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Abstract

Decision-making systems trained on structural Magnetic Resonance Imaging (MRI) data of 

subjects affected by the Alzheimer’s disease (AD) and healthy controls (CTRL) are becoming 

widespread prognostic tools for subjects with Mild Cognitive Impairment (MCI). This study 

compares the performance of three classification methods based on Support Vector Machines 

(SVMs), using as initial sets of brain voxels (i.e. features): 1) the segmented grey matter (GM); 2) 

regions of interest (ROIs) by voxel-wise t-test filtering; 3) parceled ROIs, according to prior 

knowledge. The recursive feature elimination (RFE) is applied in all cases in order to investigate 

whether feature reduction improves the classification accuracy. We analyzed more than 600 ADNI 

subjects, training the SVMs on the AD/CTRL dataset, and evaluating them on a trial MCI dataset. 

The classification performance, evaluated as the Area Under the Receiver Operating Characteristic 

(ROC) Curve (AUC), reaches AUC=(88.9±0.5)% in 20-fold cross-validation on the AD/CTRL 

dataset, when the GM is classified as a whole. The highest discrimination accuracy between MCI 

converters and non-converters is achieved when the SVM-RFE is applied to the whole GM: with 

AUC reaching (70.7±0.9)%, it outperforms both ROI-based approaches in predicting the AD 

conversion.
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Introduction

Diagnostic early markers of Alzheimer’s disease (AD) are widely investigated in order to 

aid researchers and clinicians in the validation of the effectiveness of new AD treatments, 

while limiting the duration and cost of clinical trials [1]. Brain atrophy and its evolution are 

recognized key neuroimaging biomarkers of the AD progression [2–9].

Brain scans acquired with structural Magnetic Resonance Imaging (MRI) are suitable for 

quantitative evaluation of brain atrophy; moreover, image analysis algorithms can process 

these in order to extract useful information and carry out both single-subject analyses and 

between-group comparisons.

Machine-learning techniques applied to MRI images are increasingly spreading tools that 

extract information from data and can predict the pathology progression [10,11]. The 

introduction of pattern classification and computer vision methods in the neuroimaging field 

is due to Lao et al. [12]. In order to develop an accurate predictor of pathology from a set of 

volumetric images, the authors highlighted the limitations of voxel-based morphometric 

methods and the potentiality of Support Vector Machine (SVM)-based decisional systems.

Classification approaches can be particularly useful in studies on the AD pathology, as they 

predict the conversion to AD of those subjects referred to as affected by Mild Cognitive 

Impairment (MCI), a transitional state between normal aging and dementia [13].

Several machine-learning techniques have been implemented so far in neuroimaging studies 

on AD, such as Principal Component Analysis (PCA) and Linear Discrimination Analysis 

(LDA) [14,15], SVM [16–21], logistic regression [22], the combination of information 

extracted from different diagnostic modalities and their classification with SVM [23], with 

an automatic learning framework [24], or by combining multiple weak classifiers to achieve 

more accurate and robust results [25]. Many research groups investigating the AD pathology 

in recent years developed and validated their analyses on data samples provided by the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [15,19–26], as reported in the 

extensive review carried out by the Principal Investigator on the ADNI initiative Michael W. 

Weiner and colleagues [27].

Recent studies by Cuingnet et al. [20] and Chu et al. [21] on ADNI data were focused on a 

comparison between whole-brain classification methods and Region Of Interest (ROI)-based 

approaches, all coupled to feature reduction methods, required by the huge input data size. 

Both studies concluded that feature selection does not improve the classification accuracy 

and that whole-brain methods outperform ROI-based ones, unless the ROIs are chosen 

according to a prior knowledge of the underlying disease. A recent study by Adaszewski et 

al. [28] on longitudinal data of AD, MCI and control (CTRL) subjects, reports that feature 

selection improves the classification accuracy at early MCI stages, whereas at a later stage 

whole-brain methods are superior.

