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Abstract

Introduction—Flow cytometry has been around for over 40 years, but only recently has the 

opportunity arisen to move into the high-throughput domain. The technology is now available and 

is highly competitive with imaging tools under the right conditions. Flow cytometry has, however, 

been a technology that has focused on its unique ability to study single cells and appropriate 

analytical tools are readily available to handle this traditional role of the technology.

Areas covered—Expansion of flow cytometry to a high-throughput (HT) and high-content 

technology requires both advances in hardware and analytical tools. The historical perspective of 

flow cytometry operation as well as how the field has changed and what the key changes have 

been discussed. The authors provide a background and compelling arguments for moving toward 

HT flow, where there are many innovative opportunities. With alternative approaches now 

available for flow cytometry, there will be a considerable number of new applications. These 

opportunities show strong capability for drug screening and functional studies with cells in 

suspension.

Expert opinion—There is no doubt that HT flow is a rich technology awaiting acceptance by 

the pharmaceutical community. It can provide a powerful phenotypic analytical toolset that has the 

capacity to change many current approaches to HT screening. The previous restrictions on the 

technology, based on its reduced capacity for sample throughput, are no longer a major issue. 

Overcoming this barrier has transformed a mature technology into one that can focus on systems 

biology questions not previously considered possible.
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1. Introduction

The power of flow cytometry lies in its unique ability to acquire measurements on every 

single cell without interference from sample background or other cells, and evaluate each 

one for many different functional parameters, all in microseconds. The fastest cell sorters 

can process around 100,000 cells/second, and the fastest analyzers about 70,000 cells/

second. Therefore, these instruments offer far greater cell-analysis rates than any imaging 

system available today, including all the high-throughput HCS instruments so readily used 

for screening. The major limitations of flow cytometry are the need to keep cells in 

suspension and the very limited access to spatial information. This is an obvious 

disadvantage if the model cells of interest are those attached to culture dishes.

Flow cytometry (FC) does not have a long tradition of being employed as a high-throughput 

cell-analysis technology, where the term “high-throughput” implies thousands to tens of 

thousands of samples per day. In fact, most common applications of FC analysis process 

only 50 to 150 samples on any given day. Thus for researchers familiar only with traditional 

applications of flow cytometry and conventional hardware, this technology would not be 

associated with a high sample-analysis rate.

However, this notion is not correct. The modern FC instruments are suited to high-

throughput studies, and the availability of high-throughput cytometry (HT) may be one of 

the most exciting technological opportunities for the fields of study employing a systems 

biology approach. With laboratory automation and robotics, it is now possible to process 

significantly larger numbers of samples per day on a single instrument. Subsequent analyses 

of multiple populations of cells to quantify various phenotypes can be accomplished in 

almost real time. However, there are significant differences in how these studies are 

performed using HT devices, as opposed to traditional flow cytometry. Additionally, it has 

to be recognized, issues are that HT flow cytometry is still an emerging technology; 

therefore the practical issues facing the users are very significant.

Flow cytometry is a tool that allows analysis of single cells producing data that are 

inherently quantitative in nature. The original attempts to study single cells, in the 1930s, 

involved simple tools focused on counting individual blood cells [1]. Subsequently, the flow 

cytometry pioneers introduced [2,3] sensitive photodetectors to separate cells and particles 

and attempted to evaluate cellular content by measuring cellular absorbance [4] or by other 

electronic means [5]. In the early 1950s, Wallace Coulter proposed a highly accurate cell 

counter based on measurement of impedance that changed the world of cellular analysis 

[6,7]. This technology was the basis for Mack Fulwyler’s invention of the cell sorter, the 

first true flow cytometer in today’s sense of the word. When Fulwyler designed his cell 

sorter in 1965, little did he know that the fundamental technology of his instrument, which 

was able to measure just a couple of samples a day [8], in less than 50 years would be the 

basis for automated systems with the ability to process a thousand samples an hour [9]. As 

flow cytometry significantly increased its capabilities, so too were the applications 

expanded, from cellular impedance measurement to one-color fluorescence[10], all the way 

to studies employing 17 or more fluorescently-labeled biomarkers [11]. Thus it can be 
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argued that modern flow cytometry can acquire by far the highest content among single-cell 

analysis tools. More recent developments in flow cytometry hardware allowed the amount of 

functional data per cell to increase well beyond any assay available for imaging modalities; 

this will be discussed below [12].

