Paired Samples, Motivated by a
Colorectal Cancer Study. PLoS ONE 10(4):
€0119876. doi:10.1371/journal.pone.0119876

Academic Editor: Chuhsing Kate Hsiao, National
Taiwan University, TAIWAN

Received: November 19, 2014
Accepted: February 3, 2015
Published: April 7, 2015

Copyright: © 2015 Suyundikov et al. This is an open

access article distributed under the terms of the

Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are
credited.

Data Availability Statement: The R code to
generate the simulated data are provided (in a.zip
file) as S1 File, Simulation Supplement.

Funding: This research was supported by a grant
from the National Institutes of Health, award number
1R01CA163683-01A1; MLS principal investigator,
with subaward to JRS.

Competing Interests: The authors have declared
that no competing interests exist.

Accounting for Dependence Induced by
Weighted KNN Imputation in Paired
Samples, Motivated by a Colorectal Cancer
Study

Anvar Suyundikov', John R. Stevens'*, Christopher Corcoran’, Jennifer Herrick?, Roger
K. Wolff?, Martha L. Slattery?

1 Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill, Logan, UT 84322-
3900, U.S.A., 2 Division of Epidemiology, Department of Internal Medicine, University of Utah School of
Medicine, 383 Colorow Road, Salt Lake City, UT 84108, U.S.A.

* john.r.stevens @usu.edu

Abstract

Missing data can arise in bioinformatics applications for a variety of reasons, and imputation
methods are frequently applied to such data. We are motivated by a colorectal cancer study
where miRNA expression was measured in paired tumor-normal samples of hundreds of
patients, but data for many normal samples were missing due to lack of tissue availability.
We compare the precision and power performance of several imputation methods, and
draw attention to the statistical dependence induced by K-Nearest Neighbors (KNN) impu-
tation. This imputation-induced dependence has not previously been addressed in the liter-
ature. We demonstrate how to account for this dependence, and show through simulation
how the choice to ignore or account for this dependence affects both power and type | error
rate control.

Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by
targeting messenger RNAs. They were first discovered in 1993 during a study into development
in the nematode Caenorhabditis elegans (C. elegans) regarding the protein gene lin-14 [1]. Lee
et al. (1993) found that the abundance of protein lin-14 was regulated by a small RNA encoded
by the lin-4 locus. This was transcribed into a 22-nucleotide RNA molecule that could repress
the expression of the lin-14 messenger RNA (mRNA) by directly interacting with its 3’ un-
translated region (UTR).

The scientific community is currently highly interested in the functional roles of miRNAs.
The miRNA biogenesis that functions properly results in the normal rates of cellular growth,
proliferation, differentiation, and cell death. But the reduction or deletion of miRNAs that is
caused by defects at any stage of miRNA biogenesis leads to inappropriate expression of the
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miRNA-target oncoproteins that causes increasing proliferation, invasiveness or angiogenesis,
or decreasing levels of apoptosis [2, 3].

The miRBase database, a searchable database of published miRNA sequences and annota-
tion, had listed 2,588 unique mature human miRNAs for July 2014 (from http://www.mirbase.
org). Since miRNAs can regulate more than one target, they may regulate up to more than 30%
of all protein-coding genes in the human genome (from http://www.mirnarx.com). This makes
miRNAs one of the largest regulators of gene expression.

The association between miRNAs and colorectal cancer (CRC) was reported for the first
time in 2003, when the miR-143 and miR-145 genes were downregulated in CRC tumor tissues
compared with normal tissues [4]. Since then, several studies have shown that miRNAs are ex-
tensively deregulated in CRC [5-7].

