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Abstract
To many, the foundations of statistical inference are cryptic and irrelevant to routine statisti-

cal practice. The analysis of 2 x 2 contingency tables, omnipresent in the scientific literature,

is a case in point. Fisher's exact test is routinely used even though it has been fraught with

controversy for over 70 years. The problem, not widely acknowledged, is that several differ-

ent p-values can be associated with a single table, making scientific inference inconsistent.

The root cause of this controversy lies in the table's origins and the manner in which nui-

sance parameters are eliminated. However, fundamental statistical principles (e.g., suffi-

ciency, ancillarity, conditionality, and likelihood) can shed light on the controversy and guide

our approach in using this test. In this paper, we use these fundamental principles to show

how much information is lost when the tables origins are ignored and when various ap-

proaches are used to eliminate unknown nuisance parameters. We present novel likelihood

contours to aid in the visualization of information loss and show that the information loss is

often virtually non-existent. We find that problems arising from the discreteness of the sam-

ple space are exacerbated by p-value-based inference. Accordingly, methods that are less

sensitive to this discreteness - likelihood ratios, posterior probabilities and mid-p-values -

lead to more consistent inferences.

Introduction
To many, the foundations of statistical inference are cryptic and irrelevant to routine statistical
practice. The analysis of 2 × 2 contingency tables, ubiquitous in the scientific literature, is a
case in point. A problem, not widely acknowledged, is that several different p-values can be as-
sociated with a single table, making scientific inference inconsistent. The analysis of 2 × 2 con-
tingency tables has generated controversy and dispute for more than a half-century in the
statistical literature, so perhaps ‘deceptively simple’ would be a better description. For an illus-
tration, consider the data from an example in the right panel of Table 1. Many p-values, includ-
ing that from Fisher’s exact test, are associated with this one table despite the fact that they all
appear to test the same null hypothesis. Table 2 shows these p-values, which range in magni-
tude and may lead different conclusions. As such, this controversy is often viewed—too sim-
plistically—as a problem of selecting the ‘right p-value’.
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What is less known, however, is that the roots of this controversy lie in the table’s origins
and the manner in which (hidden) nuisance parameters are eliminated. That is, the roots of the
controversy boil down to choosing an appropriate probability model or likelihood function.
One needs to specify a probability model, eliminate unknown nuisance parameters, and then
interpret the likelihood function (either directly or via some tool such as a p-value). How this is
done matters because it leads to different inferences. Intuition alone is not sufficient to guide
this activity; inference should be guided by the key foundational principles of sufficiency, ancil-
larity, conditionality, and likelihood. Other principles such as the Likelihood Principle, the Law
of Likelihood, and the Repeated Sampling Principle guide the interpretation of the chosen
working likelihood function. Apparent conflict between these principles is the root cause of
more familiar queries: “Which is the right p-value?” or “Is the p-value the right tool for report-
ing the strength of the evidence in the data?”Many statisticians and consumers of statistical
methods are in the habit of choosing an approach based on ad-hoc criteria, past experience, or
popular trends.

2 × 2 tables have a high profile in the scientific literature as they are among the most com-
mon practical applications of basic statistics. The seemingly simple model upon which they are
based can be used to illustrate the key principles that apply to all of statistical inference, but
that are seldom discussed and often assumed inaccessible. Our goal here is to revisit these prin-
ciples in the context of 2 × 2 tables and use those principles to show how much information is
lost when the tables origins are ignored and when various approaches are used to eliminate the
nuisance parameter. We present novel likelihood contours to aid in the visualization of infor-
mation loss. We show that it is the discreteness of the sample space that is most problematic,
and this discreteness is exacerbated when the statistical evidence is summarized with a p-value
derived by model conditioning. To get around this difficulty, while maintaining consistency
with inferential principles, we suggest summarizing the strength of statistical evidence with a

Table 2. P-values obtained from the analysis of example data in Table 1 using several methods.

Analysis method p-value

Pearson χ2 test without Yates’ continuity correction 0.0509

with Yates’ continuity correction 0.1432

Fisher’s exact test two-sided 0.1409

one-sided 0.0704

mid-p-value 0.0758

LR* test 0.0494

* The likelihood ratio (LR) test based on the Equation (9).

doi:10.1371/journal.pone.0121263.t002

Table 1. Left: notation used in this paper for the 2 × 2 contingency table; Right: an example data of the
2 × 2 contingency table, which are also presented in Fig. 2 and Example 2 in Fig. 5.

Success Failure Total Success Failure Total

Treatment 1 y1 n1−y1 n1 Treatment 1 1 9 10

Treatment 2 y2 n2−y2 n2 Treatment 2 5 5 10

Total y+ n+−y+ n+ Total 6 14 20

doi:10.1371/journal.pone.0121263.t001

Elucidating the Foundations of Statistical Inference with 2 x 2 Tables

PLOS ONE | DOI:10.1371/journal.pone.0121263 April 7, 2015 2 / 22



likelihood ratio. Here, the measure of evidence is how much better one hypothesis predicts the
observed data than another. Likelihood ratios are less affected by discreteness in the sample
space and they provide a reliable sense of the strength of evidence in data. If one absolutely can-
not stray from p-values, we suggest back-calculating the p-value from the correct likelihood
ratio, as this leads to inferences that are consistent across many types of data and study
designs.

Methods

Notation
We will focus on parametric models. Let X denote a random variable with the probability den-
sity function (pdf) or probability mass function (pmf), fX(x;θ), which is indexed with a parame-
ter θ. We suppress the random variable subscript on the density, i.e., fX(x;θ) = f(x;θ), as it is
clear from the context which density we are using. Upon observing X = x, the likelihood func-
tion for θ, defined up to a proportional constant, is L(θ;x)/ f(x;θ).

Our notation for 2 × 2 tables is given in the left panel of Table 1. Here y1 and y2 are realiza-
tions of random variables Y1 and Y2. Depending on the context, sample sizes n1 and n2 can be
realizations of random variables N1 and N2, but they are most often fixed by design. Following
our convention, we use f(yi; πi,ni) instead of the more precise f(yi; πi,Ni = ni), when the meaning
is clear from the context.

