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Abstract

Functional imaging studies consistently report abnormal amygdala activity in major depressive 

disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed 

results on amygdala volume, and postmortem neuroanatomic studies have only examined cell 

densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological 

analysis of the volume of, and the total number of neurons, glia, and neurovascular (pericyte and 

endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with 

MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal 

extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for 

stereological estimation of volume and cell numbers. Results indicate that depressed subjects had 

a larger lateral nucleus than controls, and a greater number of total BLA neurovascular cells than 

controls. There were no differences in the number or density of neurons or glia between depressed 

and control subjects. These findings present a more detailed picture of BLA cellular anatomy in 

depression than has previously been available. Further studies are needed to determine whether the 
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greater number of neurovascular cells in depressed subjects may be related to increased amygdala 

activity in depression.

Keywords

amygdala; depression; stereology; postmortem brain; cell numbers

Introduction

Neuroimaging studies have repeatedly demonstrated abnormal amygdala activity in patients 

with major depressive disorder (MDD). Patients respond to emotional stimuli with greater 

amygdala blood flow and glucose utilization than controls; subsets of patients also display 

abnormally high resting amygdala activity (Carlson et al. 2006; Drevets et al. 2008, 2002). 

Studies have also reported decreased prefrontal-amygdala correlated activity and functional 

connectivity, consistent with the hypothesis of impaired prefrontal regulation of the 

amygdala in MDD (Almeida et al. 2009; Anand et al. 2005; Matthews et al. 2008). The 

basolateral amygdala (BLA), which is intimately interconnected with the prefrontal cortex 

(and other higher-order neocortical regions, e.g., temporal; Carlsen and Heimer 1988; 

McDonald, 1998), is a likely source of disturbances in amygdala-prefrontal connectivity in 

depression, and neuroimaging data suggest that the BLA may be preferentially altered 

structurally and functionally in MDD (Sheline et al. 1998; Siegle et al. 2003).

Postmortem studies have reported MDD-associated abnormalities in BLA subnuclei, 

including changes in protein or mRNA levels for glutamatergic (Karolewicz et al. 2009) and 

monoaminergic (Anisman et al. 2008; Klimek et al. 2002; Xiang et al. 2008) receptors, 

suggesting several neurotransmitter systems may contribute to abnormal amygdala activity 

in depression. Less is known about basic BLA or amygdala anatomy in depression; more 

than a decade of neuroimaging studies have not resolved whether the volume of the adult 

amygdala is greater (Lange and Irle 2004; Malykhin et al. 2012; van Eijndhoven et al. 2009; 

Vassilopoulou et al. 2013; Weniger et al. 2006), lesser (Hastings et al. 2004; Sheline et al. 

1998; Siegle et al. 2003; Tang et al. 2007; von Gunten et al. 2000; Yoshikawa et al. 2006) or 

unchanged (Inagaki et al. 2004; Munn et al. 2007) in MDD. The discrepant literature may be 

due to a number of variables, including depression duration or number of episodes (Frodl et 

al. 2002, 2003; Kronenberg et al. 2009; MacMaster et al. 2008), antidepressant medication 

(Hamilton et al. 2008), suicidality (Monkul et al. 2007; Spoletini et al. 2011), and genetic 

variations (Savitz and Drevets 2009; Zetzsche et al. 2008).

At the cellular level, a lower density of glia was observed in the postmortem amygdala of 

depressed subjects (Bowley et al. 2002; Hamidi et al. 2004). However, no MDD postmortem 

studies of the amygdala (Bowley et al. 2002; Hamidi et al. 2004) or BLA (Altshuler et al. 