The miRNA data as most other expression data can be considered in the form of large ma-
trices of expression levels of features (rows) in different subjects (columns). The data sets
might have either some features missing in some samples, or all features missing in some sam-
ples. The former case often occurs due to insufficient resolution, image corruption, dust or
scratches on the slide, and other various experimental and technical reasons, while the latter
case may happen due to lack of collected tissue or limited funds. As an example of the latter
case, we present the case study from research to determine the association of miRNAs with
CRC in paired normal-tumor samples. As part of a preliminary analysis using the first available
subjects, we wanted to compare miRNA expression profiles of normal and tumor samples
from each of more than 400 subjects with 2006 miRNA on each sample. We also collected ex-
tensive information about demographic and lifestyle variables of these CRC patients. There are
not many CRC studies that have collected such extensive data for such variables. However, in
the final analysis using all available subjects, 10% to 50% of the subjects will have missing nor-
mal samples due to lack of tissue availability.

The immediate objective in this CRC case study is to understand the alternatives for impu-
tation, along with their comparative strengths and weaknesses. Specifically, we wish to know
for a given imputation method whether its application to missing miRNA data among normal
samples will yield accurate predictions of their actual expression levels, and how such predic-
tions are further affected by the percentage of subjects with missing values. We further wish to
understand how these results affect statistical power to detect differentially expressed miRNA
while controlling for Type I error.

With the proliferation of gene expression studies over the past decade, more attention has
been paid to imputation methods for miRNA data. Conventional approaches often involve
simply excluding miRNAs with missing values, replacing missing values with zeroes, or imput-
ing using row or column averages. Such options ignore the correlation structure of the data
and have limited power [8]. Moreover, they do not leverage potentially informative demo-
graphic or lifestyle variables. More sophisticated options use multiple imputation based on
Markov Chain Monte Carlo (MCMC) and Expectation-Maximization (EM) algorithms, which
allow the incorporation of additional covariates [9-11]

In this paper, we introduce and evaluate an imputation method that accounts for the depen-
dence induced by weighted K-Nearest Neighbor (KNN) and considers the covariates, over the
multiple imputation techniques using MCMC and EM with bootstrapping algorithms, as well
as the case deletion technique using characteristics of this large CRC data set.

This paper is arranged in the following manner: first, we provide an overview of imputation
assumptions and methods, as well as the RMSE method to assess the performance of various
imputation techniques. Then we demonstrate the application of imputation techniques using
simulation data sets. Finally, we conclude with a discussion of the important issues presented
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in the paper, such as the performance of the KNN imputation method while considering the
dependence over the multiple imputation techniques.

Methods

Before performing an imputation of missing data, it is necessary to know whether the missing
data occurs randomly, as the result of unobserved factors, or is intended. We need to take into
consideration two assumptions: missing at random (MAR) and missing completely at random
(MCAR) [12]. The missing data are MAR when missing values are not randomly distributed
across all observations but are randomly distributed within one or more subsamples of data. A
variable (miRNA or x) can be considered MAR if the probability of observing x (conditional
on observed variables) does not depend on x. The MCAR assumption is a special case of MAR,
when the missing data values are a simple random sample of all data values. One can define the
missing data as a missing not at random (MNAR) if neither MCAR nor MAR assumptions
hold. In this case, missing data cannot be imputed based on the available data. Thus, imputa-
tion techniques can only be applied to the data which satisfy either MAR or MCAR assump-
tions. The characteristics of the CRC miRNA data satisfy MAR assumptions because the
probability of subjects having missing normal samples does not depend on the miRNA expres-
sion values in those subjects.

We consider the following methods to estimate the miRNA expression levels for missing
normal samples of patients:

Multiple imputation

Multiple imputation (MI) was originally designed to handle missingness in public-use large
data sets [12]. The application of the MI process has been extended to various big data sets in-
cluding microarrays [13]. The method replaces each missing value with multiple substitute val-
ues, say m, that represent the probability distribution of the missing value. A completed dataset
is created by each set of draws. So the m imputations for each missing value create m complete
data sets. They are stored in an auxiliary matrix, multiply-imputed data sets with one row for
missing value and m columns. The first row of this matrix corresponds to the first set of imput-
ed values of the missing values, and so on. As the complete-data analyses are applied to each
multiply-imputed dataset (treating imputed values as fully observed and independent), m dif-
ferent sets of the parameter estimates and their variance-covariance matrices are generated. To
combine the inferences from them, [12] suggests to take an average of all results, except the
standard error (SE) term. The SE is constructed by the within variance of each dataset as well
as the variance between imputed items on each dataset. These two variances are added together
and the square root of them determines the SE. The author recommends to use no more than 5
imputations and sometimes as small number as 2 or 3 to generate useful statistical inferences.
We use m = 5 for MI techniques in our analysis. It is important to note that the complete-data
analyses in MI treat the imputed data as though they had been fully observed. This approach
does not consider any dependence of the imputed data on the actual fully observed data.