We focused our analysis on a comparison between three different methods, in order to select 

the initial sets of brain voxels to analyze with SVM classifiers. In particular, they are defined 
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as: 1) the segmented grey matter (GM), referred as whole-GM classification; 2) the regions 

of interest (ROIs), obtained by the voxel-based morphometry (VBM) analysis, i.e. voxel-

wise t-test filtering, referred as VBM-ROI classification; 3) the parceled ROIs, chosen 

according to prior knowledge on the brain involvement in the AD pathology, referred as 

LONI-ROI classification, as the parcellation of the anatomical regions is performed 

according to LONI Probabilistic Brain Atlas (LPBA40) [29].

The recursive feature elimination (RFE) method [30] has been implemented in our whole-

GM analysis both in order to reduce the data size, and to localize the brain regions that are 

more involved in the AD pathology. The same approach has been applied also to the VBM-

ROI and LONI-ROI classification, so as to evaluate the SVM-RFE potentiality in enhancing 

the classification performance. Methods 1) and 2), complemented with the RFE procedure, 

can be considered as data driven approaches, where different criteria to select the initial set 

of features are implemented (whole-GM vs. t-test filtered ROIs). They are compared to 3) a 

prior-knowledge based analysis, where the right and left hippocampi and parahippocampal 

gyrii are considered as relevant ROIs in the AD pathology.

All the approaches are compared in terms of their ability in correctly distinguishing AD 

from CTRL subjects and making accurate conversion predictions on the MCI population. 

The relative performances are compared in term of the Area Under the Receiver Operating 

Characteristic (ROC) Curve (AUC), evaluated within cross-validation protocols. The 

meaning of AUC has been proved to be the probability that a random pair of positive/

diseased and negative/non-diseased individuals would be correctly identified by the 

diagnostic test [31].

The analysis is carried out on a MRI dataset extracted from the publicly available ADNI 

collection.

This paper is structured as follows: a description of the MRI data source and its 

characteristics is provided; then, a methodological overview for the VBM analysis and the 

machine-learning SVM procedure is given; the implementation of decisional systems in the 

whole-GM, VBM-ROI and LONI-ROI analysis is described, and finally results are 

discussed and compared to other methods.

Materials and Methods

The ADNI data sample

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial MRI, positron 

emission tomography (PET), other biological markers and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers 
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of very early AD progression is intended to aid researchers and clinicians to develop new 

treatments and monitor their effectiveness, as well as lessen the time and cost of clinical 

trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 adults, aged 55 to 90, to participate in the research, 

approximately 200 cognitively normal older individuals to be followed for 3 years, 400 

people with MCI to be followed for 3 years and 200 people with early AD to be followed for 

2 years. Up-to-date information is available on www.adni-info.org.

The analysis reported in this paper has been carried out on the structural MRI data of 635 

subjects extracted from the ADNI database. The statistical data of these subjects are 

summarized in Table 1. The subjects have been divided into two categories: a training/

testing and a trial set. The training/testing set consisted of 333 age and sex-matched subjects, 

namely 189 CTRL and 144 AD. The trial set consisted of 302 MCI subjects, among which 

136 converted to AD in a time frame of 2 years from the baseline scans. These subjects were 

selected from the larger ADNI data on the basis of the availability of baseline and at least 2 

years information. Moreover, training subjects were chosen if confirmed to be CTRL/AD at 

follow-up assessment. The data samples considered in this work are the same analyzed in 

the paper by Chincarini et al. [19].

MRI acquisition and preprocessing

The MRI ADNI data were acquired with 1.5 T scanners. Data were collected across a 

variety of scanners. Up-to-date information on ADNI eligibility criteria and protocols is 

available on http://www.adni-info.org. Raw NIFTI-converted MRI scans were downloaded 

from the ADNI site, automatically reviewed by signal-to-noise statistics for quality, and 

processed with a wavelet based noise-filtering algorithm to improve signal-to-noise ratio and 

image uniformity across different sites [19]. Denoised scans were registered onto the 

Montreal Neurological Institute (MNI) reference [32] with a 12-parameter affine registration 

and resampled onto a 1-mm3 isotropic grid. Images were then intensity-normalized as 

reported in Chincarini et al. [19] to achieve good histogram equalization among images 

coming from different scanners, while ensuring that the average gray levels of the three 

main cerebral matter contributions are mapped onto those of the MNI reference.