2010; Bezchlibnyk et al. 2007) have examined the amygdala or BLA in its entirety, such that 

the total number of cells could be estimated. The apparently discrepant neuroimaging reports 

regarding amygdala volume in MDD underline the necessity of whole-structure sampling for 

information about total cell numbers (Braendgaard and Gundersen 1986), since (for 

example) a decreased glia density (Bowley et al. 2002; Hamidi et al. 2004) may not indicate 
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a lower number of glia, particularly if amygdala volume is indeed greater in depression 

(Lange and Irle 2004; Malykhin et al. 2012; van Eijndhoven et al. 2009; Vassilopoulou et al. 

2013; Weniger et al. 2006).

Here, we undertook a stereological analysis of the volume and total number of cells in the 

BLA of 13 depressed and 10 control subjects. These parameters were assessed in well-

preserved, celloidin-embedded tissues, containing the BLA through its rostral-caudal extent. 

Celloidin-embedded tissues are virtually immune to shrinkage in the z-axis following 

sectioning (Miguel-Hidalgo and Rajkowska 1999), which frees their analysis from some 

common sources of bias (i.e., overly-thin or uneven sections) in stereological studies 

(Dorph-Petersen et al. 2001; Gardella et al. 2003). The number of neurons, glia, and 

neurovascular (pericyte and endothelial) cells was estimated in the left hemisphere lateral 

(LAN), basal (BN), and accessory basal (ABN) nuclei. Potential associations of depression 

duration, antidepressant medication, and suicide with volume and cell numbers were 

examined.

Materials and Methods

Subjects

Basolateral amygdala tissue was examined from 13 subjects with MDD and 10 controls. The 

Institutional Review Boards of University Hospitals of Cleveland and University of 

Mississippi Medical Center approved the protocol for recruitment, tissue collection, and 

interviews. Retrospective, informant-based psychiatric assessments were performed using 

the Structured Clinical Interview for DSM-IV Psychiatric Disorders and consensus 

diagnosis (Stockmeier et al. 2004). Informed consent was obtained from the legally defined 

next-of-kin for collecting tissue and medical records and for an interview. Interviews were 

administered by a trained interviewer (LD), and relied on knowledgeable informants who 

lived with or were in frequent contact with subjects prior to the time of death. Diagnosis of 

Axis I disorders, and confirmation of their absence (controls), was independently assessed 

by a clinical psychologist (JCO) and psychiatrist (GJJ) and consensus diagnosis was reached 

in conference. Subject details are presented in Table 1.

No subjects with history or neuropathological evidence of neurologic disorders were 

included. Tissues of six subjects (4 MDD) were collected after a postmortem interval of 

greater than 30 hours (but not more than 38; Table 1). These and all other tissues were 

histopathologically normal, with no apparent pyknosis or vacuolization. Subjects in the 

MDD group met DSM-IV criteria for a major depressive episode in the last two weeks of 

life, with the exception of one subject in partial remission. Subjects in both groups were 

excluded in the case of substance abuse disorders, with exceptions (cannabis) given in Table 

1. Among controls, one subject met criteria for an adjustment disorder with depressed mood 

for three to four months that resolved nine months before death, and two other subjects had 

met criteria for alcohol abuse and alcohol dependence at 8–10 years prior to death. No 

controls met criteria for these or other Axis I disorders at the time of death. In the depressed 

group, three subjects had met criteria for alcohol plus cannabis abuse, alcohol abuse, or 

alcohol dependence, that were in remission for 9 months, 15 years and 4 months, 

respectively, prior to their deaths. Controls never met criteria for MDD, and no subjects ever 
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met criteria for bipolar disorder or schizophrenia. Blood and urine samples were tested by 

the Cuyahoga County Coroner’s Office for psychotropic medications and psychoactive 

substances. Subjects with psychoactive substances other than prescribed medications or 

marijuana were excluded; blood alcohol levels for included subjects were ≤ 0.1%. No 

subjects had undergone electroconvulsive therapy or were taking lithium.

Histology

Tissues from the left temporal lobe, containing the BLA through its rostral-caudal extent, 

were collected at autopsy from the Cuyahoga County Coroner’s Office in Cleveland, Ohio. 