What sets flow cytometry apart from other technologies is the ability to study, measure, and 

analyze heterogeneous populations of cells one cell at a time. While genomic and proteomic 

approaches are powerful systems biology tools, they also have their disadvantages owing to 

the fact that samples are processed and analyzed in bulk. However, if mixed cells (serum, 

tissue, etc.) are the starting materials, the specific source of detected biological response is 

unclear. Proteins found in mixed-cell samples could be derived from any, some, or all of the 

present cell populations. On the other hand, FC is able to differentiate various cell types 

[13-22]. This ability to classify individual cells into populations defined on a basis of 

phenotypic differences is a strong suit of cytometry and enables this approach to study 

complex mixtures of cells without loss of information. Figure 1 illustrates this issue. In 

most cases, the separation and classification of cells is achieved using unique surface 

markers signifying well-understood functional properties of cells.

However, flow cytometry is not restricted to cellular surface-antigen expression. Functional 

characteristics are also well within the capacity of the technology and facilitate the 

differentiation of functional subsets of cellular populations [23-44].

2. The traditional data-analysis techniques of flow cytometry

The traditional flow cytometry analysis pipeline involves fluorescence-based detection of 

descriptors of cell function or molecular content and an interactive, operator-guided data-

analysis component that uses 1- or 2-D visualization formats that allow “gating” (selection 

of cellular populations of interest) and computation of summary statistics. The data 

processing can be performed by an FC operator using various dedicated cytometry-analysis 

packages. One of the most important aspects of this technology is a well-established 

standardization of data structure, described by the Flow Cytometry Standard (FCS), that was 

established 3 decades ago by the International Society for Advancement of Cytometry 

(ISAC), and has been recognized by all FC hardware manufacturers [45]. This standard was 

further enhanced to FCS 2.0 in 1990 [46], and again in 1997 to FCS 3.0 [47], with a minor 

revision to FCS 3.1 in 2010 [48]. The next-generation version of the standard is currently in 

development, and will cover not only the data representation but also many important 

aspects of processing an analysis, such as gating, mathematical transformations, etc. [49]. 

The existence of the standard leads to a thriving market of third-party data analysis 

packages. Commercial programs such as FCS Express™ (De Novo Software, Los Angeles, 

CA), FlowJo™ (Tree Star, Ashland, OR), WinList (Verity Software House, Topsham, 

Maine), Kaluza™ (Beckman-Coulter, Brea, CA), and others can be used with data obtained 

from various FC instruments. Additionally, a number of free tools written for users of R 

language for scientific computing are available within Bioconductor library Table 1 (see 

above).
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All these tools use a conceptually similar process, which starts with so-called compensation 

(linear unmixing of raw fluorescence readouts using information available from single-

stained controls), followed by visualization of the compensated values in the form of 2-D 

dot plots or density plots that enable creation of gates (manually defined regions of interest) 

in a cascading manner (see Figure 2).

Some specific applications of flow cytometry require more specialized approaches. For 

example, Gemstone™ (Verity Software House, Topsham, ME) uses Markov-chain modeling 

to define the origin and final differentiation state of a person’s white blood cells. This 

technique enables a physician to determine the differentiation state of cell types that might 

be predictive of particular clinical conditions, or a clinical scientist to better understand the 

outcome of patients for whom flow cytometry is being used to monitor changes in cellular 

phenotypes [50,51].

3. High-throughput flow cytometry

3.1 The emergence of the technology

While there is no authoritative threshold of throughput for a high-throughput screening 

(HTS) technology, some fundamental premises are generally accepted. First, assays are 

carried out in 96-, 384-, or 1536-well plates that are usually set up and manipulated within 

the context of an automation system. Second, screening practitioners usually define 

throughput in terms of the “number of compounds” that can be screened per day. If single 

wells are the basis for reporting the results of screening, most HTS operations would expect 

at least 10,000 to 50,000 collectable events daily; some technologies claim far higher 

efficiency, such as up to 108 enzyme-based reactions per day [52].

The technology of high-throughput flow cytometry combines the very high cell-analysis rate 

– a capability of any FC instrumentation – with speedy sample processing and access to 

common HTS sample-handling formats such as multi-well plates.

It is not uncommon for a technological concept to be envisioned many years prior to its 

emergence as a practical capability. In the case of HTFC, the key ideas of barcoding samples 

[53], using complex file structure for storing data representations of multiple samples [54], 

and the use of time-of-measurement as a parameter for separating multiple continuously 

measured samples [55] were all proposed over 20 years ago, and all are now fundamental 

components of HTFC domain.

Although the carousels for traditional analysis tubes have been available for many FC 

instrument providing a possibility of automated analysis, the key peripheral for making 

HTFC a reality came through the integration of robotic sampling into the FC process by 

Sklar’s group [56-58]. This was transformational for the field – the Sklar’s technology 

allowed analysis of hundreds of samples arranged in standard multi-well plates in a high-

speed, orderly fashion. The advantage of Sklar’s device is that it allows sampling of small 

volumes (~ 1 µL). In contrast, most current sampling systems available for commercial flow 

cytometers sample 25 – 250 µL – volumes far greater than normally available for the 
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majority of HT assays. Integration with robust robotic technology effects sampling for 96-, 

384- or 1536-well plates.