Background
Perhaps the most widely applied statistical method in the scientific literature, Fisher’s exact test
has elicited enormous controversy over the past 70 years. The controversy over how to report
the strength of statistical evidence in 2 × 2 contingency tables has many facets, but it is often
over-simplified and cast as a debate about choosing one p-value over another. Less well-known
is that many of the criticisms of Fisher’s exact test also apply to Yates’ continuity-corrected chi-
square test [1], because it makes the χ2 distribution under the null closer to the hypergeometric
distribution on which Fishers exact test is based. Readers unfamiliar with the controversy will
find ample background in: Conover [2], Yates [3], Haviland [4], and a series of papers [5–8] re-
sponding to Berkson [9]. A more recent review is by Agresti [10]. Here we briefly summarize
the controversy over Fisher’s exact test (and Yates’ continuity corrected χ2 test), which will be
discussed in detail in the following sections with some examples as we step through this contro-
versy. We also present three main models for 2 × 2 contingency tables that will provide the
basis of specifying the working likelihood.

Summary of controversy. Although all issues of the controversy are interconnected, their
roots entail three main issues: (1) conditionality; (2) conservatism; and (3)
modeling assumptions.

Conditionality. The conditionality debate is the most controversial. Fisher’s exact test was
derived by conditioning on the observed success total (y+) in Table 1, and the major concern is
about the loss of information due to this conditioning. This loss of information has been dis-
cussed by many authors including Kalbfleisch and Sprott [11], Plackett [12], Haber [13], Yates
[3], and Zhu and Reid [14]. The opponents of conditioning argue that we cannot condition on
the observed success total since it is not a perfect ancillary statistic, or that the tests modeling
assumptions are false (see below). Proponents argue that per the Conditionality Principle, the
inference should be made by conditioning on the observed success totals which are approxi-
mately ancillary with little loss of information; hence this group is supportive of Fisher’s
exact test.
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Conservatism. Conservatism means that the actual probability of rejecting the null hy-
pothesis is less than the nominal level. Fisher’s exact test is indeed conservative, and this is easi-
ly verified by simulation. Conover [2], D’Agostino et al.[15], Grizzle [16], Starmer et al.[17]
and Plackett [18] discuss this in detail. In response to this criticism, Tocher [19] proposed a
randomization test to improve Fisher’s exact test so that the significance level can be precisely
attained. Although this test is a most powerful test, it has been rarely implemented in practice.
A similar idea is found in themid-p-value suggested by Lancaster [20], which is recommended
by several authors including Stone [21] and Upton [22]. The conservatism of Fisher’s exact test
is mainly due to the discreteness of the test statistic. This discreteness impacts conditional tests,
such as Fisher’s exact test, much more than unconditional tests [23]. We later illustrate how
the sample space can be dramatically reduced by conditioning due to discreteness. Dupont [24]
shows that very minor perturbations of the tables can lead to substantial changes in the p-
value. His solution was to double the one-sided p-value [3, 24].

Modeling assumptions. The argument over the correct model for 2 × 2 tables concerns
the margins of Table 1: one fixed margin (i.e., the sample size, n1 and n2, fixed) versus two
fixed margins models (i.e., the sample size and the total number of successes, y+, fixed). Pearson
[25] and Kempthorne [8] discussed three models based on the origin of the data: (1) zero mar-
gins fixed; (2) one margin fixed; (3) two margins fixed. The corresponding models use multino-
mial, two independent binomials and hypergeometric distributions, respectively, as specified
below. They argued that Fisher’s exact test is appropriate only for data where the two margins
are fixed by the study design. On the other hand, Barnard [5, 26] argued that the last two mod-
els should be distinguished based on whether there are two underlying populations who have
their own constant probabilities π1 and π2; for this case, the two independent binomials are the
correct model since the two binomials have their own parameters, π1 and π2. Otherwise, the
two margins fixed model (i.e., hypergeometric distribution indexed with a single parameter) is
correct as is Fisher’s exact test. The zero margin fixed model has been rarely an issue since the
sample size margin is usually agreed to be fixed. The other margin for the total number of suc-
cess (called as “the incidence margin” by Cormack and Mantel [27]) has been the focus of con-
troversy. From a different standpoint, Greenland [28] also argued in favor of Fisher’s exact test.

Three main models
Two-by-two contingency tables arise in several ways, and their genesis often suggests a natural
model. For example, 2 × 2 tables can be generated by studies where two groups of subjects
(those exposed to some risk factor and those not exposed) are followed to determine the inci-
dence of a certain disease in each group. For these data, y1 and y2 can be thought of as realized
counts of independent random variables Y1 and Y2 with the total number of subjects in each
group, n1 and n2, fixed by design. A natural statistical model for these data is Y1 * Binomial
(n1, π1) and Y2 * Binomial (n2, π2), which yields the following joint pmf

f ðy1; y2; p1; p2; n1; n2Þ ¼ f ðy1; p1; n1Þf ðy2; p2; n2Þ

¼
n1

y1

 !
py1
1 ð1� p1Þðn1�y1Þ

" #
n2

y2

 !
py2
2 ð1� p2Þðn2�y2Þ

" #
:

ð1Þ

Typically, one tests the null hypothesis that π1 = π2, which is equivalent, under the null hypoth-

esis, to testing that the odds ratio, p1ð1�p2Þ
p2ð1�p1Þ ¼ 1, or the log odds ratio c ¼ log p1ð1�p2Þ

p2ð1�p1Þ

n o
¼ 0. The

choice of a parameter of interest is important, and we focus on inference about the odds ratio
or the log odds ratio because it is the most prevalent in the applied literature.
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In contrast, studies may fix the total number of subjects in each group, n1 and n2 (or equiva-
lently, n1 and the total number of subjects, n+ = n1 + n2), and the total number of success, y+,
due to limited resources or practical constraints. For example, studies with a fixed number of
participants are followed until a set number of total events are observed. In this case, Y1 *Hy-
pergeometric (y+, n1, n2) under the null hypothesis that ψ = 0. This is the pmf underlying Fish-
er’s exact test:

f ðy1jyþ;c; n1; n2Þ ¼
n1

y1

 !
n2

yþ � y1

 !
=

nþ

yþ

 !
: ð2Þ

Finally, it is possible that no margin totals are fixed in advance. Let X and Y denote categori-
cal response variables with two categories each, which are obtained from a subject randomly
chosen from some population. The responses (X,Y) can be cross-classified in a 2 × 2 table with
cell counts at the ith row and the jth column,mij. If we assume the cell counts,mij, as indepen-
dent Poisson random variables with parameters μij, then the joint pmf is the product of the
Poisson probabilities for the ij cell counts