MI using Markov chain Monte Carlo (MCMC)

Multiple imputed data sets can be generated by the MCMC method, which is applied to an ar-
bitrary missing data pattern that assumes multivariate normality. MCMC has been used to ex-
plore posterior probability distributions to express unknown parameters in Bayesian
inferences. Using this method, the entire joint posterior distribution of the unknown quantities
is simulated and the parameter estimates based on the simulation are generated [14].
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This process can be described in two steps. The first step is the imputation I-step which ran-
domly draws values for missing values from the assumed distribution of missing values given
observed values using the estimated mean vector and variance-covariance matrix, i.e. it draws

values for Y,(,f;]) from p(Y,,.is| Yops 0), Where Y,,,;c and Yy, are variables with missing values and

observed values, respectively, and ' is a parameter estimate at the t" iteration.
The posterior P-step randomly simulates the population mean vector and variance-

covariance matrix from the complete sample estimates, i.e. it draws 6% from p(0|Y,,, Y\'I).

These new estimates are then used in the I-step. This creates a Markov chain (Y,(,,l,.z, 0",
(Yf,f,-s)7 9(2)), ..., which converges in distribution to p(Y,,;s 0] Y,ps). Enough iterations are carried
out to have reliable results for a multiply imputed dataset and to converge to its stationary distri-

bution from which we can simulate an approximately random draw of the missing values [15].

MI using Expectation-Maximization (EM) with bootstrapping algorithms

The EM algorithm is a very general iterative algorithm for maximum likelihood estimation of
missing data [9]. One assumes a model for the data, maximizes the likelihood under the as-
sumed model, obtains parameter estimates, and makes inferences based on the parameter esti-
mates. The explicit form of parameter estimates does not usually exist for missing data. Here
numerical methods like the Newton-Raphson algorithm are very complicated to use. Thus one
can apply the EM algorithm which is an iterative method for maximizing the likelihood in
missing data [10]. Compared to the Newton-Raphson algorithm, the EM algorithm is slower,
but it increases the likelihood with each iteration and surely converges to a maximum for the
distribution with one mode. The EM algorithm converges to a local maximum or a saddle
point for the distribution with multiple modes.

The EM algorithm consists of two steps, the Expectation (E) and the Maximization (M)
steps. The algorithm calculates the conditional expectation of missing values given non-miss-
ing values and current parameter estimates in the expectation step. In the maximization step
the calculated expected values are used to maximize the likelihood of the complete data. These
steps are iterated until the maximum likelihood of data converges. The EM algorithm may not
have an explicit form. In this case, the maximization could be theoretically obtained using iter-
ations in the maximization step.

The maximization step can be computationally expensive, which can make the EM algorithm
unattractive. Fortunately, the EM with bootstrapping algorithm resolves this problem. It uses the
conventional EM algorithm on multiple bootstrapped samples of the original missing data to
draw values of the complete-data parameters. Then it draws imputed values from each set of
bootstrapped parameters, replacing the missing values with these draws. The EM with bootstrap-
ping algorithm can impute missing values in much less time than the EM algorithm itself [11].

K-Nearest Neighbors (KNN): modified and accounting for dependence
KNN in general

The conventional KNN method replaces missing values using k-most similar non-missing sub-
jects’ values [16, 17]. It can impute both discrete attributes (using the most frequent value
among the k-nearest neighbors) and continuous attributes (using the mean among the k-near-
est neighbors).