3.2 Multifactorial high-throughput FC

The concept of HT cellular screening implies that a great number of samples will be 

processed, but does not indicate whether the measurements should represent responses of 

cells exposed to thousands of compounds, or to just a few compounds characterized by very 

large number of variables describing cellular responses in multiple relevant conditions. 

Multifactorial flow cytometry, which focuses on the latter model, may potentially have a 

greater impact on systems biology than the traditionally understood throughput-focused 

screening. It is important to underline the difference between traditional multiparametric 

flow cytometry and multifactorial flow cytometry. The increase in number of 

simultaneously measured biomarkers conveying functional parameters of cells underscores 

multiparamertic cytometry. However, it is the availability of automation and high 

throughput that allowed for rapid collection of data from biological samples exposed to 

various environments or perturbants (drugs or growth factors). Therefore, multifactorial data 

describe a complex response pattern that a heterogeneous population may demonstrate. An 

example of such a multifactorial flow cytometry study performed by Nolan’s group is 

summarized in Figure 3 (figure is based on personal communication). In this example, more 

than 2000 dose–response curves characterizing 14 populations exposed to a set of activating 

molecules and various drugs were generated from cells arranged in a single 96-well plate.

It is also crucial to note that multifactorial flow cytometry differs in some important aspects 

from other multifactorial analysis techniques, such as image-based HCS. The techniques 

utilizing flow employ labels (usually fluorescence-based) which directly indicate the 

presence of certain molecular markers or physiological features. Imaging systems can 

simultaneously collect only a very limited number of spectrally distinctive fluorescence 

intensities. A typical image-based study employs three fluorescence markers, whereas 

studies utilizing a flow cytometry system often make use of 10 markers and more. On the 

other hand, a huge number of secondary parameters can be derived from just a few image-

based features [59] For example, using just one fluorescent label, an automated microscope 

system can derive various descriptors of location, texture, or shape [60]. These concepts are 

employed in techniques such as location proteomics [61]. Often the image-based descriptors 

can be used to characterize very complex biological responses that are not necessarily easy 

to summarize by any single molecular biomarker.

The employed descriptors in these advanced imaging approaches, such as image texture in 

the nuclear region or other exotic feature, may not be directly linked to any well-defined 

molecular biomarker but this not mean that they are less powerful. For example, in the study 

by Neumann et al. the researchers were able to pinpoint involvement of over 500 genes in 

the cell-division process, using millions of images characterized by hundreds of various 

image features [62]. If one attempted to repeat such a study using molecular markers for 

every one of the studied genes, one would need 500 well-defined molecular targets for 

labeling.
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Consequently, image-based single-cell analysis excels if cell function or observed 

perturbation is described in a fuzzy way (for instance, by change in shape during the 

differentiation). It is not an accident that one of the most common applications in HCS is 

measurement of protein translocation, where temporal–spatial relationships are key 

components of these functional probes. However, performing image-based measurements 

requires computationally complex algorithms; the image-based features used to characterize 

cells are often not orthogonal and the data have to be further reduced. The biological 

complexity is addressed by combining many image features using statistical machine-

learning techniques [63].

In contrast to imaging methods, multifactorial flow cytometry benefits directly from access 

to the very high dimensionality of biological information. Flow cytometry relies on labeled 

molecular biomarkers and is capable of quantifying many of them simultaneously. 

Therefore, highly complex biological systems comprising large number of cellular 

populations with many different functions can be studied in FC by exposing the sample to 

various external factors, such as drugs in many concentrations or activators, or 

measurements at multiple time points. For every combination of factors, an independent 

high-content FC experiment may be performed. The addition of HT ability of modern FC 

means that a complete combinatorial set may be measured and quantified within minutes. 

This is a blend of speed and content unavailable to any other single-cell analysis technique.

Although the number of factors is limited only by the experimental design and the plate 

format used, the number of simultaneously measured molecular features depends on the 

detection technology employed. Owing to the spectral overlap between fluorescence labels 

and to the practical problems of staining biochemistry, fluorescence-based detection in flow 

has not exceeded 17 bands, with the exception of approaches such as multispectral 

cytometry of Raman-based detection that may be able to expand this number further 

[64-67]. Recently, in a radical departure from optical detection, Tanner et al. proposed 

utilization of mass spectroscopy-based measurements in flow cytometry [68,69], in which 

isotopes of heavy metals are the conjugated molecules linked to specific antibodies. This 

approach pushes the number of available functional descriptors much higher.