Voxel-based morphometry (VBM) preprocessing

We conducted a voxel-based morphometry (VBM) study [33] in order to investigate the 

differences in the regional volumes of grey matter (GM) between the AD and CTRL groups 

and between the MCI-C and MCI-NC groups, respectively. The T1-weighted volumetric 

images were analyzed with the SPM8 package (Statistical Parametric Mapping, Wellcome 

Department of Imaging Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm), using 

the VBM protocol with modulation. We implemented the Diffeomorphic Anatomical 

Registration using Exponentiated Lie algebra (DARTEL) algorithm [34]. A diffeomorphic 
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warping is implemented to achieve an accurate inter-subject registration with an improved 

realignment of small inner structures [35] and to generate a study-specific template. The 

VBM preprocessing was applied as follows: (1) SPM segmentation of brain tissues, i.e. grey 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF), using the New Segment 

toolbox, which extends the segmentation procedure described in [36]; (2) importing the 

parameter files produced by the tissue segmentation in the DARTEL procedure [34] to 

generate a study-specific template and the deformation fields that warp the segmented 

tissues of each subjects to the DARTEL template; (3) affine transformation to the MNI 

space of the DARTEL template and of the segmented brain tissues previously aligned to the 

DARTEL template according to the generated deformation fields; (4) standard smoothing 

with isotropic Gaussian kernel. After the preprocessing, we obtained smoothed modulated 

normalized data (in the MNI space) to be used for the statistical analysis. The modulation 

operation is fundamental to render the final VBM statistics reflecting the local volume 

differences in tissue segments [33]. Modulation allows compensating for the effect of spatial 

warping that causes volume changes, so that the total amount of grey matter in the 

modulated images remains the same as it would be in the original images. The modulated 

GM segments thus need to be corrected for total intracranial volume to take into account 

brain size variability.

VBM statistical analysis

The regional GM volumes were compared between the AD/CTRL and the MCI-C/MCI-NC 

samples using the VBM-DARTEL analysis. The normalized modulated and smoothed GM 

image segments in each group were entered into a voxel-wise two-sample t-test analysis in 

SPM8. The conventional VBM analysis was employed using the stringent significance 

threshold p<0.05, family-wise error rate (FWE) corrected. An absolute threshold mask of 

0.1 on GM was used to avoid possible edge effects around the border between GM and WM. 

Age, gender and the Total Intracranial Volume (TIV), computed as the sum of the SPM 

segmented GM, WM, and CSF were entered as covariates in the statistical analysis.

Multivariate analysis with Support Vector Machines (SVM)

We followed the classification approach with SVM proposed in Klöppel et al. [16] and in 

Ecker et al. [37]. As opposed to the mass-univariate VBM analysis, the pattern recognition 

techniques, e.g. SVMs, are multivariate and make use of specific inter-regional 

dependencies to help categorize scans [12,17].

An SVM [38] is a supervised binary classification method, i.e. it requires a training set, used 

to learn the differences between the two groups, and a validation set to quantify the 

classification performance on previously unseen data (see the schematic flowchart in Figure 

1). In our analysis, each image is treated as a point in the high dimensional RN space, where 

the space dimension N is equal to the number of features/voxels in the considered ROI.

The SVM inputs are feature vectors, the sequence of the voxel intensity values of the ROI. 

The feature vectors belonging either to the category of patients and controls are labeled with 

“1” and “−1”, respectively. The trained SVM classifier maps the RN space into R, by 

assigning to the newly examined cases a one-dimensional (or binary) output. As the number 
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of features/voxels can be very high especially when the whole GM is the ROI to classify, 

whereas the number of subjects considered in this study is limited to few hundreds, we 

considered only linear-kernel SVMs to avoid the risk of overfitting data. Training an SVM is 

a minimization problem where the largest-margin hyperplane allowing for an optimal 

separation of the training examples is identified. The separating hyperplane is defined by a 

weight vector and an offset, w • x + b = 0, where the weight vector w is a linear combination 

of the support vectors and it is normal to the hyperplane. During the SVM training a free 

parameter has to be set, the c value, that controls the trade-off between having zero training 

errors and allowing for misclassifications. The c value has been heuristically estimated in 

our analysis.