[8] implemented the KNN method that weights the contribution of each nearest neighbor
by its similarity to the subject with the missing value. In our CRC study, the weights of the
nearest neighbors in the imputation of missing value are measured by the Euclidean distance
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metrics of demographic and lifestyle variables such that the nearer neighbors to the subject
contribute more to its imputation than the more distant ones. Based on the weighting method
of [8], we briefly outline our weight calculations here. Let k be the chosen number of nearest
neighbors, D; < ... < D; be the sorted distances of the k nearest neighbors from normal-miss-

max

ing subject i, and D! be the maximum distance (among all fully-observed subjects) from

subject i. Then the weights a; , . . ., a; among the k nearest neighbors for subject i are obtained
as follows:
D,
Wil = 1= ngax)
. (1)

i

(Ilil K
2 W,

These weights are used by the weighted KNN method to impute missing expression values of a
particular gene as in Eq (2).

Our proposed imputation method accounts for the dependence induced by weighted KNN
and can use the additional covariates such as demographic, general health, genetic, and lifestyle
variables, as well as other biologically related information. The proposed imputation method
takes advantage of the conventional KNN [16, 17] and further developed weighted KNN [8]
imputation methods’ robustness to missing data, non-parametric approach, and speed in esti-
mating missing values for microarray data, while considering the correlation structure of the
data. In order to impute missing samples in the above mentioned motivating CRC case study,
the proposed method has been modified to impute expressions for all miRNA of missing nor-
mal samples based on multivariate covariates (demographic and lifestyle variables) and to ac-
count for the dependence of the imputed data in subsequent differential expression tests. The
demographic and lifestyle variables considered in this paper are five continuous (age, number
of cigarettes/day, calories, BMI (Body mass index), and lutein and zeaxanthin concentration)
and five binary (gender, recent aspirin/NSAID (Non-steroidal anti-inflammatory drug) use, re-
cent smoker, menopause, and post menopause taking HRT (Hormone replacement therapy)
within 2 years statuses) variables.

This modified KNN technique imputes all miRNA expression levels of missing normal sam-
ples by finding the k most similar subjects, not gene expression levels as in conventional KNN-
based methods, based on the distance matrices of demographic and lifestyle covariates of pa-
tients and produces the variance-covariance matrices for each miRNA. For example, we can es-
timate the miRNA expression levels in missing normal tissues from a particular subject, based
on the expression levels of scanned normal tissues from subjects who have similar demograph-
ic and lifestyle covariates.

Another advantage of this method is that it can integrate simultaneously multivariate covar-
iates by aggregating and normalizing their distance matrices (Euclidean, Manhattan, Min-
kowski, and etc.) to find the nearest neighbor subjects. Specifically, two between-subject
distance matrices are constructed based on the fully observed continuous and discrete covari-
ates separately, using Euclidean and Manhattan distances, respectively. These two distance ma-
trices are normalized by scaling between 0 and 1 [18] and aggregated by taking the weighted
average of each distance matrix to achieve a single between-subject distance matrix.

Choice of optimal k

There have been many studies carried out to determine the optimal choice (parameter) of k for
the KNN algorithm. [17] suggest to use the square root of the average number of complete

PLOS ONE | DOI:10.1371/journal.pone.0119876  April 7, 2015 5/15



@' PLOS ‘ ONE

Accounting for Dependence in KNN Imputation

cases after missing data removal, rounded to the nearest odd integer. The simulation studies of
different k on Likert data [19] show the square root of the number of complete cases which is
rounded to the nearest odd integer is a suitable choice for k. Moreover, [20] report on k = 10
for large data like from microarrays. [8] argue that the imputation method is fairly insensitive
to the choice of k in the range 10-20. As k gets larger, the average distance to the neighbors in-
creases which implies that the imputed value could be less accurate and the imputation time
will increase.

However, the choice of a small k diminishes the KNN performance because the imputation
process overemphasizes a few dominant genes (or subjects in our modification) in estimating
the missing values. On the other hand, a large k may include genes (or subjects) that are signifi-
cantly different from the missing values that may result in degrading the
imputation performance.

