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Abstract

Alcohol possesses complex sensory attributes that are first detected by the body via sensory 

receptors and afferent fibers that promptly transmit signals to brain areas involved in mediating 

ingestive motivation, reinforcement, and addictive behavior. Given that the chemosensory cues 

accompanying alcohol consumption are among the most intimate, consistent, and immediate 

predictors of alcohol’s postabsorptive effects, with experience these stimuli also gain powerful 

associative incentive value to elicit craving and related physiologic changes, maintenance of 

ongoing alcohol use, and reinstatement of drug seeking after periods of abstinence. Despite the 

above, preclinical research has traditionally dichotomized alcohol’s taste and postingestive 

influences as independent regulators of motivation to drink. The present review summarizes 

current evidence regarding alcohol’s ability to directly activate peripheral and central oral 

chemosensory circuits, relevance for intake of the drug, and provides a framework for moving 

beyond a dissociation between the sensory and postabsorptive effects of alcohol to understand 

their neurobiological integration and significance for alcohol addiction.
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1. Introduction

Historically, preclinical research investigating factors that motivate alcohol drinking has 

tended to dichotomize whether ethanol is ingested for its ‘taste’ or ‘postingestive’ effects, 

often with attempts to control for or minimize the influence of the former. This dichotomy 

derives in part from proposed criteria for a valid animal model of alcoholism put forth in the 

1970’s, including the tenet that intake of alcohol should be “based solely on its 

pharmacological properties and not be related to some other characteristic, such as the 

calories it provides or its gustatory or olfactory properties” [1,2]. This dissociation between 

ethanol’s sensory and postabsorptive effects has been less prominent in the clinical research 

literature on alcoholism, which has frequently recognized the significance of alcohol 
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chemosensory stimuli in eliciting craving and associated drug-seeking responses in alcohol-

experienced individuals [3–11]. The sensory properties of alcohol have also been of 

significant research interest to the alcoholic beverage industry in order to identify and 

manipulate those sensory attributes that maximize intake [12].

Under conditions of natural self-administration, ethanol initially produces activation of 

peripheral and central taste and oral somatosensory pathways [13–18], as well as a multitude 

of visceral sensory effects (e.g., stimulation of the gut, etc.), temporally prior to entry of 

pharmacologically relevant levels of ethanol into brain. Thus, ethanol sensory signals gain 

immediate access to the CNS (within ms) in advance of the drug’s delayed postabsorptive 

effects. With chronic exposure, sensory and postingestive inputs become intimately 

integrated, such that these stimuli gain meaning for the addicted organism. Importantly, 

these sensory pathways are linked to limbic forebrain and cortical areas involved in 

controlling ingestive motivation and feeding [19]. In this review, we examine evidence for 

the role of sensory mechanisms in alcohol intake and provide a framework for understanding 

the convergence of chemosensory and postingestive factors in the development and 

maintenance of alcohol addiction.

2. Oral Sensory Processing of Ethanol

Ethanol is a highly salient and complex oral chemosensory stimulus, known to directly 

stimulate sensory receptor and brain gustatory circuits involved in sweet taste processing 

[13–16] as well as oral trigeminal pathways sensitive to noxious or irritant stimulus input 

[17–18]. A relationship between ingestion of alcohol and sweet-tasting solutions was first 

recognized several decades ago with observations that ethanol-preferring C57BL mice 

display a significantly greater intake of both nutritive (sucrose) and non-nutritive (saccharin) 

sweeteners relative to their non-ethanol-preferring DBA/2J counterparts [20–21]. 

Subsequently, direct positive correlations between alcohol and saccharin consumption were 

observed in randomly bred rats [22–23], multiple inbred strains of mice [24], and seven 

strains of rats known to differ in ethanol preference [25]. A robust association between the 

intake of alcohol and sweet substances (i.e., sucrose, saccharin) has held true across a 

variety of independently-selected lines of alcohol-preferring and -nonpreferring rats [26–

30], the F2 progeny of crosses of these lines [25, 29, 31–33], and rats selectively bred for the 

reciprocal phenotype of saccharin consumption [34], strongly supporting a common genetic 

basis for this relationship. In humans, genetic risk for alcoholism as indexed by a positive 

family history of the disorder has also repeatedly been associated with heightened 

preference for concentrated sweet solutions [35–37], including in children with a positive 

family history but no prior experience with alcohol [38].