More dorsal tissues containing the central, medial and some cortical amygdala nuclei were 

unavailable for roughly half the subjects, so that these regions could not be included in a 

reliable analysis. Tissues were fixed in phosphate-buffered formalin, cut into 6 mm blocks, 

and embedded in celloidin (Rajkowska and Goldman-Rakic 1995). Codes were assigned to 

prevent experimenter bias. Tissue pH was determined from the cerebellum.

Tissue was sectioned coronally at 40 μm on a sliding microtome, and stored in 70% ethanol 

until staining. Approximately every 20th section was stained with Cresyl Violet for 

microscopic analysis. For one MDD subject, medial portions of the BLA were unavailable, 

such that only lateral nucleus volume and cells could be reliably quantified.

Quantitative Analysis

BLA subnuclei were parcellated according to cytoarchitectonic criteria (Gloor 1997; 

Schumann and Amaral 2005) under low power (2× objective, 0.06 NA), with a Nikon E800 

light microscope attached to an Optronics video camera (Goleta, CA). StereoInvestigator 

software (v.8, MicroBrightField) was used to facilitate cell counts and to measure the areas 

of the LAN, BN, and ABN (Figure 1), across approximately 15 sections/subject (Table 2). 

The densely packed cells of the paralaminar nucleus were included within the borders of the 

basal nucleus (largely) or the lateral nucleus as appropriate (Schumann and Amaral 2005; 

deCampo and Fudge 2012).

Volume of the three subnuclei was calculated as the sum of their areas multiplied by the 

distance between the upper planes of the examined sections (Gundersen et al. 1988; Uylings 

et al. 1986), as determined using measured thickness of the tissue (West et al. 1991). In the 

absence of evidence for differential tissue shrinkage according to group (Table 1), these 

post-processing tissue dimensions were used for statistical comparisons of BLA volume, 

without shrinkage correction.

Cells were systematically-randomly sampled (Mouton 2002) under high magnification 

(100× oil objective; 1.40 NA), with a virtual three dimensional counting frame (for all 

subnuclei, dimensions were 60×60×28 μm (width × length × height), with a guard zone of 

±3 μm applied at each sampling site; further sampling parameters and coefficients of error 

(Gundersen and Jensen 1987; Gundersen et al. 1999) are given in Table 2). Total cell 

numbers were estimated with the optical fractionator (West et al. 1991). Briefly, cell 

numbers were estimated by calculating the number of cells sampled throughout each 

subnucleus divided by the fraction of tissue sampled (sections sampled/total number of 

sections containing the subnucleus, area of the subnucleus sampled/section, and tissue height 

Rubinow et al. Page 4

Brain Struct Funct. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampled/height of tissue; West et al. 1991). Because cell numbers are sampled from a 

known fraction of the tissue, cell number estimates are independent of tissue volume 

estimates (and any biases that may be associated with volume estimates, e.g., due to the 

possibility of differential shrinkage according to group). Tissue thickness was measured at 

every 4th sampling site (Abitz et al. 2007; Christensen et al. 2007). Neurons were sampled 

by counting nucleoli, and glia and neurovascular cells were sampled by counting nuclei; 

pericytes and endothelial cells were counted together as neurovascular cells. Preliminary 

data indicated no association of depression with cell size so this measure was not assessed. 

Further sampling parameters and coefficients of error (Gundersen and Jensen 1987; 

Gundersen et al. 1999) are given in Table 2. Criteria for distinguishing among neurons, glia 

and neurovascular cells are detailed in Figure 1.

Statistical Analysis

ANCOVA models similar to independent samples t-tests but adjusted for age, PMI, gender, 

and time tissue was stored in ethanol were used to compare groups. These variables were 

selected because they influenced volumetric or cellular measures and, in the case of time in 

ethanol, because there was a trend for a group difference, with MDD tissue stored in ethanol 

for less time than control tissue (Table 1; also see Subject Variables, below). A Kenward-

Rogers adjustment was applied to account for heteroscedasticity between groups. We 

considered p < 0.05 evidence of statistical significance in analyses of depressed vs. control 

subjects; in comparisons where three groups were involved (controls versus two MDD 

subgroups, such as suicide/no suicide), ANCOVAs were followed by Bonferroni-adjusted (p 

< 0.0167) pairwise comparisons.