Accounting for dependence of KNN-imputed data

Because the weighted KNN-imputed expression values are linear combinations of expression
values of the fully observed subjects’ expression values, the imputed values are not necessarily
independent of the fully observed values. The modified KNN-based imputation method has an
advantage of considering this dependence induced by weighted KNN by providing variance-
covariance matrices of each miRNA, which can be used when searching for differentially ex-
pressed miRNAs. We refer to this method as “KNN dependent”, while referring to the KNN
imputation method that ignores the dependence as “KNN independent” in this paper. Its algo-
rithm works almost the same as the algorithms of the conventional KNN-based methods, ex-
cept it treats the rows as subjects or samples, and the columns as miRNAs.

To see how the proposed imputation method estimates the miRNA expression levels in
missing normal samples and accounts for the dependence induced by the weighted KNN, sup-
pose that in the CRC study of N subjects, we want to estimate expression levels of G miRNAs
for normal samples of missing S subjects using demographic and lifestyle covariate data. For
each normal-missing subject i, we find the k most similar subjects with non-missing normal
samples (say subjects iy, . . ., i), and impute the missing miRNA expression values by multiply-
ing the miRNA expressions from normal samples of the k subjects with their corresponding
weights, which are generated from the between-subject distance matrix. The imputation of the
expression level of miRNA j in missing normal sample i will be produced as in Eq (2):

Xj=a;%;ta,x,;+...+a,x, (2)
Here,i=1,...,Sandj=1,..., G. x;is the observed expression value of miRNA j in the ob-

served normal sample of subject [, and a;; is the weight of the subject in the imputation. The
weights a; , . . ., a;, are obtained as outlined in Eq (1) above. We can generalize Eq (2) to Eq (3):
X —aA'x (3)

Here, );( isan § x G matrix of imputed normal tissue expression values, A isa (N-§) x §
matrix of weights a, and X is a (N-S§) x G matrix of observed normal tissue expression values.
In column i of A, the only non-zero elements are in rows iy, iy, . . ., i, and are the coefficients
ai,a;, - - - a; in Eq (2).

The variance-covariance matrix of the normal tissue expression for miRNA j will be calcu-
lated as in Eq (4), assuming the order in the data is the fully observed N-S subjects followed by
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the § normal-missing subjects:

2~

A
Yol= a2, (4)
<Y v j

! A A'A

Here, 0;.2 is the variance of miRNA j and Iis the (N-S) x (N-S) identity matrix of non-miss-

ing subjects to represent the independence among non-missing subjects. The matrix part of the
right-hand side of Eq (4) is denoted by g}_.

Testing for differential expression (DE) of miRNA while accounting for
dependence

The paired t-test [21] may be used to check whether the miRNAs are differentially expressed in
paired normal-tumor samples while accounting for the dependence induced by the imputation
method. The paired t-test can be simplified to a one sample t-test of the difference of normal
and tumor samples. The per-miRNA null hypothesis is that the difference of mean expression
levels of miRNAs between normal and tumor samples is equal to zero. The test statistic for
miRNA j can be found beginning with the following equation, as discussed in chapter 3
of [22].

D =lyte )

~ o~
Here, D is a N x 1 vector of the difference of the j” miRNA expressions for normal and
~i

tumor samples, y; is a single parameter representing the difference of mean expression levels of
miRNA j between normal and tumor samples, and 1 is N x 1 vector of I’s. Var(e ) = a7V ,
~ ~ ~J

where \[j is the variance-covariance matrix of the tumor-normal difference in miRNA expres-
sion values for miRNA j, i.e., Y]- =1+ g}_, and needs to be a positive definite matrix.
The mean tumor-normal difference for miRNA j can be estimated by Eq (6):
B=0V YYD ®
j i
The f; in Eq (7) can be substituted from Eq (6):

(D ~1) V(D ~ 14 )