The SVM is trained according to the 20-fold cross-validation (20f-CV) technique. The data 

are partitioned in 20 folds; one of them is retained as validation data while the others are 

used to train the classifier. The process is repeated 20 times, i.e. until each subsample is used 

once as validation set. We used in this study the SVM-Light software package [39,40] 

(http://svmlight.joachims.org/).

The classification performance is evaluated through the Receiver Operating Characteristic 

(ROC) curve [41], where the sensitivity (true positive rate, i.e. the percentage of 

pathological subjects correctly classified) is plotted against the false positive rate (i.e. the 

percentage of misclassified control subjects). Different ROC curves are compared to each 

other in terms of the estimated AUC.

The initial selection of brain regions for the three SVM classifications we carried out was 

operated as follows:

1. Whole-GM classification. We consider as input to the SVM classifier the whole 

GM segmented volume obtained from the standardized and automated SPM 

preprocessing [16,37].

2. VBM-ROI classification. The ROIs that reached the statistical significance in the 

VBM analysis (p<0.05, FWE corrected) were used as data-driven reduced input to 

the SVM classifier.

3. LONI-ROI classification. The 1) and 2) voxel selection methods are complemented 

with a prior-knowledge based approach, where brain regions that encode interesting 

information for the AD pathology are selected on the basis of previous studies [2–

4]. Usually Neuroradiologists are asked to manually identify the brain regions to be 

considered. As an alternative, atlas-based parcellation can be implemented to select 

anatomical regions in a more automated and reproducible way. In the present 

analysis we defined the ROIs according to the LONI Probabilistic Brain Atlas [29] 

(http://www.loni.ucla.edu.Atlases/LPBA40). In particular, brain regions where 

neurodegeneration is expected in AD have been chosen, i.e. the right and left 

hippocampi and the parahippocampal gyrii.
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Discrimination maps and Recursive Feature Elimination (SVM-RFE)

The implementation of a linear-kernel SVM allows a direct extraction of the weight vector w 

as an image, which is referred to as discrimination map. The w vector, which is normal to 

the separating hyperplane and indicates the direction along which the images of the two 

groups differ most, can be used to generate a map of the most discriminating voxels in the 

images. As the intensity value reported in each voxel of the considered input images is 

proportional to the amount of GM in that specific location (the modulation option has been 

selected in the SPM segmentation), a higher/lower value in the discrimination map indicates 

that patients have higher/lower GM volume in that specific location with respect to controls.

In order to identify the voxels with the highest discriminating power, we implemented the 

SVM recursive feature elimination (SVM-RFE) procedure [30,42]. The SVM-RFE is a 

feature-selection technique that iteratively eliminates features/voxels from the data set, in 

order to remove as many non-informative features as possible, while retaining features that 

carry discriminative information. A new SVM classifier is trained at each iteration, thus a 

new weight map is generated. The selected feature-ranking criterion is the absolute value of 

each weight vector component |wi|. The features/voxels are iteratively excluded from the 

dataset with the aim of removing as many non-informative voxels as possible (low |wi|), 

while retaining those encoding the discriminative information (high |wi|).

The SVM-RFE algorithm is implemented in this study to estimate the SVM classification 

performance as a function of the number of GM voxels retained as input to the SVM. At 

each operative point of this curve the discrimination maps can be visualized to localize the 

set of voxels that encode the between-group discriminant information.

Prediction on the outcome of Mild Cognitive Impairment (MCI) subjects

The SVM-based method we present in this paper is able to provide single-subject 

classification, i.e. once an SVM classifier is trained on a learning dataset, it can be applied 

on previously unseen data and give a prediction on its class membership. In our analysis the 

SVMs, trained and validated on the AD/CTRL data sample, are evaluated on a completely 

independent validation set, constituted by MCI subjects. Also in this case the classifier 

performance is evaluated using the AUC as figure of merit.

Correlation between SVM test margin and cognitive decline

When attempting to set up a useful imaging biomarker, sensitive to the cognitive decline of 

patients with AD, it is important to test for correlation with the mini mental state 

examination (MMSE) score [1]. We studied the correlation between the distance of each 

data point from the SVM optimal hyperplane (we will refer to as the test margin) and the 

MMSE score of each subject using the Spearman’s rank correlation coefficient ρ [43].