Volume and cell numbers were analyzed for each of the three BLA subnuclei and for the 

total BLA (reflecting the sum of the volumes and cell numbers respectively of the LAN, BN, 

and ABN). Cell densities were analyzed for each of the subnuclei; no attempt was made to 

average cell densities across the total BLA, because of the different parameters used to 

sample the three subnuclei (Table 2).

Depression duration was analyzed by comparing subjects depressed more than 5 years 

(LMDD) versus subjects depressed for 5 years or fewer (SMDD). The division (as opposed 

to correlational analysis) and the 5-year cut-off were selected because of the bimodal 

distribution of depression duration, with all subjects depressed for either fewer than 5 or 

more than 10 years (Table 1). Effects of antidepressant medication were analyzed by 

comparing MDD subjects with and without positive toxicology exams for antidepressants.

Results

Subject Variables

There were no group differences in age, postmortem interval (PMI), or sex distribution, 

either in comparisons of MDD versus control subjects or in comparisons between MDD 

subgroups (sorted by suicide, antidepressant medication, or depression duration), except for 

a skewed sex distribution by depression duration (Table 1). There was a trend for a group 

difference in the average amount of time that tissue was stored in ethanol, with control tissue 
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in ethanol somewhat longer (p = 0.067; Table 1). Age positively correlated with glia density 

in the LAN [r=.45; p <0.033] and with glia to neuron ratio in the ABN [r=.46; p < 0.033]. 

PMI negatively correlated with glia density in the BN [r=−.52; p < 0.013] and with ABN 

glia density [r=−.50; p < 0.019] and ABN glia number [r=−.50; p < 0.019]. There were sex 

differences favoring males in the volume of the BN [t(20)=2.79; p < 0.012] and the BLA as 

a whole [t(20)=2.27; p < 0.035]. Males had significantly greater numbers of neurovascular 

cells than females in the LAN [t(21)=2.56; p < 0.019], the BN [t(20)=2.17; p < 0.043] and in 

the BLA as a whole [t(20)=3.24; p < 0.005], and higher neurovascular cell density in the 

LAN [t(21)=2.27; p < 0.034]. Time that tissue was stored in ethanol correlated positively 

with LAN neuron number [r=.45; p < 0.033], and negatively with ABN neurovascular cell 

number [r=−.44; p < 0.039]. Accordingly age, PMI, sex, and days in ethanol were adjusted 

for in the ANCOVA analyses. To compensate for skewness, the factor of time in ethanol 

was defined in all analyses as the base-10 logarithmic transformation of days in ethanol. 

There were no group differences in tissue pH, weeks in fixative, brain weight or tissue 

thickness (Table 1). Tissue pH correlated positively with neuron density in the BN [r=.63; p 

<0.004] and the ABN [r=.64; p <0.004], and negatively with volume of the ABN [r=−.59; p 

<0.009]; but due to unavailability of pH values for 4 subjects (2 per group), we were unable 

to use pH as an ANCOVA covariate.

Diagnosis

MDD subjects had a greater LAN volume than controls (p= 0.0473; Figure 2. For detailed 

statistical information, see Table 3). MDD subjects had a greater number of total BLA 

neurovascular cells than controls (p = 0.0455; Figure 3). MDD subjects did not differ from 

controls in neuron or glia numbers or densities in any part of the BLA. (Neurovascular cell 

densities did not differ between groups; for group means and standard errors on all 

measures, see Table 4.)