Y2
i¼1

Y2
j¼1

exp ð�mijÞm
mij
ij

mij!
:

If the table is conditioned on either the row or column margin, say the row totals,m1+ =m11 +
m12 andm2+ =m21 +m22, the conditional pmf for the cell counts,mij, given the row totals is

f ðm11;m12;m21;m22jm1þ;m2þ; m11; m12; m21; m22Þ

¼ m1þ!

m11!m12!

m11

m11 þ m12

� �m11 m12

m11 þ m12

� �m12 m2þ!

m21!m22!

m21

m21 þ m22

� �m21 m22

m21 þ m22

� �m22

:
ð3Þ

Lettingm11 = y1,m21 = y2,m1+ = n1,m2+ = n2, p1 ¼ m11
m11þm12

� �
and p2 ¼ m21

m21þm22

� �
, the pmf based

on two independent binomials (1) can be recovered.
Thus, there is a close relationship between Equations (1), (2), and (3), which we will detail

in the next section. The controversy surrounding 2 × 2 tables arises, in part, because different
modeling strategies from identical tables can lead to different inferences.

Principles of inference
Suppose the data in Table 1 represent a sample drawn from some target population of interest
(say, all patients with some disease). The pmf provides the link between what we know (the
data) and what we would like to know (the values of the parameters in the target population).
Does Table 1 represent statistical evidence that the first treatment generates more successes
than the second in the target population? Naturally, the answer to this question depends on
how we construct the probability model which, in turn, facilitates a comparison of the two
success rates.

Consider the two independent binomial models (1). If λ = log{π2/(1−π2)}, then π1 = exp(ψ +
λ)/[1 + exp(ψ + λ)] and π2 = exp(λ)/[1 + exp(λ)]. Substituting these expressions for π1 and π2
into Equation (1) yields

f ðy1; y2;c; l; n1; n2Þ ¼
n1

y1

 !
n2

y2

 !
expðcy1ÞexpðlyþÞ 1þ expðcþ lÞ½ ��n1 1þ exp ðlÞ½ ��n2 : ð4Þ

Elucidating the Foundations of Statistical Inference with 2 x 2 Tables

PLOS ONE | DOI:10.1371/journal.pone.0121263 April 7, 2015 5 / 22



The obvious problem here is that in order to use this model, we need to know λ, even
though it is not of primary interest. In this context, λ is a nuisance parameter. There are several
ways to deal with nuisance parameters, and an important aspect of the debate about 2 × 2 tables
concerns how we do this. Traditional methods such as conditioning on sufficient and ancillary
statistics to eliminate nuisance parameters are motivated by foundational principles. A formal
discussion of these principles is beyond the scope of this paper (c.f., [29–31]), however an intui-
tive and contextual discussion is illuminating for 2 × 2 tables.

Sufficiency Principle. Following Casella and Berger [30] and Reid [31], a statistic S(Y) is a
sufficient statistic for a parameter θ if the conditional distribution of Y given the value of S(Y)
does not depend on θ. Suppose there exists a one-to-one transformation from Y to (S(Y),B(Y))
such that

f ðy; yÞ / f ðs; yÞf ðbjsÞ;

where the Jacobian of the transformation from y to (s,b) is absorbed in the proportionality con-
stant and the density notation f(�) indicates the pdf or pmf. Then, S(Y) is a sufficient statistic for
θ because, from a likelihood perspective,

Lðy; yÞ / Lðy; sÞ;

where the likelihood function depends on the data y only through s. The Sufficiency Principle
asserts that no information about θ is lost if we use the marginal pmf f(s;θ) or the marginal like-
lihood function for s to make inferences about θ.

Sufficiency is used for data reduction. A sufficient statistic contains the same amount of in-
formation about the parameter of interest as the original data since the likelihood function
based on the sufficient statistic is equal to, up to a proportional constant, the likelihood func-
tion based on the entire dataset. Likelihood based inference is therefore preserved. The Suffi-
ciency Principle says that inference based on a sufficient statistic should not be any different
from inference based on the data themselves.

Ancillarity and Conditionality Principles. Ancillarity is the conceptual opposite of suffi-
ciency in that an ancillary statistic contains no information about the parameter of interest
(i.e., its distribution is not a function of this parameter). What do we do with ancillary statis-
tics? Fisher’s conjecture was that we should always condition on them when making inference.

The Conditionality Principle is broader than a directive to condition on ancillary statistics,
although that directive is implied. The Conditionality Principle asserts that the statistical evi-
dence about the parameter of interest depends only on the observed data. Experiments and
data that could have been observed, but were not, are irrelevant when interpreting the observed
data as statistical evidence. The interested reader is referred to Cox [32] for a broad discussion
of this principle.