A substantive body of behavioral and neurophysiological data has now established that 

alcohol directly activates gustatory receptor and central neural substrates for sweet taste. 

Initial conditioned taste aversion generalization studies demonstrated that conditioned 

aversions to the taste of alcohol generalized to sucrose mixtures in randomly bred rats [39–

42], with the sweet component of the mixtures being critical whenever aversion 

generalization was found [40]. Conditioned taste aversions also cross-generalize between 

ethanol and sucrose alone in C57BL/6J mice [43–44]. Neurophysiological recordings from 
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peripheral gustatory nerves in primates have indicated that orally applied ethanol 

preferentially stimulates sweet-sensitive relative to other taste fibers in the chorda tympani 

nerve innervating the anterior tongue [14]. Studies from our laboratory have also 

demonstrated that oral ethanol stimulation of the tongue and palate within a clinically 

relevant concentration range (3–40%) selectively activates central sweet-responsive 

gustatory neurons in the rodent nucleus of the solitary tract (NTS), the first brain area to 

receive and process taste information [13,15–16]. Moreover, the response of individual 

central taste-sensitive neurons to sucrose is a robust predictor of their responsiveness to 

ethanol [15–16; Figure 1]. Ethanol-induced activity in these cells was further inhibited by 

peripheral pharmacological blockade of oral sweet receptors, initially implicating sweet taste 

receptors as candidate receptors for ethanol [15]. More recently, we specifically established 

that knockout of the T1r3 sweet taste receptor subunit suppresses alcohol’s ability to activate 

central sweet taste circuits in the NTS as well as eliminates behavioral alcohol preference in 

ethanol-preferring C57BL/6J mice, strongly supporting this receptor in the sensory detection 

and transduction of ethanol taste [13; Figure 2]. Ethanol’s ability to potently activate sweet 

taste pathways presumably arises from the original substrate from which it is derived and 

fermented (sugars in fruits, grains, etc.).

Oral ethanol stimulation of appetitive taste pathways, particularly at high concentrations, 

may at first glance appear counterintuitive given that heterogeneous rats often initially avoid 

ethanol at concentrations above 6% [45], indicating a significant aversive chemosensory 

component of the ethanol stimulus. This initial ethanol avoidance response to high 

concentrations of ethanol in randomly bred rodents has frequently been attributed to an 

unpalatable “bitter” gustatory component to ethanol, as has been self-reported in human 

studies measuring subjective taste perceptions of ethanol [46]. Conditioned taste aversions 

to ethanol also generalize to sweet-bitter mixtures in rats [40,42] and to quinine as well as 

sucrose alone in C57BL/6J mice [43]. Despite perceptual generalization of a bitter-like oral 

property of ethanol in rodents and humans, neurophysiological data have thus far not 

supported a relationship between neural taste responses elicited by ethanol and bitter stimuli 

in gustatory circuits of outbred Wistar, Sprague-Dawley, or selectively bred alcohol-

preferring (P) rats [15–16, 47], C57BL/6J or bitter-sensitive C3HeB/FeJ and C3.SW-Soaa 

mice [13,48], or non-human primates [14], in contrast to robust positive associations 

observed between neural responses to ethanol and sweet stimuli. There is also no consistent 

association between behavioral alcohol preference and chemosensory responses to quinine 

[49] or intake of the bitter substance sucrose octaacetate [28] in alcohol-preferring and -

nonpreferring rat lines. Further, in both the chorda tympani and glossopharyngeal nerves of 

primates (innervating the anterior and posterior tongue, respectively), ethanol in mixtures 

with quinine actually suppresses bitter taste responses, consistent with the properties of a 

sweetener [14,50].