Results

VBM results

Significant volumetric between-group differences have been found in the AD/CTRL sample 

with Gaussian smoothing scale s = 3 mm. By contrast, no significant between-group 

Retico et al. Page 7

J Neuroimaging. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difference has been detected in the MCI-C/MCI-NC analysis at any considered smoothing 

scale (s = 3, 6, 8 mm). The areas of brain atrophy detected by VBM are shown in Figure 2, 

where the t statistics of the significantly different areas (p< 0.05, FWE corrected) is overlaid 

on a series of axial views of a representative T1 MRI of a single-subject. The effect is 

localized in the medial temporal lobe (MTL), as expected. The VBM cluster coordinates in 

the MNI reference space and in the standard Talairach and Tournoux space [44] (the 

conversion being performed with the Talairach Client [45,46]), beside the anatomical 

description of the corresponding brain areas, are reported in Table 2.

SVM classification, SVM-RFE and discrimination maps

1) Whole-GM classification—The SVMs have been trained on the AD/CTRL sample 

according to the 20f-CV protocol and validated on the MCI cohort. In this paper we address 

a classification problem where the input is a vector that we call a pattern of n components, 

which we call features. Thus, a pattern is generated for each subject of our dataset, and the n 

features of each input vector are the voxel intensity values of the GM of each subject. It 

happens that the number of features/voxels is very large (about 6.5×105), whereas the 

number of patterns in the training dataset is limited to about 300. The linear-kernel SVM 

demonstrated to be able to handle such disproportion between the number of weights to be 

estimated and the training examples.

The classification error due to the random partitioning of data into the train and test samples 

was estimated by repeating the 20f-CV procedure ten times and evaluating the 

corresponding average AUC and its standard deviation (SD). As shown in Figure 3, the 

discrimination performance of SVMs trained with all features/voxels of the GM segments is 

equal to AUC = (88.9±0.5)% on the AD/CTRL sample whereas it falls to AUC = 

(67.8±0.5)% on the MCI cohort.

The SVM-RFE procedure has been applied and the corresponding AUC variation as a 

function of the number of retained voxels is shown in Figure 3. The dotted lines above and 

below the curve highlight the average (AUC ± SD) band.

It can be noticed that, whereas the highest AUC values in the AD/CTRL discrimination are 

obtained when a large number of GM voxels are retained for the classification, the 

performance sensibly decreases when retaining less than 10000 voxels. By contrast, the 

trend of AUC in the MCI-C/MCI-NC SVM-RFE classification is completely different. We 

remind that the MCI cohort is used only as validation sample, i.e. the SVM classifiers 

trained on the AD/CTRL data are evaluated on the MCI cases, which did not influence the 

training process. The reduction in the number of retained voxels leads in this case to a slight 

optimization of the classification performance, up to AUC = (70.9±0.9)%, obtained with 

8000 retained voxels.

2) VBM-ROI classification—The SVM classifier was trained with the grey level 

information encoded in the ROI identified by the VBM statistical analysis (see Sec. VBM 

results). About 6×103 voxels were significantly different in the AD vs. CTRL statistical 

comparison. The SVM classification, according to the 20f-CV protocol repeated ten times, 
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achieved AUC = (85.4±0.3)% in the discrimination between AD and CTRL subjects. The 

validation performance on the MCI dataset was less effective, with AUC = (63.7±0.2)%.

In order to optimize the discrimination performance, the SVM-RFE procedure has been 

applied also in this case. The behavior of AUC as a function of the number of retained 

voxels is shown in Figure 3 for both the AD/CTRL data and the validation cohort of the 

MCI-C/MCI-NC subjects. It can be noticed that despite the SVM-RFE procedure leads in 

this case to a tiny improvement in the classification performance in both the AD/CTRL and 

MCI-C/MCI-NC classification, in the latter case the AUC values remain well below the 

70%.