To understand the motivation for this, suppose that we write a grant application to study
treatments 1 and 2 in which we propose to set n1 = n2 = 100. If we can assume that the proba-
bility of funding is unrelated to the magnitude of ψ, then the sample size is an ancillary statistic
for this parameter. In the current funding climate, there is an all-to-high probability that our
grant will not be funded and hence that n1 = n2 = 0. However, if our grant is funded, we will
condition our inferences about ψ on our sample size of 100 patients per treatment group,
which we will treat as being fixed. If we are funded, it makes no sense to try to account for our
funding chances when making inferences about ψ.
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As noted in Casella and Berger [30], there are many technical definitions of ancillarity. Reid
[31] gives a nice presentation of the notions of sufficiency and ancillarity for models indexed
by a single parameter and models that have nuisance parameters. We follow those definitions
throughout this section, and recommend her paper to readers who wish to learn more about
the roles of conditioning in inference. A statistic A(Y) is an ancillary statistic for θ if there exists
a one-to-one transformation from Y to (T(Y),A(Y)) such that

f ðy; yÞ / f ðtja; yÞf ðaÞ:

The Ancillarity Principle asserts that if A(Y) is an ancillary statistic for θ, then inference about
θ should be based on f(tja;θ), the conditional pmf of t given a. In likelihood terms,

Lðy; yÞ / Lðy; tjaÞ;

and inference about θ is based on the conditional likelihood L(θ;tja).
This principle is generally less accepted than the idea of using a marginal density or likeli-

hood based on a sufficient statistic. This is probably because ancillary statistics are hard to con-
struct and can be non-unique [29, 31]. In a likelihood sense, A(Y) = a tells us nothing about θ
since f(a) does not involve θ. Hence, conditioning our inference on A(Y) = a is, at worst, harm-
less. However, there are situations where conditioning on an ancillary statistic is crucial to
achieving sensible inference.

In the common 2 × 2 table setting, the number of subjects in each arm, n1 and n2, are con-
sidered ancillary statistics because the distribution of the observed number of subjects is as-
sumed free of π1 and π2. That is, the number of subjects in each arm is not determined by the
underlying probability of success in each arm. This is trivially true in fixed sample size experi-
ments where resources and time determine n1 and n2. It would not be true if the trial used
adaptive randomization, where participants are more likely to be assigned to the treatment
arm that appears, at the time, to be performing better. For the rest of our discussion, we assume
that n1 and n2 are indeed ancillary statistics, as this is the largely unspoken historical
assumption.

For the two-parameter case, θ = (ψ,λ), an ideal situation is when there exists a one-to-one
transformation from Y to (S1(Y),S2(Y)) such that the model factorizes as:

f ðs1; s2; yÞ / f ðs1js2;cÞf ðs2; lÞ:

Accordingly, we say that s2 is sufficient for λ and ancillary for ψ, and inference for λ should be
based on f(s2;λ), the marginal pmf, while inference for ψ should be based on f(s1js2;ψ), the con-
ditional pmf of s1 given s2.

However, it is more common that we have the following factorization:

f ðy1; y2; yÞ / f ðs1js2;cÞf ðs2;c; lÞ; ð5Þ

which is in likelihood terms

Lðy; y1; y2Þ / Lðc; s1js2ÞLðc; l; s2Þ:

Now inference about ψ and λ is no longer easy. Back to the 2 × 2 table, the pmf in Equation (4)
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has two parameters θ = (ψ,λ), and the pmf can be factorized as:

f ðy1; y2; y; n1; n2Þ / f ðy1jyþ;c; n1; n2Þf ðyþ;c; l; n1; n2Þ; where ð6Þ

f ðy1jyþ;c; n1; n2Þ ¼
n1

y1

 !
n2

yþ � y1

 !
exp ðcy1Þ=Cðc; yþÞ; ð7Þ

f ðyþ;c; l; n1; n2Þ ¼ exp ðlyþÞ 1þ exp ðcþ lÞ½ ��n1 1þ exp ðlÞ½ ��n2Cðc; yþÞ; ð8Þ

and

Cðc; yþÞ ¼
Xmin ðn1 ;yþÞ

u¼max ð0;yþ�n2Þ

n1

u

 !
n2

yþ � u

 !
exp ðcuÞ:

This factorization has been discussed by many including Zhu and Reid [14], Reid [31], and
McCullagh and Nelder [33]. Notice the similarity in the forms of Equations (5) and (6). The
conditional pmf in Equation (7), f(y1jy+;ψ,n1,n2), does not depend on λ, so it is tempting to use
this conditional pmf in place of Equation (6), f(y1,y2;θ,n1,n2), for inference about ψ. The prob-
lem is that y+ is not ancillary for ψ, so the remainder in Equation (8), f(y+;ψ,λ,n1,n2), is not free
of ψ and some information is lost when this remainder is ignored. In short, treating, y+ as an
ancillary statistics when it is not risks loosing information that may or may not be critical to
our inferences about ψ. If the lost information is negligible, then it is often worth pretending
that y+ is ancillary (and condition on it), since the resulting conditional likelihood is only in-
dexed by the parameter of interest. This allows ‘exact’ inference without resorting to an approx-
imation. Under the null hypothesis that ψ = 0, the non-central hypergeometric pmf in
Equation (7) reduces to the hypergeometric distribution in Equation (2). Fisher’s exact test is
based on this conditional distribution. This is why it is called an ‘exact’ test and recommended
when the sample size is small or the data are very unbalanced. In these situations, the χ2 ap-
proximation on which Pearson’s χ2 test is based may be poor.

To develop intuition about the extent to which y+ behaves like an ancillary statistic, consider
the following example. Suppose that n1 = n2 = 10 and that y+ = 4. Knowing the value of y+ tells
us that y1 must take one of the values 0, 1, 2, 3, or 4. This implies that the MLE of the odds

ratio, expðĉÞ ¼ ½y1=ðn1 � y1Þ�=½y2=ðn2 � y2Þ�must be 0, 7/27, 1, 27/7, or +1. The inferential
implication is that the evidence about ψ contained in y+ = 4 is equally consistent with odds ra-
tios suggesting that Treatment 1 is inferior to Treatment 2 as it is with odds ratios suggesting
that Treatment 1 is superior to Treatment 2. Moreover, as long as n1 = n2, then for each possi-

ble value of expðĉÞ favoring Treatment 1, there is a reciprocal value favoring Treatment 2 (e.g.,
7/27 versus 27/7). Hence, y+ tells us virtually nothing about the true value of ψ.