Although additional research is needed to determine whether ethanol directly stimulates 

physiological substrates involved in bitter taste processing, there is perhaps a more 

compelling amount of data for direct ethanol-induced activation of oral somatosensory (i.e., 

trigeminal) mechanisms that contribute to alcohol’s aversive orosensory properties. Oral 

application of ethanol to the tongue activates fibers of the lingual branch of the trigeminal 
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nerve across species [18,51–52] and produces a concentration-dependent increase in activity 

of central neurons in the rodent brain stem trigeminal subnucleus caudalis [17]. Ethanol also 

directly activates sensory nociceptors including transient receptor potential channel vanilloid 

receptor 1 [TRPV1; 53], the receptor for capsaicin [54–55], which shows heavy localization 

on sensory fibers that innervate the oral epithelium [56–57]. These trigeminal circuits 

process noxious chemical and thermal input from the oral cavity, and ethanol’s ability to 

stimulate these pathways presumably underlies the burning and irritant sensations to oral 

alcohol reported in human psychophysical studies, especially at high concentrations [58–

62]. Human psychophysical data have further shown that noxious oral sensations processed 

by the trigeminal system can be confused with bitter taste [63], and thus potentially such 

cross-modal generalization could account for the perception of a “bitter” taste component to 

ethanol by humans, as well as the conditioned taste aversion generalization between ethanol 

and sweet-bitter mixtures in rodents [40,42]. Data from our laboratory have shown that 

direct manipulation of the trigeminal system, specifically knockout of the TRPV1 receptor, 

reduces oral ethanol avoidance in mice, although only moderately, indicating that other 

trigeminal or gustatory substrates must contribute to ethanol’s aversive oral component [64]. 

TRPV1 knockouts also display higher preference for ethanol and consume more ethanol in 

two-bottle choice tests than wild-type controls [65]. Overall, existing data indicate that oral 

ethanol consumption simultaneously activates sensory inputs that serve both appetitive and 

protective functions.

3. Ethanol Chemosensory Cues and Brain Reinforcement Mechanisms

Although research on oral alcohol-induced activation of central gustatory circuits has thus 

far largely focused on first-order brain stem systems (i.e., NTS) that process incoming taste 

information from the periphery, these structures subsequently transmit sensory signals 

downstream to limbic forebrain and cortical areas known to be important in regulating 

ingestive motivation and reinforcement. Following processing in brain stem gustatory areas, 

taste signals are transmitted via a thalamocortical projection to primary taste cortex within 

the insula, as well as to limbic structures, including the ventral tegmental area–nucleus 

accumbens pathway, amygdala, ventral pallidum, and lateral hypothalamus [19, for review]. 

In particular, the ability of alcohol to activate sensory receptor and associated brain circuits 

for sweet taste is significant, given evidence that activation of such circuitry engages central 

reinforcement mechanisms that motivate subsequent intake [66–70]. For example, oral 

sucrose stimulation via sham feeding produces an immediate concentration-dependent 

increase in dopamine release in the nucleus accumbens [68], which is attenuated by selective 

damage to limbic taste projections [69–70]. Further, both dopamine [67] and opioid [71] 

receptor antagonists inhibit sensory-mediated intake of sweet solutions in the latter 

paradigm. A coupling of sweet taste substrates to central reward mechanisms is consistent 

with a functional evolution of these substrates to recognize and promote ingestion of 

nutritive substances. Oral ethanol self-administration in rodents has also been shown to 

immediately elevate accumbal dopamine levels in a manner associated with the stimulus 

properties of ethanol, before physiologically relevant concentrations of ethanol reach the 

brain via absorption into the bloodstream [72]. Recently, our laboratory has demonstrated 

that oral ethanol stimulation (20% concentration) also induces robust c-Fos activity within 
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the gustatory portion of the insula in outbred Wistar rats, providing direct evidence for 

ethanol sensory-elicited activation of cortical taste areas (Figure 3). The insula has also 

recently been implicated as a key area in processing cue-reinforcement associations in drug 

addiction, with lesions or inactivation of the insula disrupting addictive responses (e.g., 

craving, self-administration, reinstatement of drug-seeking) triggered by exposure to 

conditioned sensory cues associated with prior drug administration [73–79].

Due to its oral route of administration, the chemosensory cues accompanying alcohol 

consumption are among the most intimate, consistent, and ecologically appropriate stimuli 

immediately predictive of the drug’s subsequent postabsorptive effects. Following 

experience with alcohol, significantly heightened appetitive and decreased aversive 

reactivity to alcohol orosensory cues are observed in animal models [80–82], responses that 

are maintained even after sustained periods of abstinence [82]. In alcoholics and high-risk 

drinkers, alcohol chemosensory stimuli elicit urges to drink and associated physiologic 

changes (increased salivation, skin conductance and cardiac responses [3–9]), as well as 

activation of mesocorticolimbic structures implicated in drug seeking and motivation [10–