4. Flow cytometry data processing

4.1 The computational dilemma

The combination of multifactorial design of flow experiments and throughput produces data 

sets that cannot be interpreted using traditional flow cytometry software. High throughput is 

driven by quick processing of many samples, either by sequential analysis using robotic 

samplers, or by barcoding and multiplexing, increases the number of simultaneously 

available functional parameters acquired for every measured cell and produces data sets of a 

high order. The HTFC data sets are too large and complex for methods which typically 

produce simple spreadsheet-like outputs, and are practically inaccessible for rapid 

interpretation by flow cytometer operators and researchers.

As mentioned before, flow cytometry data processing and statistical analysis traditionally 

assumed that only a single file (representing a single biological sample) is analyzed at a 
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given time and that the phenotypes of interest are defined by flow cytometer operators who 

create cascading set of gates. Therefore, visualization and analysis of data representing 

multiple samples requires a repetitive process. Consequently, information extracted from 

one sample could not be easily correlated with measurements performed on other samples. It 

is also clear that within the described operator-driven format, the task of statistical analysis 

of thousands of samples could take several hours or even days. This is why HT flow 

cytometry requires a change in approach.

Some flow cytometry analysis software vendors responded to the challenge by providing 

batch-analysis utility. However, the batch-processing function delivers a very limited 

solution given the biological differences between samples and the fact that traditional flow 

cytometry data analysis requires interactivity for defining populations and subpopulations of 

interest. The problem with traditional analytical tools is the lack of capacity to capture the 

entire assay or present the results in a fast, simple way, and researchers should not have an 

expectation that they must wait days for results. The real purpose of performing HT assays 

is to create large-scale comparisons of samples, drugs, activators, or cell types. The 

processes must be viewed as a system approach, not as a sample approach. Addressing the 

data complexity of multifactorial flow cytometry data required the concerted use of 

bioinformatics and machine-learning tools. Some of the proposed solutions are summarized 

below.

4.2 Storage, analysis, and mining of high-content FC data

Data for dozens of parameters collected on millions of cells introduce many challenges at 

the stages of processing and visualization. Storage, annotation, and exchange of highly 

structured multifactorial data sets require specialty custom-tailored informatics solutions 

designed with FC in mind. One such approach is the Cytobank system developed by a team 

at Stanford University. Cytobank captures all the important metadata describing 

multifactorial high-content FC data and combines the information about experimental design 

with sophisticated data-presentation techniques and statistical analysis of FC measurements. 

The key to the successful use of tools like Cytobank is careful documentation of the 

experimental design to provide accurate details regarding antibodies, conjugates, reagents, 

optical filters employed, etc. Cytobank also includes some sophisticated data-processing 

capabilities, such as automated extraction of response curves and interpretation of cellular 

barcodes [70]. Further knowledge deduction for the creation of networks based on Bayesian 

learning from HT flow cytometry has been shown to be possible [71]. Cytobank can also use 

advanced visualization tools such as the SPADE algorithm [72], which assists in displaying 

and identifying large numbers of simultaneously studied cell phenotypes (see Figure 4). The 

Cytobank system was chosen to power the FlowRepository, an ISAC-backed project to build 

a public repository of cytometry data to promote reproducibility, exchangeability, and peer 

review of FC experiments. An example of an advanced analysis enabled by this system is 

the construction of “Markov neighborhoods” for each variable based on a variety of 

dependencies and which performs structured learning using a constrained search [73].
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4.3 Current approaches for advanced analysis of flow cytometry data

The sine qua non for automated analysis of high-throughput flow cytometry data is the 

availability and practical implementation of modern pattern-recognition, machine-learning, 

and statistical procedures to interpret, process, and analyze flow cytometry data sets. 

Without access to a statistical analysis toolkit, flow cytometry practitioners are limited to 

manual data analysis, which is not scalable and cannot be extended to HT experiments and 

resultant data models. Owing to biological and instrumental variability, a simple batch-

processing approach that re-applies an operator’s manual analysis steps to a large number of 

flow cytometry files does not work well in practice and cannot be recommended. Therefore, 

the success of automation in FC data processing is intimately connected to progress in the 

development of easy-to-use scientific computational programs for general statistical 

analysis.