3) LONI-ROI classification—The hippocampus and parahippocampal gyrus ROIs 

extracted from the LONI Probabilistic Brain Atlas were coregistered to our images and 

resliced to be used as masks to the segmented GM of our data sample. The resulting LONI-

ROI dataset consisted of vectors of about 14×103 features, whose SVM classification 

provided AUC = (88.1±0.3)% on the AD/CTRL sample and AUC = (65.6±0.3)% on the 

MCI cohort. As shown in Figure 3, the SVM-RFE procedure has almost no effect on the 

classification performance.

Global vs. local approaches and discrimination information: A direct comparison 

between the classification performance of the whole-GM and the ROI-based methods is 

shown in Figure 3, which highlights two main results.

I. Before the RFE procedure is applied the whole-GM classification can be directly 

compared with t-test filtering (VBM-ROI) and prior-knowledge based method. The 

whole-GM classification outperforms both the ROI-based methods, especially in 

the prediction of the MCI outcome.

II. If the RFE is applied to all three datasets, the following considerations hold: i) the 

LONI-ROI approach shows similar performance to the whole-GM method in AD 

vs. CTRL classification, even when classifying only with a few hundreds voxels, 

but its classification accuracy on MCI subjects is not fully satisfactory; ii) the 

restrictive choice of classifying only the t-test filtered ROIs leads to a limited 

classification accuracy on both the AD/CTRL and the MCI samples; iii) the RFE 

applied to the whole-GM data maximizes the performance in MCI outcome 

prediction.

The AUC values obtained in the whole-GM SVM-RFE analysis considering 6000 retained 

voxels (corresponding approximately to the VBM ROI size) on the AD/CTRL and on the 

MCI-C/MCI-NC samples correspond to the areas under the ROC curves shown in Figure 4, 

where the average and SD band over the ten repetition of the 20f-CV are shown. The 80% 

sensitivity and 80% specificity values characterize the AD/CTRL sample separation, 

whereas in the MCI classification the performance is limited to the 70% sensitivity and 62% 

specificity values.

The discrimination map can be visualized at each step of the SVM-RFE procedure applied 

to the whole-GM data: in order to directly compare it to the significant ROIs obtained with 
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the VBM analysis, it has been visualized at the operative point corresponding to 6000 

retained voxels. The computed weight vectors  are averaged on r and k (where k = 1, … 

20 refers to the 20 different vectors obtained in the 20f-CV protocol, and r = 1, …10 refers 

to the ten repetitions of the SVM-RFE procedure). The discrimination map is shown in 

Figure 5, where regions with positive and negative values of w are reported; it is possible to 

distinguish brain regions where GM is either greater or lower in the patient group with 

respect to the control group. Since the map was obtained by averaging the 200 different 

maps generated in the ten repetitions of the 20f-CV, it is highly stable with respect to the 

training case variability. The discriminant regions, therefore, reflect the underlying 

characteristics of the AD pathology for the general population we analyzed.

The more extended and effective discriminant regions are described in terms of coordinates 

in the MNI reference space and in the standard space of Talairach and Tournoux in Table 3, 

where the anatomical description of the corresponding brain areas is also provided. It can be 

noticed that the parahippocampal gyrii and the superior temporal gyrus (BA22) have 

consistently been found in the VBM statistical univariate analysis. However, the 

discriminant information that allows the AD/CTRL separation appears not to be mainly 

localized in the Limbic Lobes, as highlighted by the VBM analysis in the VBM-ROI 

approach, and as a-priori defined through the LONI-ROIs. By contrast, many regions spread 

over the whole GM contribute to the two-class separation. In addition, the blind validation 

of this discrimination pattern on the MCI-C/MCI-NC sample has shown enhanced 

discrimination ability with respect to the SVM classification of the VBM-ROIs and LONI-

ROIs. The latter is a major result of the present analysis suggesting that relevant information 

to make predictions on the MCI population may reside in regions of the brain other than 

those that are most relevant when the AD pathology has already reached an advanced stage.

