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A method called complete hypothetical scanning Monte Carlo has
been introduced for calculating the absolute entropy, S, and free
energy, F, of fluids. Here, the method is extended to peptide chains
in vacuum. Thus, S is calculated from a given sample by recon-
structing each conformation step-by-step by using transition prob-
abilities (TPs); at each step, part of the chain coordinates have
already been determined (the “frozen past”), and the TP is ob-
tained from a Monte Carlo simulation of the (future) part of the
chain whose TPs as yet have not been calculated. Very accurate
results for S and F are obtained for the helix, extended, and hairpin
microstates of a simplified model of decaglycine (Gly)1o and (Gly)1s.
These results agree well with results obtained by the quasihar-
monic approximation and the local states method. The complete
HSMC method can be applied to a macromolecule with any degree
of flexibility, ranging from local fluctuations to a random coil. Also,
the difference in stability, AFp,, = F, — Fn between significantly
different microstates m and n can be obtained from two simula-
tions only without the need to resort to thermodynamic integra-
tion. Our long-term goal is to extend this method to any peptide
and apply it to a peptide immersed in a box with explicit water.

n ref. 1, White and Meirovitch discuss the importance and

difficulties of calculating the absolute free energy, F, and
entropy, S; however, their role in computational structural
biology should be further emphasized. The energy surface of a
protein, commonly defined by a force field, is highly rugged,
consisting of a tremendous number of local minima (2), where
the native structure corresponds to the localized energy well with
the lowest F. However, molecular dynamics simulations have
shown (3, 4) that even a protein with a well defined structure
fluctuates significantly within a region called wide microstate
(e.g., the conformational region of an a-helix of a peptide) that
typically consists of many localized energy wells. A peptide or
protein, or protein segments such as surface loops, can exhibit an
intermediate flexibility, where several wide microstates are
populated significantly at thermodynamic equilibrium. It is
essential to be able to identify these wide microstates, 7, and to
calculate F,,, which lead to their relative populations and to
weighted averages of various quantities that can be compared
with experimental values (5, 6). F,,, is useful particularly if m and
n differ significantly; then, calculating the difference, AF,,, =
F,, — F, is straightforward, whereas calculating it by thermody-
namic integration might be prohibitive (see refs. 7-12 and
references therein).

In ref. 1, the hypothetical scanning (HS) method for calcu-
lating the absolute F and S (10) has been further developed and
applied to liquid argon and water. This method, named complete
hypothetical scanning Monte Carlo (HSMC), is extended here to
a peptide in vacuum or peptide described by an implicit solvation.
As a first step, we treat a simplified model of decaglycine (Gly)io
simulated by Monte Carlo (MC) (13) at three wide microstates:
helix, extended, and hairpin. Each sample conformation is
reconstructed gradually by calculating transition probabilities
(TP) for the dihedral angles and fixing the related atoms at their
positions. A TP is obtained by an MC simulation of the future
(vet unfixed) part of the chain and, to avoid the escape of a future
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sample from the corresponding microstate, we impose restric-
tions obtained from the local states (LS) method for calculating
S (5, 6,14-18). Therefore, the entire procedure is a hybrid of two
techniques and, to test its performance for larger peptides, we
also study a 16-residue polyglycine (Gly)is in the helix and
extended wide microstates. The complete HSMC results for S
and F are found to be in a very good agreement with results
obtained by the LS method and the quasiharmonic (QH)
approximation (19, 20). Our long-term goal is to extend the
complete HSMC method to any peptide and to apply it to a
peptide immersed in a box with explicit water.

Theory and Methodology

The Model and Statistical Mechanics Considerations. We have first
studied decaglycine, NH,(Gly);0CONH,, modeled by the AM-
BERY6 force field in vacuum (21), where the charges of the end
groups were neutralized. For simplicity, we denote the dihedral
angles ¢;,;, and w; ordered along the chain by oy, kK = 1,3N =
30, where N is the number of residues [the extension for (Gly)is
is straightforward]. The partition function, Z, is an integral over
the function exp(—E/kgT) (E is the potential energy and kg, the
Boltzmann constant) with respect to the Cartesian coordinates
over the whole conformational space, (). However, for a stable
wide microstate, the integration is carried out only over the
limited region )y that defines the wide microstate. To apply the
HS or LS methods, one has to change the variables of integration
from Cartesian to internal coordinates, which makes the integral
dependent also on the Jacobian, J. For a linear chain, J has been
shown to be independent of the dihedral angles and is a simple
function of the bond angles and bond lengths. Thus, if the
potentials of these “hard variables” are strong, their average
values can be assigned to J, which to a good approximation can
be taken out of the integral (see refs. 19, 22, and 23).