Results and Discussion

Information loss when the marginal distribution of y+ is ignored
The loss of information has been discussed by many authors [3, 11–14]. As discussed above,
the success total is not ancillary, and the open question is how much information about ψ is
contained in the marginal pmf f(y+;ψ,λ,n1,n2). Kalbfleisch and Sprott [11] called the conditional
likelihood of ψ given y+ an approximate conditional likelihood, arguing that there is little infor-
mation about ψ in the marginal pmf. For the same reason, y+ is called an approximate ancillary
statistic by Little [34].
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It is not easy to quantify the amount of information lost with a single numerical summary.
So instead, and more intuitively, we visualize the information lost by examining the surface of
the marginal likelihood function. For a clearer visualization, we use a subtler reparameteriza-
tion of the original dual binomial likelihood. Instead of (π1,π2)! (ψ,λ), it is more convenient
to use (π1,π2)! (ψ,λ�), where λ� = (n1 π1 + n2 π2)/(n1 + n2) is the marginal probability of suc-
cesses among all treated subjects. This latter reparameterization is an orthogonal representa-
tion with respect to the expected Fisher’s information matrix [35, 36].

We examined the information about ψ contained in y+ under a wide variety of scenarios, in-
cluding when the sample sizes are equal, small, large and extremely unbalanced with sparse
cells. Fig. 1 and Fig. 2 show examples with equal smaller sample sizes, while Fig. 3 and Fig. 4
show examples with unequal sample sizes. In addition, in Fig. 1 and Fig. 3 the observed success
rates are equal while in Fig. 2 and Fig. 4 they are not.

Fig. 1, Fig. 2, Fig. 3 and Fig. 4 have the same layout, but are based on the data shown in the
top left panel of each figure (above panel (A)). Denote L = L(ψ,λ�;y1,y2), L1 = L(ψ;y1jy+), and L2
= L(ψ,λ�;y+). Hence, L/ L1 L2, where L is the full likelihood, L1 is the likelihood given y1 condi-
tioned on the total number of successes, y+, and L2 is the marginal likelihood given y+. The
2-dimensional surfaces of L [panel (A)] and L2 [panel (B)] are displayed as functions of ψ and
λ�. The continuum of yellow to red is used to indicate the value of the likelihood function (yel-
low is higher than red). Wide ranges for the parameter space are intentionally used to increase
the utility of this visual examination.

Above panel (B), we have displayed in a table all possible configurations of y1 and y2, subject
to the constraint of the observed y+. The corresponding MLE of ψ for each possible table, de-

noted as ~c, is also shown. The real observed data y1 and y2 and observed MLE, ĉ, are in bold
text. Panel (D) displays the conditional likelihood L1 in red along with various cross sections of
the marginal likelihood surface, L2, plotted in panel (B) (values of λ� are shown for reference).
In a similar fashion, panel (C) displays the profile likelihood for ψ derived from L, as well as
various cross sections of L assuming different fixed values of λ�. In these examples, the profile

likelihoods are the same as the estimated likelihoods obtained by plugging l� ¼ l̂�, where l̂� is
the MLE of λ� (the profile and estimated likelihoods are defined in S1 Appendix). This happens
when ψ and λ� are orthogonal parameters, as is the case here, but is not true in general. Once
the conditional and profile likelihoods are standardized by their maximum, they are virtually
identical for most cases as shown in Fig. 5 that will be described below under Likelihood
Inference.

For easy reference, the color coding of horizontal lines in (A) and (B) corresponds to the
colors of the likelihood functions displayed in panels (C) and (D). Each likelihood at λ� = c in
panel (C) is obtained by cross-sectioning the full likelihood in (A) at λ� = c.

Notice that the marginal likelihood L2 in panels (B) and (D) is quite flat over large ranges of
ψ when λ� is held constant and that the largest values appears on either both or one side of ψ =
0 depending on the possible configurations of tables defined by the success total and
sample sizes.

When the group sample sizes are equal, such as in Fig. 1 and Fig. 2, the surfaces of the mar-
ginal likelihood are completely symmetric with respect to ψ = 0 regardless of the magnitude of
the sample size. This is because possible configurations of tables resulting in positive and nega-
tive MLEs for ψ are symmetrically distributed with respect to ψ = 0 and their numbers are

equal (i.e. the number of values of ~c above panel (B)). Thus, for equal sample sizes, the plots
clearly show that the marginal likelihood given y+ is essentially flat, supporting our intuition
that it gives no information about whether ψ is negative or positive.
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Fig 1. The data are shown on the top left panel.On top right panel, all possible configurations of tables (y1 and y2) are listed when only y+ is known. The
corresponding maximum likelihood estimate of the log odds ratio ψ for each possible table, denoted as ~c, is also shown. The nuisance parameter λ* =
(n1 π1+n2 π2)/(n1 + n2) is the marginal probability of success among all treated subjects. (A) Contour plot of the likelihood L = L(ψ,λ*;y1,y2), which is the joint
likelihood of different values of ψ and λ* given the observed values ofy1 and y2. Lighter colors denote higher values of L; (B) Contour plot of the marginal
likelihood L2 = L(ψ,λ*;y+) given the success total y+ as a function of ψ andλ*; (C) The likelihood L given y1 and y2 plotted against ψ at five different fixed
values ofλ*. The profile likelihood function is also plotted; (D) The marginal likelihood L2 given y+ plotted againstψ at fixed values of λ*. The conditional
likelihood L1 = L(ψ;y1jy+) is also plotted in red. These graphs demonstrate that for balanced sample sizes the marginal success total tells us virtually nothing
aboutψ, and hence should be treated as an ancillary statistic.

doi:10.1371/journal.pone.0121263.g001
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On the other hand, when the sample sizes are unequal, as shown in Fig. 3 and Fig. 4, the
marginal likelihood surface is asymmetric. The marginal likelihood in (B) and (D) shows
whether a positive or negative value of ψ is more likely. In the extreme example of Fig. 4, the
high bulk of the marginal likelihood in (B) appears on the positive axis of ψ, because the num-

ber of configurations of tables resulting in positive ~c is much greater than that of negative ~c (7

Fig 2. See Fig. 1 for an explanation of these panels. In this example, the sample sizes are the same for both treatments, but the success rates
are different.

doi:10.1371/journal.pone.0121263.g002
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vs. 4). Especially, the marginal likelihood in (D) at l� ¼ l̂� ¼ 0:37 tells us that a positive ψ is
more likely than a negative ψ. Other than this potentially more likely direction, it tells nothing
about the specific value of the MLE of ψ. Surprisingly, the MLE equals -2.2, which is the oppo-
site sign, and far from the bulk, of the largest marginal likelihood values.