Correlation of test margin with MMSE

We analyzed the correlation of the SVM test margin with the MMSE score for the AD/

CTRL and the MCI-C/MCI-NC samples. The test margin has been computed for each 

subject at the operative point corresponding to 6000 retained voxels during the ten 

repetitions of the SVM-RFE procedure. We found the average Spearman’s rank correlation 

coefficient as: ρ = 0.386±0.008 (p < 10−3) for the AD/CTRL sample and ρ = 0.189±0.008 (p 

= 10−3) for the MCI sample. Figure 6 shows the scatter plots between the SVM test margins 

and the MMSE score for both data samples obtained in one of ten repetitions of the SVM 

classification. A small noise term has been added to the MMSE score of each subject to 

make the distributions more visible.

Conclusions and discussion

We presented in this paper a comparison among three different implementations of SVM 

classifiers complemented by the RFE feature-selection method and applied to the following 

data: 1) the whole-GM segmented out of brain MRI; 2) the ROIs selected by t-test filtering, 

i.e. those encoding statistically significant between-group differences in AD vs. CTRL 

comparison; 3) the hippocampus and parahippocampal gyrus ROI parceled according to the 

LONI Probabilistic Brain Atlas [29].
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The GM data of either the whole brain (whole-GM method) or the chosen ROIs (VBM-ROI 

and LONI-ROI methods) have been classified by SVMs, implementing the RFE technique 

in order to reduce the amount of input data and localize the relevant image information. The 

global and the local SVM-based techniques are both able to provide single-subject 

classification, i.e. a prediction on the possible conversion of MCI subjects into AD.

The classification of the whole-GM voxels leads to better performance in terms of AUC 

with respect to the VBM-ROIs and LONI ROIs classification accuracy on the AD/CTRL 

sample and especially in the prediction of MCI conversion.

This result is confirmed even when the RFE is applied. In this case the whole-GM approach 

demonstrated to achieve the best accuracy in MCI-C/MCI-NC separation, i.e. AUC = 

(70.9±0.9)% with 8000 retained voxels. Moreover, the AUC values obtained in the 

prediction of the MCI outcome with the whole-GM approach with SVM-RFE outperform 

the corresponding AUC values obtained with the ROI-based methods for a large range of 

voxels retained in the SVM-RFE procedure.

The data-driven feature selection operated by the RFE procedure leads to improved 

performance especially in the prediction of the MCI outcome with the whole-GM approach. 

It has to be noticed that in this case the data driving the feature selection belong to the AD/

CTRL sample, whereas the classification performance improvement refers to the MCI 

cohort, which is used in this analysis only as validation set.

Despite the classification performance obtained on the MCI population (AUC = 70.7%, 

sensitivity of 70% and specificity of 62%, accuracy of 66%) being comparable to values 

found in recent papers [15,19,20,22–26], as reported in Table 4, it can not be considered 

fully adequate to set up a MRI-based automated tool for the early diagnosis of the 

Alzheimer’s disease. A direct comparison is possible with the classification performance 

obtained in the study by Chincarini et al. [19], which was conducted on the same dataset. 

The classification accuracy obtained in the present analysis are not as high as those achieved 

by Chincarini et al. [19], especially in the AD/CTRL separation. This is related to the fact 

that in the present study we did not carry out any strong optimization of the classification 

methods, since its goal is the comparison between whole-GM vs. pre-selected ROI 

classification carried out by using quite straightforward and easily accessible methods of 

MRI data analysis (e.g. VBM preprocessing with SPM tools, SVM analysis with available 

software packages).

The main result is that the data-driven whole-GM approach based on SVMs is able to find 

subtle relationships among different brain regions and thus achieve better classification 

performance in the MCI conversion prediction with respect to decisional systems based on 

the analysis of pre-selected ROIs. Cuingnet et al. [20] and Chu et al. [21] have recently 

conducted similar comparative analyses on ADNI data. In particular, Cuingnet et al. [20] 

compared ten different methods and concluded that whole-brain methods are the most 

powerful in the AD/CTRL classification. However the authors stated that no classifier 

obtained significantly better results than chance in the MCI/AD conversion prediction. They 

also found out that feature selection methods did not improve the classification performance. 
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Chu et al. [21] confirmed that data-driven feature selection methods do not perform better 

than whole-brain approaches (if the dataset is sufficiently populated) and highlighted that 

only when prior knowledge is used to select ROI (hippocampus and parahippocampal gyrus) 

it is possible to outperform the whole-brain results. Instead, our work shows that the LONI-

ROI approach performs as well as the whole-GM method in AD vs. CTRL separation, but it 

is outperformed by the whole-GM method in the MCI conversion prediction.