For the same reason, one can assume a more restrictive model
(see below), where the bond angles and bond lengths are kept
constant at their average values and thus the corresponding
exp(—E/kgT) values can be taken out of the integral as well. In
particular, notice that, although the contribution of bond stretch-
ing to the absolute entropy is not small, it is expected to be similar
for different wide microstates of the same molecule. Therefore,
to a good approximation, the contribution of bond stretching to
the differences AS,, , and AF,, , between wide microstates m and
n cancels out. Assuming that the bond lengths are not correlated
with the bond and dihedral angles enables one to carry out the
integration over the bond lengths; if a similar assumption is made
for the bond angles, the remaining integral becomes a function
of the 3N dihedral angles (22, 23) The partition function is

Z'=DZ = Df exp{—E([ak])/kBT}dal e da3N, [1]
Qo
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where the prefactor D is a product of J and the integral over the
bond lengths and bond angles; D depends on 7 and the units in
which the bond lengths and bond angles are expressed. For
calculating AS,, , and AF,, ,, of two wide microstates of the same
molecule, InD cancels and can be ignored (notice, however, that
D contributes to the absolute F and §). The probability density
corresponding to Z (Eq. 1) is

p([ax]) = exp{—E(())/ksT}/Z, [2]

and the exact entropy (defined up to an additive constant) is

S = ka p(Lox]) In p(Lay Dday . . . asy. [3]
Q

0

Thus far we have described the transformation from a peptide
model represented by Cartesian coordinates to a model repre-
sented by dihedral angles. This is needed for applying both the
LS and HS methods. However, we have found MC simulations
in Cartesian coordinates to be extremely inefficient; therefore,
we have studied a relatively simple model of ployglycine based
on the AMBERY6 force field with constant bond lengths and bond
angles, an option available in the program TINKER (http://dasher.
wustl.edu/tinker). Thus, the dihedral angles ¢;, i, and o;
become the variables of an MC procedure significantly more
efficient than that based on Cartesian coordinates; for the
present model of rigid geometry, the application of the LS and
HS methods is therefore direct. Obviously, keeping the bond
angles constant is a temporary restriction applied only in this
initial study of the complete HSMC method. In what follows, for
simplicity, the various methods will be described as applied to
this model of polyglycine.

The Exact Scanning Method. The exact scanning method is a
step-by-step construction procedure for polymer chains (24) and
thus is equivalent to the MC and MD procedures in the sense
that large samples generated by all these methods lead to the
same averages and fluctuations within the statistical errors. With
the exact scanning method an N-residue conformation of polyg-
lycine in the helical region (), is built by defining the dihedral
angles oy step by step with TPs and adding the related atoms; for
example, the angle ¢ determines the coordinates of the two
hydrogens connected to C*, and the position of C’ (16, 25). Thus,
at step k, k—1 dihedral angles o, ..., ax—1 have already been
determined, they and the related structure (the past) are kept
constant, and oy should be defined with the exact TP density
plola—1 . .. 1),

ap) = Zf(ak cee a])/[zf(ak—l coag)dag],
[4]

plaglag_q ...

where doy is a small segment centered at oy, and Zg(o . . . 1) is
a future partition function defined over the helical region Q, by
integrating over the future conformations defined by
g+1 - - - dasy (within ), where the past angles, a; . .. o, are
held fixed,

Zf(ak, ooy Ol])

= f exp—[E(asn, . - ., ) /kpTldoy v . . . dagy. [5]
Q

0

The probability density of the entire conformation is
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3N
, ) = n p(aklak—l Sooo). [6]
k=1

plazy, - ..

Because of the equivalence between the MC and the scanning
method mentioned above, one can assume that a given MC
sample has rather been generated by the scanning method, which
enables one to reconstruct each conformation and to calculate
the TP densities that hypothetically were used to create it
step-by-step. This idea can be implemented in two different
ways, by the LS and HS methods. Because some elements of the
LS method are implemented within the framework of the
complete HSMC method, we describe the LS method first.

The LS Method. In the first step, the MC sample (of a given wide
microstate) is visited, and the variability range A« is calculated
(5, 6, 14-18).