Fig 3. See Fig. 1 for an explanation of these panels. In this example, the treatments have unequal sample sizes. For these tables, the marginal success
total still tells us very little aboutψ although it is slightly more informative than in balanced tables (see also Fig. 4).

doi:10.1371/journal.pone.0121263.g003

Elucidating the Foundations of Statistical Inference with 2 x 2 Tables

PLOS ONE | DOI:10.1371/journal.pone.0121263 April 7, 2015 12 / 22



Fig 4. See Fig. 1 for an explanation of these panels. This example has both unequal sample sizes and unequal success rates. It is even more extreme
than the example in Fig. 3.

doi:10.1371/journal.pone.0121263.g004
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The likelihood surface plots from a variety of scenarios show very similar patterns (symmet-
ric for balanced cases and only dependent upon possible table configurations regardless of the
MLE of ψ), and suggests that the success total gives little information about ψ. Thus, knowing
the total number of successes conveys very little information about ψ, agreeing with our
intuition.

Fig 5. The standardized conditional, modified profile, and profile likelihood functions are depicted for the log odds ratioψ using the data in Fig. 1,
Fig. 2, Fig. 3 and Fig. 4. The example numbers in this figure correspond to the examples described in Figs. 1–4. The profile likelihood is represented by a
dashed black line, while the conditional and modified profile likelihoods are represented by thick red and black dotted lines, respectively. The horizontal lines
represent 1/6.8 (upper), 1/8 (middle) and 1/32 (lower) likelihood support intervals (SIs). The maximum likelihood estimate (MLE) ĉ of each likelihood was also
shown. For normally distributed data, a 1/6.8 SI and a Frequentist 95% confidence interval are identical. Note that the modified profile and conditional
likelihoods are indistinguishable for all examples, while the profile and conditional likelihoods are similar for the examples of the null (i.e., ψ = 0 in Examples 1
& 3). In these two examples, the profile likelihood is not visible because it is overlain by the conditional likelihood.

doi:10.1371/journal.pone.0121263.g005
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Many investigators have noted without clear explanation that the conditional MLE of ψ al-
ways lies between zero (the null) and the unconditional MLE [33, 37]. This is easily seen from
our plots. The full likelihood is proportional to the product of the conditional and marginal
likelihoods, and the height of the marginal likelihood at the MLE of λ� (thick blue line) under
the peak of conditional likelihood (red curve) falls as ψ approaches zero. This shifts the value of
the unconditional MLE away from the null value if the MLE is not zero.

Zhu and Reid [14] studied the information lost by using only the conditional likelihood
based on the Fisher’s information matrix for ψ and λ. Their figures show that this loss is zero
around ψ = 0 and gradually increases as ψmoves away from zero. Using the original parame-
terization of ψ and λ, as they do, we see an overall saddle like shape that is very similar to our
marginal likelihood surface plots, with a saddle point at ψ = 0. Finally, we note that our discus-
sion and conclusions in this section also apply to the original parameterization. We have used
the orthogonal parameterization (ψ,λ�) in order to facilitate our intuition.

Discretization of the sample space
It would seem from the previous discussion that most parties are in agreement, and that the
nuisance parameter can be eliminated by simply conditioning on the total number of successes
(because this approach sacrifices little, if any, relevant information about ψ). Why then does
substantial disagreement remain?—i.e., why don’t we just use a version of Fisher’s ‘exact’ test
based on the conditional likelihood? Or, put another way, why is Fisher’s exact test overly con-
servative when compared to Pearson’s χ2 test, given that there is virtually no loss of informa-
tion from conditioning? To solve this puzzle, we look to the sample space, upon which the p-
value is based.

While conditioning on y+ changes the likelihood for ψ in only minor ways, it increases the
discretization of the sample space. This, in turn, creates problems when the likelihood function
is interpreted by reference to the sample space. The problem manifests itself in how the p-value
should be computed. For example, consider again the data in Table 1. For these data, Table 3
shows the original sample space (i.e., without conditioning) while Table 4 shows the sample
space with conditioning on y+. Without conditioning, the sample space consists of
11 × 11 = 121 discrete points from all combinations of y1 and y2. However, the sample space is

Table 3. The sample space for the data in Table 1 where n1 = n2 = 10 without conditioning: combinations of y1 and y2 yield 11 × 11 = 121 possible
configurations of tables. The sample space with conditioning on the observed success total is in bold face.

y2

0 1 2 3 4 5 6 7 8 9 10

y1

0 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9) (0, 10)

1 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9) (1, 10)

2 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10)

3 (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9) (3, 10)

4 (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10)

5 (5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9) (5, 10)

6 (6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 10)

7 (7, 0) (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (7, 9) (7, 10)

8 (8, 0) (8, 1) (8, 2) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7) (8, 8) (8, 9) (8, 10)

9 (9, 0) (9, 1) (9, 2) (9, 3) (9, 4) (9, 5) (9, 6) (9, 7) (9, 8) (9, 9) (9, 10)

10 (10, 0) (10, 1) (10, 2) (10, 3) (10, 4) (10, 5) (10, 6) (10, 7) (10, 8) (10, 9) (10, 10)

doi:10.1371/journal.pone.0121263.t003
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dramatically reduced to only 7 points when conditioned on the observed success total. The p-
value from Fisher’s exact test is calculated using the reduced sample space and this results in
larger p-values compared with Pearson’s χ2 test. This happens even though the conditional and
unconditional likelihoods both provide virtually equivalent statistical evidence (i.e., their likeli-
hoods are nearly identical) because there is essentially no information loss due to conditioning.