Contrary to the results by Cuingnet et al. [20] and Chu et al. [21], we found that the data-

driven SVM-RFE technique applied to whole-GM data leads to a slight improvement of the 

classification performance in the MCI-C/MCI-NC discrimination (data considered only as 

validation set), with AUC = (70.7±0.9)%. In addition, in our analysis the whole-GM 

technique, with and without RFE, outperforms the ROI-based ones.

In a recent study by Adaszewski et al. [28] the feature selection was shown to improve the 

classification accuracy at early MCI stages, whereas at a later stage the whole-brain methods 

are superior. Our analysis on a dataset of subjects at a fixed time point supports the results 

obtained by Adaszewski et al. [28] on a longitudinal dataset of subjects: the feature selection 

SVM-RFE improves the MCI classification accuracy, whereas it is not necessary to 

implement it in the AD/CTRL separation, as the performance is maximized by the whole-

GM classification.

It also shows that the selected features/voxels in the SVM-RFE method belong to highly 

distributed clusters in the brain, in agreement with the work of Chu et al. [21]. The pattern 

of highly discriminant voxels that maximizes the predictive power of AD conversion on the 

MCI population is not confined in the Limbic and Temporal Lobes, involving instead a more 

extended and complex circuit of grey matter regions.

In conclusion, the analysis reported in this paper shows that higher accuracy in the 

prediction of MCI conversion to AD can be achieved if the brain is considered as a whole. 

Several studies based on whole-brain or multiple-ROI analyses [47–49] support the atrophy 

of the whole brain as relevant AD biomarker, due to its high capability to differentiate AD 

from CTRL subjects and to track the disease progression.
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Figure 1. 
Schematic representation of the SVM training on the AD/CTRL sample and the SVM 

validation on the MCI sample.
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Figure 2. 
Significant regions detected in the AD vs. CTRL VBM statistical analysis (colored regions 

reporting the t statistics), overlaid on a representative single-subject T1-weighted MRI (a 

sequence of axial views is displayed).
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Figure 3. 
SVM-RFE of whole-GM, VBM-ROI and LONI ROI analyses. The SVM training and 

testing is performed on the AD/CTRL sample in 20f-CV; an independent validation is 

carried out on the MCI-C/MCI-NC sample. The average values obtained over 10 repetitions 

of 20f-CV are shown; the bands around the average curves correspond to two standard 

deviations.
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Figure 4. 
ROC obtained in the SVM-RFE procedure on the AD/CTRL and on the MCI-C/MCI-NC 

samples, considering 6000 retained voxels (corresponding approximately to the VBM ROI 

size). The curves averaged over the ten repetition of the 20f-CV are shown, surrounded by 

the ± SD band.
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Figure 5. 
Average discrimination map obtained by training on the AD/CTRL data with the 6000 top 

ranking SVM weights wi. The corresponding discrimination average performance is AUC = 

(87.1±0.6)% in 20f-CV repeated ten times on AD/CTRL data, and AUC = (70.7±0.9)% in 

independent validation on the MCI-C/MCI-NC cohort.
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Figure 6. 
Scatter plots reporting the MMSE score and SVM test margin obtained with SVM trained on 

AD/CTRL data: AD vs. CTRL (left) and validation on MCI-C vs. MCI-NC sample (right). 

A small noise term has been added to the MMSE score of each subject to make the 

distributions more visible. The results obtained in one representative out of ten repetitions of 

the SVM classification are shown.
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Table 1

Demographic and mini mental state examination (MMSE) score of the data samples.

Cohort Sample size Age Gender (M/F) MMSE

CTRL 189 76.6 ± 5.1 95/95 29.1 ± 0.9

MCI-NC 166 75.7 ± 7.3 106/60 27.2 ± 2.4

MCI-C 136 75.1 ± 7.1 80/56 25.2 ± 2.7

AD 144 75.5 ± 7.5 78/66 22.2 ± 3.3
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