A« = aj(max) — oy (min), [7]1

where ax(max) and ax(min) are the maximum and minimum
values of ay found in the sample, respectively. Next, the ranges
Ay are divided into ! equal segments, where [ is the discreti-
zation parameter. We denote these segments by vy, (v = 1, 1).
Thus, an angle «x is now represented by the segment v to
which it belongs, and a conformation i is expressed by the
corresponding vector of segments [vi(i), v2(i), ..., van(i)].
Under this discretization approximation, p(a|a—1. .. a1) can
be estimated by

plarog_1 ... o)) ~n(vy, ..., v)/{n(v_y, ..., v)[A/I]},
(8]
where n(v, . . ., v1) is the number of times the LS [i.e., the partial

vector (v, ...,v1) representing (o, ...,o;)] appears in the
sample. Because the number of local states increases exponen-
tially with k, one has to resort to approximations based on
smaller LSs that consist of v and the b angles preceding it along
the chain, i.e., the vector (v, vk—1, ..., Vk—p); b is called the
correlation parameter. The sample is visited for the second time,
and for a given b, one calculates the number of occurrences 7 (v,
Vk—1, - - . » Vk—p) Of all of the local states from which a set of TP
p(vilvi—1, . . ., vi—p) are defined. The sample is then visited for
the third time, and for each member i of the sample, one
determines the 3N local states and the corresponding TP, whose
product defines an approximate probability density pi(b, /) for
conformation i:

3N

pi(br l) = H P(Vk|Vk71: .

k=1

o )/ (A /1), 9]

The larger are b and /, the better the approximation (given enough
statistics). p;(b, [) allows defining an approximate entropy and free
energy functional, $* and FA, which constitute rigorous upper and
lower bounds for the correct values, respectively (25),

FA®b, 1) = (E) — TSA = (E) + kT J pBIn p(b, Dda, . . . asy,

[10]

where (E) is the Boltzmann average of the potential energy,
estimated from the MC sample, and pP is the Boltzmann
probability density with which the sample was created.
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SA is estimated from a Boltzmann sample of size n by S4:

k n
SA= — ;B > In pi(b, D). [11]
=1

As discussed in ref. 1, the fluctuation AF of the correct free
energy is zero, whereas the approximate F” has finite fluctua-
tion, AFA (estimated by AF?), which is expected to decrease as
the approximation improves (17).

1/2

1 & -
_ 2PN - E kT Inp(6, )] [12]

t=1

AFA =

The LS method can be applied to any chain flexibility, i.e., it
is not limited to harmonic or QH fluctuations (19, 20, 22, 23, 26).
Thus, free energy differences between wide microstates with
significant structural differences can be calculated, which is a
difficult task with methods based on thermodynamic integration.

Approximate HS Method. The idea of the HS method is to
reconstruct each sample conformation step by step, obtaining
the TP density of each ax (Eq. 4) by calculating the future
partition functions Z;. However, a systematic integration of Z;
within the limits of Q is difficult and becomes impractical for a
large peptide where ) is unknown; therefore, thus far, HS was
applied only to self-avoiding walks (SAWs) on a lattice, where ()
is the entire space and Z; is calculated approximately by enu-
merating only future SAWs of f'steps (i.e., ax, . . . , ax+s—1), rather
than of N — k + 1 steps (27, 28).

The Complete HSMC Method. With the complete HSMC method
applied to peptides (like for fluids), one calculates at each recon-
struction step k of conformation i the TP density, p(oy|og—1 . . . a1),
from ny MC steps (trials) (13), where the entire future of the peptide
can move by changing the future angles oy, . . ., aszy, whereas the
dihedral angles a4, . .., ax—1 (defining the past) are kept fixed at
their values in conformation i. A small segment (bin) day (see Eq.
4) is centered at oy, and the number of MC visits to this bin during
the simulation, ny;ss, is calculated; one obtains

= nvisit/[nfaak]v [13]

where the relation becomes exact for a very large np. The
product of these TP densities leads to the probability density
of the entire chain (Eqs. 6 and 10). Notice that, unlike the
systematic calculation of Z; where the limits of () are in
practice unknown, with the complete HSMC procedure, the
future structures generated by MC at each step k remain in
general within the limits of the wide microstate )y defined by
the analyzed MC sample. In some cases, however, the future
samples were found to escape from this region; therefore,
before applying the complete HSMC method, the LS method
is applied to the analyzed sample and the ax(min) and ax(max)
values (Eq. 7) are calculated; they are then used to keep
the future structures within €y by rejecting MC moves with
angle values beyond those of ax(min) and ax(max). Although
complete HSMC considers the entire future, in practice
p(alag—1 . . . @1) (Eq. 13) will be somewhat approximate due
to insufficient future sampling, imperfect random number
generator, etc.; therefore, the corresponding free energy, FA
(Egs. 10 and 11), will underestimate slightly the correct value,
where its fluctuation AFA (Eq. 12) does not vanish.