So we see that the dilemma of differing p-values is really caused by the change in the sample
space and not by something more substantial. The justification for using a p-value to represent
the strength of evidence against the null hypothesis is given by the Repeated Sampling Principle
[29]. It says that inferences should be based on the long-run frequency properties of the statisti-
cal procedure that generated the data. However, there is a conceptual problem with the Repeat-
ed Sampling Principle: the frequency properties of the statistical procedure that generate the
data are confused with the strength of the statistical evidence in a given set of data. We can see
the confusion here as virtually identical likelihood functions yield different p-values because of
changes in the sample space.

The Likelihood Paradigm avoids this conceptual defect by using separate mathematical
quantities for (1) the strength of evidence, (2) the probability that a study design will yield mis-
leading evidence, and (3) the probability that the observed evidence is misleading [38, 39]. In
short, one simply examines the likelihood function to see what the data say about ψ and since
conditioning on y+ changes the likelihood in only minor ways, the issue of further sample
space discretization is avoided. The frequency characteristics of this approach are naturally de-
pendent on the sample space [(2) above], but this quantity is now clearly distinct from how an
observed likelihood function is interpreted (i.e., how strong the observed evidence is in the
data). We will briefly expand on this theme in the next section.

Modes of inference for 2 × 2 tables
While the controversy surrounding the best modeling choice for a 2 × 2 table appears to rely
on the specification of the margins, the antecedent is really a question of specifying a working
model that is computable (i.e., free of nuisance parameters). The principles heretofore dis-
cussed inform the choice of a working likelihood, but often the decision is not transparent (c.f.,
[5, 8, 25–27]). However, the manner in which the likelihood function is interpreted—e.g., di-
rectly or with referenced to the sample space—brings additional diversity to this debate that
should not be ignored.

Significance testing (Frequentist inference). The merits—and lack thereof—of signifi-
cance testing are well understood [40–43]. Without revisiting this debate, we note a few points
relevant to this paper’s focus.

P-values for 2 × 2 tables are based on the probability under the null hypotheses of obtaining
tables as or less likely than the one observed. Unless the sample size is large with a moderate
numbers of successes, there are only a limited number of configurations of an observed 2 × 2
table (see, for example, Table 4). As a result, the sample space upon which the p-value is based
can become highly discretized [23]. The effective lack of a continuum for the strength of

Table 4. The sample space for the data in Table 1 where n1 = n2 = 10 with conditioning on the success
total: there are only 7 possible table configurations. The observed y1 and y2 are in bold face.

y1 0 1 2 3 4 5 6

y2 6 5 4 3 2 1 0

y+ 6 6 6 6 6 6 6

doi:10.1371/journal.pone.0121263.t004
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evidence in the data results in a conservatism that is truly problematic: the probability of falsely
rejecting the null hypothesis is less than the nominal level. That is, the observed p-value is
greater than it ought to be, if this statistic is to be interpreted as a consistent measure of
strength of evidence against the null hypotheses. Fisher’s exact test is conservative and has
been sharply criticized for this reason [9, 22]. Unconditional tests, such as the chi-square test,
mitigate the discreteness of the sample space since there are more hypothetical tables based on
unobserved success totals. However, this approach does not completely resolve the problem.

There has been considerable discussion of this controversy in the statistical literature. We
raise just a few points here. One approach to smoothing p-values is to randomize the test out-
come after the results are observed [19]. Of course this grossly violates the Conditionality Prin-
ciple. Several authors [20–22, 44] propose or advocate for versions of themid-p-value. Brazzale
et al.[45] showed that the higher order approximation to the p-value is very similar to themid-
p-value. In terms of good frequency properties, a good alternative to be the p-value can be
found by back-calculating from an appropriate conditional likelihood ratio (LR) test statistic
using a χ2 approximation:

�2 log Lð0; y1jyþÞ=Lðĉ; y1jyþÞ
� �

� w21: ð9Þ

This is different from the conventional Pearson’s χ2 test in that it is a monotonic function of
the conditional LR, free of reference to the original sample space, and therefore inferentially
consistent with a likelihood ratio (see also the discussion of LR interval estimation for a bino-
mial proportion by Brown et al.[46]). While the p-value based on this LR test statistic is infer-
entially more consistent than other p-values, we argue in the next section that strength of
evidence can best be measured by the likelihood directly. The LR-based p-value should only be
used when editors or referees require a p-value.

Likelihood inference. The Law of Likelihood is an axiom for interpreting the strength of
statistical evidence in a given set of observations under a given model [42, 47]. The likelihood
ratio measures the strength of evidence for one simple hypothesis versus another. The likelihood
function displays the evidence over the entire parameter space, which is why proponents of like-
lihood inference say looking at the likelihood function is sufficient to see ‘what the data say’. Al-
ternatively, likelihood support intervals are reported. A 1/k support interval is the set of all
parameter values that are consistent with the data at a likelihood ratio level of k. These intervals
are analogous to the confidence intervals (CIs) of Frequentists or the credible intervals of Baye-
sians. See Royall [42] and Blume [39] for an introduction to this approach and for applications.

The Likelihood Principle—which says that if two sets of data yield proportional likelihood
functions then these data sets provide equivalent instances of statistical evidence—is a direct
consequence of the Law of Likelihood. As such, we forgo an in-depth discussion and make
only two points: First, the Likelihood Principle follows from the Sufficiency and Conditionality
Principles [48–50]. Secondly, the Likelihood Principle is often misunderstood and is only prop-
erly evaluated in the context of a well defined evidential framework [38].

While it is straightforward to apply the Law of Likelihood in situations where the likelihood
function is indexed by a single parameter of interest, situations where the likelihood function is
indexed by several parameters (often a parameter of interest and nuisance parameters) are
more complicated because these nuisance parameters must be removed. It should be noted,
however, that modern likelihood inference handles nuisance parameters quite readily, even in
some cases where the statistical model changes as additional observations are taken [39, 42, 51,
52]. The key idea is that a working likelihood should closely mimic the behavior of the ‘true’
likelihood function in terms of how often it will yield misleading evidence. The primary tools
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for accomplishing this include conditional, marginal, integrated, profile, and modified versions
of profile likelihoods [36, 45, 53–57].