) J ~i

% = N-1

Then, the estimated variance of i ; would be calculated as in Eq (8):

Var(fy) = 621"V ') (8)

J
Finally, the test statistic will be found using Eq (9) with a degree of freedom of N—-1.
p

t= :
Var(ﬂj)

©)

This paired t-test can be used with the other imputation methods by replacing ;}_ with the

identity matrix, which represents the assumed independence of imputed miRNA values.
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Measuring performance

The performance of the imputation methods on miRNA data is evaluated through root mean
squared error (RMSE). The RMSE-based evaluation technique is the most commonly used
method to compare similarity between true expression values and imputed expression values.
Various variants of RMSE measures are used in the literature: the non-normalized RMSE mea-
sure [23] and the normalized RMSE measure by different normalizing constants: average value
over all observations in complete data [8], standard deviation of the values in complete data
over missing entries [24, 25], and root mean square of the values in complete data over missing
entries [26]. However, all above mentioned various RMSE measures provide highly similar re-
sults [27].

In the motivating CRC case study, all miRNA expression levels of up to 50% missing normal
samples, i.e. up to 50% missing rows (samples) of miRNA data must be imputed. Thus, the
non-normalized RMSE that measures the difference between the imputed part of matrix and
the original part of matrix, divided by the number of missing cells, can be used. It is calculated
as Eq (10):

1 S G oy
RMSE = WZZ(% ~ ;) (10)

i=1 j=1

Here,i=1,...,Sandj=1,..., G.x;is the original value for missing sample i and miRNA j,
while x; is the imputed value for missing sample i and miRNA j.

Results

We evaluated the performance of the proposed imputation method, which accounts for the de-
pendence induced by weighted KNN and considers the demographic and lifestyle covariates
(KNN dependent), over the weighted KNN ignoring the dependence (KNN independent), MI
techniques using MCMC and EM with bootstrapping algorithms, as well as the case deletion
technique which only considers fully-observed subjects [9] using simulated data sets.

Optimal number of nearest neighbor subjects (k)

Fig 1 shows the effect of the number of neighbor subjects, k, used in the KNN imputation
method on the RMSE values for simulated data sets with different number of subjects and per-
cent of normal-missing subjects. The RMSE decreases, i.e. the performance of KNN imputation
increases, while the value of k increases. The falling of RMSE values slows down after k value of
10, and becomes approximately the same for the rest of k values. The imputation performance
becomes approximately insensitive to the value of k within the range of 10-25 neighbor sub-
jects. Thus, we used 10 nearest neighbor subjects to estimate the miRNA expression levels of
normal samples for missing subjects.

Simulation data sets

While we have complete normal and tumor sample data for more than 400 subjects in the CRC
study, we compare imputation methods using simulated data to have clearly defined power
and Type I errors. The imputation analyses were performed on normally distributed paired
data matrices of G = 2000 miRNA features (columns) for each of the normal and tumor sam-
ples with sample sizes of N = 50, 100, 200, and 400 subjects (rows). We simulated expression
levels of miRNAs for normal and tumor samples by controlling true differentially expressed
miRNAs of tumor samples across all simulations. Particularly, all miRNA features of normal
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Fig 1. The RMSE values for different number of neighbor subjects (k).
doi:10.1371/journal.pone.0119876.9001

samples and only non-differentially expressed miRNA features of tumor samples were simulat-
ed based on y = 2 and 0 = 1.25, while the differentially expressed miRNA features of tumor
samples, which consisted of 20% of all miRNA features of tumor samples, were simulated
based on y = 2.5 and o = 1.25. This 20% differential expression rate as well as this mean tumor-
normal difference of 2.5 and standard deviation of 1.25 were chosen based on characteristics of
the motivating CRC study. We randomly applied missingness from 10 to 50 percent of the nor-
mal data rows. We performed 25 simulations for each sample size with different
percent missingness.