Depression Duration

Subjects depressed for 5 years or fewer (SMDD; n=5, 1 female, 4 male) were compared to 

controls (n=10, 4 female, 6 male) and to subjects depressed more than 5 years (LMDD; n=8, 

5 female, 3 male).

ANCOVA analysis indicated a significant association of depression duration with the 

number of neurovascular cells in the ABN (p= 0.0194). Pairwise comparisons 

indicated SMDD subjects had greater neurovascular cell numbers than controls (p= 0.0058; 

Figure 4). No other measures in the BLA or individual subnuclei significantly differed in the 

analyses of depression duration in male and female subjects combined.

Suicide

There was a significant association of suicide with neuron density in the LAN (p= 0.0105). 

Pairwise comparisons indicated MDD suicide victims (n=7, 3 female, 4 male) had greater 

neuron density than MDD subjects who died of natural causes (n=6, 3 female, 3 male; p= 

0.0079).
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Antidepressant Medication

There were no significant group differences on any volumetric or cellular measures 

associated with antidepressant medication (present in 6 of 13 MDD subjects, 3 female, 3 

male).

Discussion

The present study, to our knowledge, represents the first stereological analysis of the volume 

and total number of cells in the basolateral amygdala in major depressive disorder. 

Depressed subjects had a substantially (19%) greater number of total BLA neurovascular 

cells than controls (Figure 3). This difference might appear to be largely attributable to those 

who were depressed for five years or fewer (SMDD subjects; Figure 4), however a 

statistically significant difference between controls and SMDD subjects was only seen in the 

accessory basal nucleus, and SMDD did not differ from longer-term depressed (LMDD) 

subjects in neurovascular cell numbers (Table 3). The implication of a greater number of 

endothelial cells and/or pericytes in depression is not known, but may be regionally specific 

in response to depression. In animal models of antidepressant electroconvulsive therapy, 

there is evidence of endothelial cell proliferation in the hippocampus and hypothalamus 

(Jansson et al. 2006; Rotheneichner et al. 2014). In humans, antidepressants are associated 

with hippocampal angiogenesis (along with greater numbers of neural progenitor cells; 

Boldrini et al. 2012) and there is evidence that in older men, depression is associated with a 

greater serum concentration of the angiogenesis inhibitor endostatin (Almeida et al. 2014). It 

appears that brain endothelial cell proliferation and angiogenesis may therefore reflect 

antidepressant effects in some regions, but it is possible that in the amygdala, which 

responds to stress very differently from the hippocampus in animal models (e.g., Vyas et al. 

2002; Lakshminarasimhan and Chattarji 2012), more neurovascular cells might signify the 

opposite, perhaps reflecting the abnormally high rate of amygdala activity in depression 

(Carlson et al. 2006; Drevets et al. 2008). Pericytes and endothelial cells respond intimately 

to neuronal and glial activation, integrating signals along the vessel (Bergers and Song 2005; 

Gerhardt and Betsholtz 2003) and regulating blood flow in activated brain regions (Girouard 

and Iadecola 2006; Moore and Cao 2008). Both cell types have active signaling roles in 

vessel formation (Bergers and Song 2005). In pericyte-deficient mice, diminished cerebral 

blood flow response to brain activity was observed (Bell et al. 2010); a profusion of pericyte 

and endothelial cells in MDD may conversely represent a response to increased amygdalar 

metabolic activity.

It is important to note that pericyte abnormalities have also been observed in neurological 

disorders including Alzheimer’s disease (Kalaria 1996; Sengillo et al. 2013) and 

amyotrophic lateral sclerosis (Winkler et al. 2013), and may relate to pathological changes 

in the blood-brain barrier (Armulik et al. 2010). Subjects in this study were apparently 

neurologically and neuropathologically normal, and no relation between cardiovascular 

disease and neurovascular cell numbers or densities were found. However, undiagnosed 

conditions affecting neurovascular cells cannot be completely ruled out. The present results 

are insufficient to ascertain whether the higher number of neurovascular cells in depression 

signal a difference in BLA vascularization, and further studies are underway to determine 
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whether greater vascularization and/or changes in vessel morphology accompany the greater 

number of neurovascular cells.