Presentation of evidence and examples. For illustration, the standardized likelihood plots
(i.e., likelihoods standardized to their maximum value) for the examples already displayed in
Fig. 1, Fig. 2, Fig. 3 and Fig. 4 are presented together in Fig. 5 which shows the 1/6.8 (upper), 1/

8 (middle) and 1/32 (lower) likelihood support intervals (SIs) along with the MLE, ĉ. The SI
for k = 6.8 corresponds to the nominal (i.e., not adjusted) Frequentist 95% CI under a normal
model [39, 42]. The standardized conditional and modified profile likelihoods [53] are indistin-
guishable, which is expected since the modified profile likelihood approximates the conditional
likelihood when it is appropriate [58]. The modified profile likelihood of [53] is proposed to
adjust uncertainty in the profile likelihood or to “correct” bad behaviors of the profile likeli-
hood. Hence, the modified profile likelihood has better inferential properties than the ordinary
profile likelihood [53, 59, 60], especially when many nuisance parameters need to be profiled
out. For those cases, the MLE could be biased or the interval estimate could be too narrow [61].

We use Example 2 in Fig. 5 (the data in Table 1) as an example to illustrates how one might
display the strength of evidence, from a likelihood perspective [42] in a 2 × 2 table. The condi-

tional likelihood has MLE ĉ ¼ �2:08, which is at least 8 times better supported over values
outside of the 1/8 interval [-5.3, 0.07]. The null value, ψ = 0, lies within this interval meaning
the data are generally consistent with this hypothesis. For comparison, note that the surrogate
normal (1/6.8) SI [-5.14, -0.01] barely excludes ψ = 0, and hence the p-value based on LR
test statistic is less than 0.05 as shown in Table 2. The likelihood ratio comparing the MLE

ĉ ¼ �2:08 to ψ = 0 is 6.89. Overall, the likelihoods represent only moderate evidence that
Treatment 1 is superior to Treatment 2. Note that the modified profile and conditional likeli-
hoods are indistinguishable as discussed above even with an extremely small and unbalanced
example of data. The presentation of evidence for 2 × 2 tables using a standardized likelihood
plot can be easily implemented using an R package ProfileLikelihood[62].

Bayesian inference. The Likelihood Principle also plays a central role in Bayesian inference
since the likelihood function is the key component describing the evidence in the data. Bayesian
methods provide the tools for accessing our degree of belief about parameters. Suppose that our
interest is in characterizing how our beliefs change in the light of the evidence after observing
data. Examining the posterior distribution typically does this. However, if the point is to quantify
the evidence in the data, we need to be careful in using the posterior density for this purpose as it
reflects the combination of the prior information and the evidence in the data.

It is true that the posterior density is driven by the likelihood function and will wash-out
any prior information if the sample size is large enough. However, when the sample sizes and
the number of successes in 2 × 2 tables are small, the posterior distributions can be sensitive to
the priors, even with flat or noninformative priors. See Howard [63] for an example of Bayesian
analysis for 2 × 2 tables, where results were quite sensitive to different priors.

There have been efforts to find Bayes procedures that have good frequency properties using
an appropriate choice of priors such as a noninformative prior or a matching prior [64]. The
Bayesian literature regarding this topic has been growing, but is largely beyond the scope of
this paper. We would note that Brown et al.[46] showed that a Bayesian interval for a binomial
proportion with the Jeffreys’ prior had good frequency properties.

Comparison of Frequentist, Bayesian, and Likelihood approaches. We performed a
small scale simulation study to explore the similarity between the likelihood methods and com-
pare them with those of Frequentist tests such as Fisher’s exact and Pearson’ χ2 tests, and the
Bayesian methods with two different noninformative priors (Jeffreys’ and uniform priors). This
simulation study is not comprehensive (a comprehensive one would be beyond the scope of this
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paper). However, since we are most concerned about the Type I error rate relating to the criti-
cism on conservatism of Fisher’s exact test, we examined several null scenarios with small sample
size with balanced and unbalanced cases, and calculated the false positive rates. This simulation
study and the results are described in S2 Appendix. As shown, a Bayesian interval for the log
odds ratio with Jeffreys’ reference prior tended to be closer to the one from the conditional likeli-
hood and had good frequency properties. We leave extensive simulation studies for future study.

Conclusions
Two-by-two contingency tables provide fertile ground for examining the foundational princi-
ples of our everyday statistical practice. The controversy surrounding Fisher’s exact test for
2 × 2 tables is rooted in the (often hidden) foundational principles we use to make statistical in-
ferences. The Sufficiency and Conditionality Principles play an important role here as they pro-
vide a basis for the specification of a working likelihood and the elimination of
nuisance parameters.

Fisher’s exact test is based on the observation that the total number of successes is essentially
an ancillary statistic and we have confirmed that virtually no information is lost by condition-
ing on this statistic. As a consequence, Fisher’s intuition that his test should be conditioned on
the marginal success total is appropriate. Unfortunately, conditioning on the marginal success
total can create a highly discretized sample space. This makes Fisher’s exact test p-value too
conservative, and it is non-trivial to perform inferences within the Frequentist paradigm. On
the other hand, inferential methods that directly interpret the conditional likelihood perform
well and are less affected by the discrete sample space. If forced to choose among p-values for
2 × 2 tables, the one associated with the conditional likelihood ratio test, Equation (9), performs
better than most. This p-value has the virtue of being consistent with statistics derived for nor-
mally distributed data; it implies the same strength of evidence against the null hypothesis as
that for a normally distributed statistic with an identical likelihood ratio. In general, interval
based methods—CIs, credible intervals, likelihood support intervals—are preferable to p-values
although CIs do not resolve the problem for Frequentists, because the CI coverage is subject to
the same discretization issues [23].

Supporting Information
S1 Appendix. Denitions of the Law of Likelihood, and estimated, prole, and modied prole
likelihoods.
(PDF)

S2 Appendix. Comparison of simulation results from Frequentist, Bayesian, and Likeli-
hood approaches.
(PDF)
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