11]. Re-exposure to ethanol gustatory cues after extinction of ethanol self-administration 

also induces strong reinstatement of ethanol seeking in animal models of relapse [83] and 

potentiates reinstatement of ethanol responding by more distal ethanol-paired environmental 

stimuli [84–85]. Despite a significant literature supporting ethanol chemosensory cues as 

robust appetitive signals for promoting and maintaining ethanol-seeking behavior, the 

underlying neural substrates and functional brain alterations mediating conditioned drug-

seeking responses elicited by these stimuli are not well established. Understanding the 

nature of experience-induced plasticity occurring in circuits that process ethanol sensory 

cues following chronic exposure to the drug is an important area for further investigation, 

given that exposure to such drug-predictive cues is believed to be a primary factor mediating 

craving responses, subsequent drug-seeking and approach behavior, and persistent 

vulnerability to relapse even long after discontinuation of drug use [9,86–89].

4. Conclusion

Sensory-mediated contributions to alcohol intake have traditionally received less attention 

and research focus than the postabsorptive effects of the drug on the CNS, with ethanol’s 

taste and postingestive influences often being treated as independent entities. It is becoming 

increasingly apparent that the ability of ethanol to directly and immediately stimulate 

complex chemosensory circuits linked to motivationally-relevant limbic and cortical areas 

involved in controlling intake, as well as “direct” interaction of ethanol with neural 

substrates following entry into brain, play critical and coordinated roles in the development 

and maintenance of alcohol addiction. A more thorough understanding of the central 

nervous system mechanisms that integrate ethanol sensory signals with postingestive 

reinforcement following chronic exposure, and mediate the ability of those sensory signals 

to acquire control over subsequent alcohol seeking behavior, are important areas for future 

study.
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Highlights

• Alcohol directly activates peripheral and central taste and trigeminal pathways

• These circuits are linked to motivationally-relevant limbic and cortical areas

• Ethanol chemosensory signals can acquire control over subsequent alcohol 

seeking

• Integration of alcohol sensory-postingestive inputs important area for future 

study
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Fig. 1. 
A: Mean (±SEM) responses of sucrose-responsive (S1) and sucrose-unresponsive (S0) NTS 

neurons to an ethanol concentration series (3–40%) recorded from anesthetized Sprague-

Dawley rats. Stimuli were presented to the anterior tongue and palate in discrete 10-s trials 

preceded and followed by a deionized water rinse. Responses to ethanol recorded from S1 

neurons were significantly greater than those observed in S0 neurons for all ethanol 

concentrations except 3% (*P ≤ 0.02). B: Across-neuron patterns of response produced by 

standard sweet, salty, acid, and bitter tastants (filled circles) relative to that evoked by 40% 

ethanol (open circles). Individual neurons are rank ordered along the abscissa based on their 

magnitude of response to 40% ethanol. Correlation coefficients (r) calculated between the 

across-neuron pattern evoked by ethanol and each standard tastant are shown. Responses to 

ethanol were highly correlated with those to 0.5 M sucrose (r=+0.80), but uncorrelated with 

responses to HCl (r=+0.04) or quinine (r=−0.04). Modified from [15].
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Fig. 2. 
A: Mean (±SEM) responses to an ascending ethanol concentration series in NTS neurons 

sampled from T1r3 sweet taste receptor knockout (KO) and C57BL/6J wild-type (WT) 

mice. B: Mean (±SEM) responses in KO and WT cells to glycine (G), sucrose (S), NaCl (N), 

HCl (H), and quinine (Q). Concentration follows abbreviation. Mice lacking the T1r3 

receptor exhibited suppressed neural taste responses to ethanol and sweeteners, but did not 

differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. C: Mean 

(±SEM) percent preference for ethanol in a two-bottle choice assay at each concentration in 

KO and WT mice. T1r3 knockouts were behaviorally indifferent to alcohol at concentrations 

preferred by wildtype mice. *Significant difference between KO and WT (P < 0.05). 

Modified from [13].
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Fig. 3. 
Photomicrographs of Fos-positive cells within gustatory insular cortex [+1.2 mm AP from 

bregma; A: 10×, B: 20×] of an outbred Wistar rat, elicited by exposure to the taste of 20% 

ethanol. rf, rhinal fissure.
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