The larger number of neurovascular cells (and potential vascular alterations) may have 

contributed to the group difference in lateral nucleus volume, which was modestly (11%) 

greater in MDD than in control subjects (Figure 2). The absence of any more striking or 

widespread volume difference is perhaps not surprising in light of the mixed imaging 

literature on whole amygdala volume in depression (e.g., Lange and Irle 2004; Malykhin et 

al. 2012; Hastings et al. 2004; Sheline et al. 1998). Variables not examined in the current 

study that may also contribute to a larger lateral nucleus in MDD include an increase in 

dendritic material and spines (Vyas et al. 2002; Sibille et al. 2009), as is seen in the BLA of 

rats under prolonged stress (Vyas et al. 2006; Vyas et al. 2002). Theoretically, increased 

amygdala activity in MDD (Carlson et al. 2006; Drevets et al. 2008) may result in an 

increase in BLA synapses, and potentially a concomitant increase in perisynaptic glia (He 

and Sun 2007; Ullian et al. 2001); in the LAN, we observed a slight trend for a difference in 

glia number favoring MDD subjects (see Tables 3 and 4).

Within MDD, suicide was associated with a modestly (10%) higher density of lateral 

nucleus neurons. Similar profiles have been noted in other brain regions in suicide. Elevated 

numbers and densities of a variety of neuronal populations have been linked to suicide, in 

cortical (Brüne et al. 2011) and subcortical (Baumann et al. 1999; Gos et al. 2008; Matthews 

and Harrison 2012; Underwood et al. 1999) regions. Elevated glia densities have also been 

reported greater in suicide (e.g., Hercher et al. 2009; Steiner et al. 2008). It is unclear 

whether these diverse observations of increased neuron and glia packing density represent a 

broader suicide-vulnerable phenotype, or a variety of region- and cell type-specific 

phenomena (Brüne et al. 2011; Steiner et al. 2008), but the growing evidence for suicide-

specific abnormalities in cell density clearly warrants further research.

There are several limitations to this study. While the optical fractionator technique, applied 

here in thick, well-preserved tissues, affords a high degree of confidence in estimates of cell 

numbers, the possibility of differential shrinkage at stages prior to sectioning (e.g., fixation) 

influencing estimates of volume cannot be ruled out. Greater subject numbers are almost 

always desirable in postmortem experiments, including this one. Although subject numbers 

were comparable to those in similar studies (Altshuler et al. 2010; Bezchlibnyk et al. 2007; 

Bowley et al. 2002; Hamidi et al. 2004), observed associations of depression duration and 

suicide with cell numbers and densities occurred between relatively small subgroups. The 

analysis of depression duration, though statistically adjusted for gender, was nevertheless 

further limited by a highly skewed gender distribution, with all but one depressed female in 

the longer-duration group. More female subjects are needed in future studies, not only in 

light of the greater incidence of depression in females but critically because sexually 

dimorphic neural changes in response to stressors are very common (Galea et al. 2008; 

Juraska and Rubinow 2008). Other limitations of the present study include the lack of 

available tissues dorsal to the BLA in many subjects, precluding analysis of the entire 

amygdala. Immunohistochemical identification of the specific cell populations quantified 

may have provided important information, for example on the specific neurovascular cell 

phenotype that was more numerous in depression. Because pH values were unavailable for 2 
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depressed and 2 control subjects, statistical adjustment for pH was not possible; however, 

available pH values were quite similar between groups (Table 1), and the specific dependent 

measures with which pH was correlated (see Results, Subject Variables) did not differ 

between groups in any of the analyses. Two MDD subjects met DSM-IV criteria for 

cannabis dependence; there are conflicting reports on whether heavy cannabis use affects 

amygdala morphology (Ashtari et al. 2011; Cousijn et al. 2012). However, these subjects did 

not differ from other MDD subjects in any of the volumetric or cellular measures examined.