To ensure that the simulated data sets reflected the characteristics of the CRC study, and
that the demographic and lifestyle variables carried some useful information for imputation,
the multivariate covariate data sets with demographic and lifestyle variables of subjects were
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simulated based on z randomly selected true differentially expressed miRNA expression levels
using the characteristics of the CRC case study covariate data. For example, a continuous vari-
able such as age of subjects was simulated as in Eq (11):

C=Py+> Bx+e (11)
j=1
Here,j=1,...,z C is a simulated value of age, 3, is the mean age of the patients in CRC

case study, and f3; is uniformly distributed with a minimum and a maximum of up to 5% of the
minimum and the maximum of the CRC case study patients’ age, respectively. In this paper,
we used 2% of the minimum and the maximum of the continuous variables with z = 20, which
was selected for computational simplicity, to simulate variables with similar characteristics of
CRC case study covariates. x; is the expression of truly differentially expressed miRNA j in
tumor, and the error term e is normally distributed with zero mean (4 = 0) and variance of 10%
of variance of the patients’ age (6> = 0.1 x . ).

The binary variables such as gender of subjects was simulated using a logistic regression
model in Egs (12) and (13):

l"glz_)pzﬁﬁz Bix; (12)
=1

Here, p is the probability of gender = female, say.
Eq (12) can be rewritten as Eq (13):

b= [+ exp(— (B, + Z B (13)

Here, P is a simulated probability of gender = female, 8, is the mode of the patients’ gender
in the CRC case study, and f; is uniformly distributed as U[-0.5, 0.5]. To ensure variability in

simulated binary variables, we calculate P’ asin Eq (14):

b p - min(P) .
max(P) — min(P)

(14)

In our simulated study, we had denoted as a male if the value of P’ was between 0 and 0.5,
and as a female if the P’ was bigger than 0.5 but less than or equal to 1.

Demographic and lifestyle variables were thus simulated based on characteristics of five
continuous (age, number of cigarettes/day, calories, BMI, and lutein and zeaxanthin concentra-
tion) and five binary (gender, recent aspirin/NSAID use, recent smoker, menopause, and post
menopause taking HRT within 2 years statuses) variables from the CRC study.

We carried out the performance analyses as follows: First, we called arbitrarily the subjects
with missing normal samples. Then, we imputed expression levels of the missing normal sam-
ples using the imputation methods mentioned in the Methods section. We evaluated the per-
formance of these imputation methods against the initial generated data matrices by
calculating the RMSE for such simulated data set. Moreover, we carried out the differential ex-
pression (DE) analyses on the imputed data sets to check whether the KNN dependent method
has an equal statistical power in finding differentially expressed miRNA as other
imputation techniques.
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The performance of the modified KNN method was assessed over MI techniques using MCMC
and EM with bootstrapping algorithms for data matrices with different number of subjects and
different percents of normal missing subjects. In Fig 2, the modified KNN method shows con-

sistently better performance than other imputation techniques (systematically lower RMSE val-

ues) for sample sizes of 50, 100, 200, and 400 subjects, with missing percentages of 10-50.

The KNN imputation method also shows a robustness to increasing the percent of missing
normal samples and the number of subjects in miRNA data sets. It keeps relatively the same
performance for all levels of missing percents and number of subjects.

Moreover, the KNN imputation method required much less computational expense than
the MI techniques using MCMC and EM with bootstrapping algorithms. For example, to im-
pute the expressions of 50% missing normal samples in 400 subjects on a machine with CPU
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speed of 1.86 GHz and 2 GB RAM, the KNN method took approximately 35 minutes, whereas
MCMC and EM with bootstrapping algorithms took approximately 10 and 5
hours, respectively.

Differential expression (DE) testing

We applied the paired t-test to the data sets, which were imputed by various imputation meth-
ods, to see how well we could identify differentially expressed miRNAs. First, we obtained a
test statistic and a p-value for each miRNA feature in each imputed data set by controlling the
false discovery rate (FDR) at 0.05 within each simulation. Then, we calculated the true positive
rate (TPR), the false positive rate (FPR), and the false discovery rate (FDR) based on the miR-
NAs which were controlled as truly differentially expressed in the simulations. The TPR and
FPR were defined and calculated as in [28] and [29], and the FDR was defined as in [30].