P(ak|ak—1 R,

Results and Discussion

We have first studied three wide microstates of (Gly)o: helix,
hairpin, and extended. Samples of these wide microstates were
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Table 1. The differences (in degrees) between the minimum and
maximum values of the dihedral angles of (Gly)1o in three MC
samples of 500 structures (Eq. 4)

Extended Helix Hairpin

Number Ag Ay Aw  Ag¢ Ay Ao  Ap Ay Ao

47 142 23 43 48 23 35 57 21
61 55 23 20 43 21 37 30 21
57 43 23 28 33 22 37 36 26
68 51 26 22 25 21 54 89 21
58 46 25 30 35 19 59 65 24
68 46 24 25 29 20 31 27 18
61 45 23 22 46 16 30 43 32
66 42 25 27 34 19 39 31 22
60 54 25 30 48 19 41 37 23
65 47 26 49 360 26 56 32 28

O VWO NOUBAWN =

—_

generated by the Metropolis MC procedure (13) at 100 K where
a trial structure is obtained by randomly changing all of the 30
dihedral angles, each within *1° of its current value. These
simulations were started from helical, extended, and hairpin
structures obtained by minimizing the energy of the correspond-
ing structures, ¢x = Y = —55° and wr = 180°, ¢ = Y = Wi =
180°, and two extended strands of four residues connected by a
type I’ turn. The first 5,000 MC steps were used for equilibration,
and from the following 50,000 steps, after every 100 steps the
current structure was retained for future analysis; in this way,
three equal samples of 500 structures were generated. It should
be pointed out that preliminary simulations at 300 K resulted in
unstable samples (i.e., the structures escaped from their wide
microstates); therefore, the temperature was decreased to 100 K,
where the helix and extended simulations were found to be very
stable, whereas the hairpin sample remained stable only up to
the first 50,000 MC steps. The corresponding Aay values (Eq. 7)
are relatively small (see Table 1), representing relatively con-
centrated samples. Notice, however, that due to correlations,
each wide microstate is significantly smaller than the corre-
sponding region, AajxAasx. . . . XAasz.

To apply the complete HSMC method, each conformation was
reconstructed step by step by TPs obtained from MC simulations
of the future part carried out in the same way as described above
with the additional restriction that a trial conformation with oy
larger than ox(max) or smaller than ax(min) is rejected. To check
the convergence of the results, they were calculated for four future
sample sizes, ny = 20,000, 40,000, 80,000, and 160,000. For the same
reason, we studied for each dihedral angle four bin sizes, § =
Aoy /15, Aoy /10, Aay/5, and 20° centered at «y. Notice that as for
the LS method, the bin size is proportional to Acy. If the counts of
the smallest bin are smaller than 50, the bin size is increased to the
next size and, if necessary, to the next one (8 = Aay/5); the same
is applied to the second size bin. In the case of zero counts, nyigi is
taken to be 1; notice, however, that zero counts is a very rare event.

Results for the entropy (75) appear in Table 2 for various ny
values and bin sizes; the results for the largest bin (of 20°) are not
provided, because they are significantly worse than those ob-
tained for the smaller bins. All of the HSMC results are based
on samples of 400 structures (of the entire samples of 500
conformations), and the statistical errors were obtained from the
fluctuations and results based on partial samples. The accuracy
of complete HSMC can always be improved by decreasing the bin
size and increasing the future sample size, meaning that corre-
spondingly S (Eq. 11) is expected to decrease [provided that the
probability density is defined on the same conformational space
(i.e., the wide microstate) as the Boltzmann probability density
used to generate the sample]. Indeed, for each bin, the entropy
decreases (or remain constant) as 7y increases, where the only
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Table 2. Entropy, TSA (T = 100 K) in kcal/mol (Egs. 10 and 11)
for (Gly)1o for various bin sizes (Eq. 4) and future sample sizes,
ny, obtained with the complete HSMC method

Table 4. Differences in the entropy, TASA, the free energy,
AFA, and the energy, AE, among the three wide microstates
(these properties are denoted R)