The early work on application of machine learning-inspired methods in FC dates back to the 

early 2000s [74-76]. State-of-the-art classification techniques such as neural networks and 

support vector machines were demonstrated to perform well when applied to flow cytometry 

data sets. Similar approaches utilizing advanced pattern-recognition tools were subsequently 

applied successfully by other researchers [77,78]. Tools such as Logicle Transformation [79] 

were embedded within the field and have now been widely applied [80]. However, the initial 

lack of a unified development environment for FC data analysis severely hindered progress 

and limited the impact of modern pattern-recognition methods on automation of FC data 

processing. Only recently has modern statistical methodology finally become available to all 

cytometry practitioners willing to invest a reasonable amount of time in learning the basics 

of statistics and programming.

This methodology became possible due to the efforts of the bioinformatics community, 

which faced a similar set of problems dealing with large data sets and the demand for 

immense data collection and analysis throughput. The push toward standardization, data 

exchangeability, and ability to peer-review the procedure, techniques, and algorithms used 

resulted in the adoption of a popular open-source statistical programming language know as 

R for development and deployment of bioinformatics processing tools. R was an ideal 

choice – it is a dialect of the powerful S language created by John Chambers at Bell Labs, 

which has been used by statisticians since the 1980s. However, in contrast to S, R is an 

open-source project initiated by Ross Ihaka and Robert Gentleman at the University of 

Auckland, New Zealand. The openness of R and the involvement of one of its creators in the 

field of bioinformatics were important factors leading to the Bioconductor initiative.

The Bioconductor project, which aimed at coordinating R-based bioinformatics-related data-

analysis packages for biologists, was initiated in 2001 at the Dana Farber Cancer Institute 

[81]. The 1.0 release of Bioconductor contained only 15 packages, none of which related to 

cytometry. By 2011 the number of bioinformatics and computational biology packages grew 

to 467 and included a number of cytometry-related toolkits that are now widely utilized to 

build custom HTFC data-processing pipelines. Among these packages, several directly 

address the problems of subjectivity, lack of reproducibility, and time consumption inherent 

in manual FC analysis, and provide modern statistical methods for observer-independent 
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analysis and classification. The aptly named flowCore package provides a basis for most of 

the other cytometry-related Bioconductor tools [82]. It supplies standardized ways of 

reading and saving structured FC data and provides a model for the representation of FC 

data as R objects. flowCore merges the functionality of the older R-packages prada and 

rflowcyt. The package uses the flowFrame class to represent single FC data sets functionally 

equivalent to a standard FCS file (FCS version 2.0, 3.0, and LMD-style files are supported), 

and the flowSet class to represent a set of logically connected FC experiments (for instance, 

arranged in a multi-well plate, or as a set of test tubes). All the traditionally employed data 

transformations (such as log, biexponential, arcsinh, etc.) are provided, as well as 

specialized tools to apply gates of various types and shape (polygon, ellipsoid, rectangle, 

etc.). The package works in conjunction with flowViz, which offers traditional modes of FC 

data visualization such as histograms, density plots, and dot plots [83]. The package 

flowMeans provides an extension to the popular k-means algorithm specifically tuned for 

dealing with non-spherical cell populations [84]. flowClust, another important R/

Bioconductor toolkit, implements advanced model-based clustering that uses multivariate t-

mixture models and the Box–Cox transformation [85,86].

flowMerge further extends the flowClust methodology, while flowType makes use of 

intensity thresholding, k-means, flow-Means, and flowClust to partition every fluorescence 

marker into “positive” and “negative” populations in order to produce automated phenotype 

tabulation. With a large number of available data transformations, it is imperative to select 

the transformation in accordance with best practices and to maintain well-defined 

transformation protocols. The R/Bioconductor package flowTrans offers help and assistance 

in the search for optimal transformations for subsequent data processing and visualization 

[87]. flowFP, developed by Holyst and Rogers [88,89], allows the user to generate a 

fingerprint-like description of the multivariate probability distribution functions representing 

FC data. Another important tool for high-throughput cytometry, flowQ, was developed to 

automate the process of quality control, which is crucial for HT experiments involving 

measurements of hundreds or even thousands of samples. The flowQ Bioconductor package 

provides various QC functions ranging from a simple check on number of cells measured in 

every well of the analyzed plates to determination of boundary effects, discovery of 

abnormal flow rates, or sudden jumps in measurement intensities. flowQ also provides 

automated reporting capability.

Since high-throughput cytometry experiments often require simultaneous rather than 

sequential processing of large numbers of files, the traditional data representation used by 

the cytometry community, and also provided by flowCore, may not be adequate, since it 

keeps the entire flowFrame object in computer memory for data manipulation and 

processing. A solution to this problem provided by the package ncdfFlowSet utilizes 

netCDF (network common data form) tools. Owing to the availability of compression and 

chunking features, netCDF is an ideal format for storage of large HT cytometry experiments. 