Fig 3 shows the performance (including power and FDR control) of the paired t-tests on the
data sets imputed by the KNN dependent, the KNN independent, the MI using MCMC and
MI using EM algorithms, the case deletion technique, as well as on the full data set for the num-
ber of subjects of 50, 100, 200, and 400 with the missing percent of normal samples of 10%-
50%. The scatter plots of TPR and FPR for the similar conditions are represented in S1 Fig (see
Supplemental materials).

From Fig 3 we can see that the power (i.e., the TPR values) increases with larger sample
sizes. For 400 subjects and 50% missing normal samples, which are the characteristics of the
CRC case study, there are clear clusterings of TPR and FDR values, separately for full, for KNN
dependent and case deletion, and for KNN independent, MCMC, and EM methods. Although
the KNN dependent has slightly lower power than the other imputation methods (the TPR val-
ues are in the range of 0.93-0.98 for 400 subjects and 50% missing), it controls the FDR values
below the threshold of 0.05, which is represented by red dotted lines in the figures. The KNN
independent, the MCMC, and the EM with bootstrapping algorithms have the highest power
(the TPR values are in the range of 0.985-1 for 400 subjects and 50% missing), but lack control
of the FDR, i.e. the FDR values cross the threshold of 0.05 for all number of subjects and miss-
ing percentages. The case deletion method shows the lowest power, but maintains control of
the FDR for all number of subjects and percentages of missing normal samples.

Discussion

The imputation accuracy of the proposed KNN imputation method, using the aggregated met-
ric distance matrices of the demographic and lifestyle data, in the simulation data sets was
higher than that of the MI methods using MCMC and EM with bootstrapping algorithms.
Moreover, the proposed KNN method was robust and imputed the miRNA features of missing
normal samples with less computational expense than the other imputation methods.

The DE tests of the KNN imputed data sets show that the KNN method while accounting for
the dependence of the imputed values (KNN dependent) provided greater power than if no im-
putation were done (the case deletion approach) and maintained control of the FDR. The KNN
method while ignoring the dependence (KNN independent), as well as MCMC and EM with
bootstrapping algorithms had higher power than the power of KNN dependent, but failed to con-
trol the FDR. These effects are more clear for larger missing percents and number of subjects.

Depending on the study goals, researchers could select the KNN method while ignoring the
dependence (achieving more power and higher proportion of false discoveries) or considering
the dependence (moderate loss of power but lower proportion of false discoveries). In the moti-
vating CRC study, the chosen approach is the KNN method while accounting for the depen-
dence, with moderate loss of power but maintaining control of the FDR.
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The case deletion method showed the lowest power to identify differentially expressed miR-
NAs, though it had similar FDR control as the KNN dependent method.

In this paper, we applied the paired t-test to identify differentially expressed miRNAs from
normally distributed simulated miRNA data while accounting for the dependence structure of
the imputed data. However, miRNA data can be noisy and not normally distributed. Currently
available nonparametric tests may also not be directly applicable because they assume indepen-
dence. In this respect, it is challenging to construct a statistical model which tests for significant
miRNAs from paired samples while accounting for the dependence. Our future work is to de-
velop a nonparametric t-test method which enables paired t-tests on a large number of miRNA
data, using permutations with manageable computational expense, while accounting for the
dependence induced by KNN imputation.

Supplemental materials

S1 Fig shows the scatter plots of TPR and FPR of the KNN dependent and independent meth-
ods, the MI techniques using MCMC and EM with bootstrapping algorithms, as well as full
and case deletion techniques. The R code to generate the simulated data are also provided (in a.
zip file) as S1 File.

Supporting Information

S1 Fig. TPR and FPR for sample sizes of 50, 100, 200, and 400 with missingness of 10%-
50%.
(TIF)

S1 File. R code to generate the simulated data, beginning with README.txt file.
(Z1P)
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