With the opportunity to sample extensively from the entire basolateral amygdala in 

depressed versus psychiatrically healthy subjects, our purpose was to provide a foundation 

regarding basic cellular makeup and volume in a region critically involved in the 

pathophysiology of depression. Unlike disorders including autism (Schumann and Amaral 

2006), schizophrenia (Kreczmanski et al. 2007; Berretta et al. 2007), and bipolar disorder 

(Berretta et al. 2007), depression does not appear to be associated with differences in the 

number of neurons or glia in BLA subnuclei. The novel finding of a nearly 20% greater 

number of neurovascular cells in the BLA of depressed subjects warrants further research, 

specifically regarding ramifications for vascular morphology, the possibility of 

angiogenesis, and the potential relationship between pericyte and/or endothelial cell 

profusion and the well-documented increase in amygdala activity that accompanies MDD.
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Fig. 1. 
The basolateral amygdala at low and high magnifications. a, Low power image of the 

basolateral amygdala of a male control subject at mid-level. ABN, accessory basal nucleus; 

BN, basal nucleus; LAN, lateral nucleus. Scale bar = 2 mm. b, LAN cells of a depressed 

male subject at high magnification. Neurons were identified on the bases of morphological 

features such as comparatively large Nissl-stained somata, clear nuclei surrounded by visible 

cytoplasm, and the presence of a single, clear nucleolus (black arrow). Glia (below asterisks) 

were distinguished from neurovascular cells (white arrows) by multiple criteria: 

neurovascular cells are always seen in the context of vessels (thick black arrowheads), and 

often are seen in close association with other neurovascular cells; peripheral chromatin in 

the nuclei of pericytes and endothelial cells produces the appearance of a thick membrane. 

These nuclei are elongated or crescent-shaped in cross-section, to conform to the vessel 

lumen. Glial cell nuclei tend to be rounded or slightly oval, contain conspicuous clumps of 

chromatin, and unlike neurons, do not display visible Nissl-stained cytoplasm and processes 

surrounding the nucleus. Scale bar = 20 μm
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Fig. 2. 
Greater volume of the lateral nucleus in major depressive disorder. Depressed subjects 

(mdd) had an 11% greater LAN volume than healthy control (hc) subjects. *p <0.05. Note 

that histograms display unadjusted means; indications of statistical significance and p-values 

reflect results of the adjusted statistics. LAN, lateral nucleus, BN, basal nucleus, ABN, 

accessory basal nucleus, TOTAL, total basolateral amygdala. SEM, standard error of the 

mean
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Fig. 3. 
Greater number of basolateral amygdala neurovascular cells in major depressive disorder. 

Depressed subjects (mdd) had a 19% greater total number of basolateral amygdala 

neurovascular cells than healthy control (hc) subjects. *p <0.05. Note that histograms 

display unadjusted means; indications of statistical significance and p-values reflect results 

of the adjusted statistics. LAN, lateral nucleus, BN, basal nucleus, ABN, accessory basal 

nucleus, TOTAL, total basolateral amygdala. SEM, standard error of the mean
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Fig. 4. 
Depression duration is significantly associated with the number of neurovascular cells in the 

accessory basal nucleus. Subjects who were depressed for 5 years or fewer (mdd≤5) had 

27% more ABN neurovascular cells than control (hc) subjects. (Apparent differences in 

other BLA regions or between subjects depressed for more than 5 years (mdd>5) and mdd 

≤5 were not significant in statistical analyses, which were adjusted for gender, age, 

postmortem interval and time in ethanol.) *p <0.0167. Note that histograms display 

unadjusted means; indications of statistical significance and p-values reflect results of the 

adjusted statistics. LAN, lateral nucleus, BN, basal nucleus, ABN, accessory basal nucleus, 

TOTAL, total basolateral amygdala. SEM, standard error of the mean
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