The specialized package plateCore specifically addresses the issue of handling flow 

cytometry data organized in 96- or 384-well plate formats and allows seamless integration of 

the previously mentioned tools with plate-based HT cytometry [90].
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SPADE (already mentioned in the context of Cytobank) is another important algorithm 

available in the Bioconductor repository. The SPADE algorithm, which was developed by 

Peng Qiu in Sylvia Plevritis’ lab in collaboration with Garry P. Nolan’s laboratory, utilizes a 

spanning-tree representation of density-normalized cellular populations to visualize 

phenotypes of cells in complex systems (Figure 4). The resultant trees are much easier to 

interpret than a cascade of 2-D projections, especially for multifactorial high-dimensionality 

data sets such as those obtained using the CyTOF system [12,72].

Although the bulk of the described efforts in modern HTFC analysis are related to 

development of basic building blocks for automated data-processing pipelines, the important 

issue of interfacing the automated processing algorithms is also being addressed by the FC 

community [91,92]. iFlow is a GUI linking R/Bioconductor packages and allows even 

inexperienced users to explore the available functions and tools provided by Bioconductor 

[93]. Many of the Bioconductor packages discussed above are listed in Table 1.

The users who feel intimidated by the requirement to program in R/Bioconductor 

environment in order to build processing pipelines for multifactorial HT cytometry assays 

and who would like to use a ready-made off-the-shelf solution regrettably do not have a 

wide choice. Currently there are no commercially available FC processing packages which 

out-of-box fully embrace multifactorial formats and allow quick processing of large number 

of samples, keeping the metadata and relationships between samples intact. However, R-

code can be used within general-use biodata-automated processing platform such as Pipeline 

Pilot (Accelrys, Inc., San Diego, CA) or freely available GenePattern from Broad Institute 

[94].

The only fully integrated multifactorial flow cytometry processing system known to us is the 

PlateAnalyzer platform developed in Robinson’s lab [95,96]. The package was designed 

employing the concept of visual programming, which can be summarized as the process of 

programming by manipulating graphical objects instead of writing textual code. The idea 

dates back to the early 1970s and David Canfield Smith’s Pygmalion programming 

environment, which used an icon-based programming paradigm in which the user created, 

modified, and linked together small pictorial objects, with defined operators and 

computational actions. The concept of a graphical design canvas allowing the use of 

independent pictorial “modules” and connecting “pipes” fits very well with the openness 

and complexity of multifactorial HT cytometry assay development. The scientific and 

engineering community is already using visual programming in tools such as LabVIEW, 

visualization package AVS, or machine-learning environment Orange.

PlateAnalyzer is de facto a visual programming toolkit allowing an FC analyst to combine 

various processing steps, control the input for the algorithms, and apply various processing 

operators graphically, interacting with the design canvas, rather than encoding the required 

processing steps in a language such as R (see Figure 5). In the PlateAnalyzer system, small 

icons or boxes represent programmatic entities (fragments of functional code), and lines (or 

pipes) connecting these objects allow for the flow of information and indicate relationships 

between operators.
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In the case of PlateAnalyzer, the user composes a data cytometry data processing pipeline 

(termed a logic map), by creating connections between boxes indicating various inputs, 

outputs, and operators. These trees represent a series of processes of data reduction and 

manipulation steps that can be applied to the data set of interest. The innovative aspect of 

PlateAnalyzer processing is that not only does it allow for visual pipeline building, but also 

all the designed pipelines can be utilized in a sequential or parallel fashion. In other words, a 

typical HT assay or screen that leads to collection of hundreds of data sets is processed 

virtually in real time, since the data sets flow through the processing pipeline in parallel. 

This is possible because data reduction and processing in multifactorial flow cytomery is a 

so-called embarrassingly parallel problem, i.e., a computational task in which there exists no 

dependency between parallel subtasks (that is, processing of subsamples exposed to a given 

combination of factors). This property also means that PlateAnalyzer is easily portable to a 

grid-computing format, which can address the issue of processing very large screens or data 

mining complex databases of cytometry assays.

5. Future applications/new opportunities

HT flow cytometry is a transformational technology that opens up new opportunities for 

systems biology, especially in a multifactorial version. In the last couple of years, the 

number of samples that can be processed in modern FC devices has grown from just a few 

per hour to thousands. At the same time, the complexity of the data has also increased owing 

to the increasing number of simultaneously measured markers as well as to the use of 

multifactorial experiment-design formats. As outlined here, an increasing number of tools 

are being actively developed to process, manipulate, visualize, store, and mine these data 

sets. With the availability of cellular barcoding technology and the introduction of new high-

content measurement techniques such as mass spectrometry-based FC, the well-established 

field of cytometry is likely to expand its role in systems biology. This will enable large-scale 

studies of signaling networks and regulatory pathways, discovery of new molecular targets, 

and quantification of cellular responses to various activators of function, drugs, and stress 

[73].

6. Expert opinion

There is little doubt that the paradigm is changing in the world of flow cytometry. As 

practiced for almost five decades the technology has been useful, is successful, and makes a 

significant contribution to current needs. However, this traditional technology fails to serve 

the needs of a systems approach to large-scale biology. This approach demands the 

development of new assay designs, new reagents, some new detection opportunities, and 

most definitely new analytical approaches. A few possibilities have shown significant 

promise in moving toward these goals. Some are already available but in limited use. The 

complications in moving flow cytometry into the very-high-content and high-throughput 

domain are significant. HT flow cannot be performed without automated preparatory tools, 

which are commonly used in the image-screening world, but not as yet in the flow world. 

This situation has to change. Without these automated processes, it is not possible to 

establish large-scale experiments with acceptable levels of quality control. The same robotic 
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instrumentation currently used in screening labs works for HT flow cytometry equally well 

and should be adopted.

Detection instrumentation is changing as well. For several years, a few groups have had the 

capacity to collect 15 or more fluorescent probes simultaneously using the most advanced 

instruments available. In addition, hyperspectral tools are also advancing and have the 

possibility to expand the capacity of current instruments. The one major expansion in the 

field has been the CyTOF-based analysis using isotopes of heavy metals instead of 

fluorescent probes. Without the need to deal with fluorescence compensation and with the 

capability to operate in a virtual digital mode, this technology is extremely powerful, yet 

immature.

As these new technologies mature, the opportunities for unique application will increase. 

For example, the CyTOF has a clear-cut advantage for the analysis of multiple populations 

like bone marrow or blood, where the relationships between cell types may be complex. For 

less complicated applications such as drug screening, HT flow cytometry is an amazingly 

successful tool that is sure to see growth as the advantages become more obvious. Flow 

cytometry has been a technology neatly packaged for decades. The covers are coming off 

the package as this powerful tool creates new opportunities and enters the world of systems 

biology. If we constantly think of flow cytometry as a tool with current limitations and only 

capable of extracting a few populations of cells and identify an extracellular antigen or 

provide the status of the cell cycle of a population, we will not see the new opportunities. 

The next generation of flow cytometry capabilities has stretched the limits of complexity in 

defining cellular relationships as well as evaluating complicated drug–cell interactions.
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Article highlights

• Flow cytometry can be performed in high throughput as well as a very high 

content mode.

• Data analysis for such data sets, while complex, can be performed in a rapid and 

robust way.

• Advanced classification solutions are plentiful and can be modified to be 

applied to very large flow cytometry data sets in a semi-automated fashion.

• Automated preparation of assays is a key aspect of high-throughput flow 

cytometry and is required for the throughput and quality control.

• HT flow now has the capacity to be an effective systems biology tool as very 

large assay systems can be developed and run in a very short time window.

• Very complex analysis is possible with HT flow particularly when you integrate 

the entire assay and use new tools that can be applied in parallel.
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Figure 1. 
The major advantage of the cytomics (i.e., single-cell analysis) approach is the ability to 

interrogate single cells and to separate functionally and phenotypically distinctive 

populations of cells during the process of statistical analysis of the entire biological system. 

Every defined population can be studied separately or in the context of functional relations 

to other populations.

Reproduced from a poster presented at the NIH Common Fund Single Cell Analysis 

Workshop, April 17 – 18, 2012 [115] by the University Cytometry Laboratories with their 

permission.
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Figure 2. 
Traditional flow cytometry analyzes one sample at a time. Due to the interactivity required 

for visualization and gating, this approach is relatively slow and cumbersome. In the 

provided example four gating steps were defined. The first and the third gates are polygonal 

and are defined in two-dimensional spaces formed by FC-measured variables. The steps 

numbered 2 and 4 use only one variable and simple thresholding to separate cells 

demonstrating high intensity of fluorescenceinspecificbands.
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Figure 3. 
The multifactorial experimental design demonstrated in this figure, based on a study from 

Bodenmiller (personal communication), allows simultaneous study of responses 

demonstrated by nine populations of cells to a number of drugs in the presence of 14 

activators. Over 30 functional parameters based on molecular markers of phosphorylation 

were measured for every one of the 14 cell types in the system.
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Figure 4. 
This figure demonstrates the SPADE algorithm as applied to hematopoietic cells. This 

technology packages data into regions of similarity so that it is possible to see the strength 

and range of interactions within a complex system. SPADE uses a color- and shape-coded 

process to allow the investigator to get an overview of a very complex system.

Reproduced from [95] with permission of the American Association for the Advancement of 

Science.
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Figure 5. 
Screenshot of PlateAnalyzer, an interactive analysis system for multifactorial FC data. The 

GUI uses a pipeline metaphor to enable even inexperienced users access to sophisticated 

embedded visual-programming tools.

Reproduced from [12] with permission of International Drug Discovery and Russell 

Publishing.
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Table 1

Flow cytometry data analysis libraries for R/Bioconductor environment. While most of these do require a 

moderately high level of proficiency in R language, they provide functionality not available in off-the-shelf 

flow cytometry software packages.

Bioconductor package Functionality Authors Ref.

Basic computational infrastructure

flowCore S4 data structures and basic functions to read/write and 
process flow cytometry
data files

Byron Ellis, Perry Haaland, Florian 
Hahne, Nolwenn
Le Meur, Nishant Gopalakrishnan

[97,98]

plateCore Basic S4 data structures and routines for analyzing flow 
cytometry samples
collected from multiwall plates

Errol Strain, Florian Hahne, and Perry 
Haaland

[99]

flowStats Methods and functions to analyze flow cytometry data beyond 
the basic
infrastructure provided by the flowCore package

Florian Hahne, Nishant 
Gopalakrishnan, Alireza Hadj
Khodabakhshi, Chao-Jen Wong, 
Kyongryun Lee

[100]

flowUtils Functions to import gates, transformations, and compensations 
defined in
compliance with Gating-ML standard

Nishant Gopalakrishnan, Florian 
Hahne, Byron Ellis,
Robert Gentleman, Mark Dalphin, 
Nolwenn Le Meur,
Barclay Purcell

[101]

flowFlowJo Importation of basic flowJo workspaces into BioConductor 
environment

John J. Gosink [102]

ncdfFlow netCDF storage-based methods and functions for manipulation 
of flow cytometry
data

Mike Jiang, Greg Finak, Nishant 
Gopalakrishnan

[103]

Processing, clustering, gating, automated analysis, and quality control

Logicle Generalized biexponential transform for cytometry data Wayne Moore, David Parks [80]

flowMeans Non-parametric clustering for flow cytometry Nima Aghaeepour [84]

flowClust Robust model-based clustering using a t-mixture model with 
Box–Cox
transformation

Raphael Gottardo, Kenneth Lo [85]

samSPECTRAL Data reduction and spectral clustering for analysis of high-
throughput flow
cytometry data

Habil Zare and Parisa Shooshtari [104]

flowMerge Merging of mixture components for model-based automated 
gating

Greg Finak, Raphael Gottardo [105]

flowType Automated phenotyping Nima Aghaeepour [106]

flowTrans Maximum likelihood estimation of parameters for flow 
cytometry data
transformation

Greg Finak, Juan Manuel-Perez, 
Raphael Gottardo

[87]

flowFP Fingerprint generation for multidimensional flow cytometry 
data

Herb Holyst, Wade Rogers [88]

flowPhyto Automated computational methods for analysis of marine 
biology data obtained
from high-throughput systems such as SeaFlow

David M. Schruth and Francois Ribalet [107]

flowQ Quality control tools for flow cytometry data Robert Gentleman, Florian Hahne, J. 
Kettman,
Nolwenn Le Meur, Nishant 
Gopalakrishnan

[108]

QUALIFIER Quality control tools for gated flow cytometry data Mike Jiang, Greg Finak, Raphael 
Gottardo

[109]

RchyOptimyx Automated determination of the minimal sets of markers
Able to identify a target population to a desired level of purity

Adrin Jalali, Nima Aghaeepour [110]
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Bioconductor package Functionality Authors Ref.

FlowAND FlowAnd is a flow cytometric tool for systematic and efficient 
analysis of large
multidimensional datasets

Anna-Maria Lahesmaa-Korpinen, Ping 
Chen,
Erkka Valo, Javier Nunez Fontarnau, 
Sampsa
Hautaniemi

[111]

Visualization and interactive analysis

flowViz Visualization tools for flow cytometry data (histograms, dot 
plots, density
plots, etc.)

Byron Ellis, Robert Gentleman, Florian 
Hahne,
Nolwenn Le Meur, Deepayan Sarkar

[112]

iFlow Visualization and exploratory analysis of flow cytometry data Kyongryun Lee, Florian Hahne, 
Deepayan Sarkar

[113]

flowPlots Graphical displays with embedded statistical tests for flow 
cytometry

Natalie Hawkins, Steve Self [114]

SPADE Processing and visualization of multidimensional FC data 
using spanning-tree
progression of density-normalized events (SPADE)

Michael Linderman, Erin Simonds, 
Zach Bjornson,
Peng Qiu

[72]
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