Bin size ns Extended Helix Hairpin TASA AFA AE
Aag/5 20,000 20.30 16.33 18.32 (Gly)10
40,000 20.14 16.36 18.15 R(extended) — R(hairpin) 2.2 (1) 9.7 (1) 16.1 (1)
80,000 20.06 16.34 18.02 R(extended) — R(helix) 3.9(1) 24.1 (1) 27.95 (6)
160,000 20.03 16.35 17.97 R(hairpin) — R(helix) 1.7 (2) 14.3 (2) 11.9 (1)
Aag/10 20,000 20.24 16.08 18.17 (Gly)1e
40,000 20.11 16.16 18.03 R(extended) — R(helix) 7.1(2) 55.7 (2) 62.9 (3)
80,000 2004 16.16 17.90 Results are in kcal/mol. TASA and AFA were obtained by the complete HSMC
160,000 20.01 16:16 17.86 method at T = 100 K. The statistical error is defined in Table 3.
Aag/15 20,000 20.23 16.01 18.14
40,000 20.11 16.10 18.02
80,000 20.04 16.10 17.89  applied the QH approximation (19, 20) to a subsample of 4,000
160,000 20.01 16.11 1785 conformations, where
QH 19.83 16.13 17.76
LS 20.05 17.50 19.29 Sto = (1/2)3Nkg + (1/2)kg In [(27)*N o], [14]

Aqy is defined in Eq. 7. The HSMC results are based on a sample of 400
conformations. The statistical errors are not larger than +0.05 kcal/mol for
the HSMC and QH results (Eq. 14) and are not larger than *0.03 kcal/mol the
LS results (b = 1, | = 10). The entropy is defined up to an additive constant.

exception is the entropy for the helix based on the smallest
sample, ny = 20,000, which is smaller than the entropies of the
larger samples; this probably stems from an HSMC probability
density that is defined on only a partial region of the helical wide
microstate due to insufficient sampling.

The entropy results for the extended microstate for a given ny
are the same for the different bin sizes, and the results for ny =
80,000 and 160,000 are converged within the error bars. The
same applies to the hairpin results for the two smallest bins. The
helix results behave differently, where for each bin they are
constant for the three largest ny values, whereas they decrease
with decreasing the bin size and probably have not yet completely
converged. However, within the accuracy of the usual force
fields, entropy and free energy differences smaller than 0.1
kcal/mol are in general ignored; therefore, even the helix results
can be considered as converged.

It is of interest to compare the complete HSMC results with
those obtained by other methods. For that, we increased the
samples of the three wide microstates from 500 to 30,000
structures by imposing the restriction on the MC procedure that
a trial conformation with oy larger than ax(max) or smaller than
ax(min) obtained for the initial sample (Table 1) is rejected. We

and o is the determinant of the covariance matrix of the 3N
dihedral angles. We also applied the LS method (with correla-
tion parameter, b = 1 and / = 10) to the entire increased sample.
The QH results presented in Table 2 are very close to the
complete HSMC values, probably because the three samples are
approximately QH. The LS and HSMC entropies are equal for
the extended microstate, because the angular correlations along
the chain are short, and b = 1 already captures most of them. On
the other hand, the range of these correlations increases for the
helix and the hairpin, and the LS entropies, as expected, become
slightly larger (upper bounds) than the HSMC values.

In Table 3, complete HSMC results are presented for the free
energy, which is defined by FA (Eq. 10), as discussed for the
entropy above. These results are given only for the smallest bin,
because the free energies for the other bins can be obtained from
the entropies of Table 2; as expected, the free energy increases
as the approximation improves (i.e., as 7y is increased). Again,
the QH results are close to the HSMC values, and the LS result
is close to the HSMC value for the extended microstate and
smaller for the other two microstates. Notice, however, that the
energy components of QH and LS are calculated from the
corresponding larger samples (see previous paragraph). We also
provide in Table 3 results for the average energy (obtained from
400 structures) and the fluctuations of the energy and free
energy. As expected, the free energy fluctuations decrease as ny
is increased, and for ny = 160,000, they are four times smaller
than the corresponding fluctuations of the energy, except for the
hairpin where the ratio is ~2.

Table 3. Results for the free energy, FA (Egs. 10 and 11) and its fluctuation AFA (Eq. 12)
obtained for (Gly)1o by the complete HSMC method

Extended Helix Hairpin

HSMC/ny —FA AFA —FA AFA —FA AFA
20,000 74.75 (4) 0.61(3) 98.48 (3) 0.50 (4) 84.57 (3) 0.84 (4)
40,000 74.64 (4) 0.39 3) 98.57 (2) 0.32 (4) 84.45 (3) 0.63 (3)
80,000 74.57 (3) 0.26 (3) 98.58 (2) 0.23 (4) 84.32 (3) 0.45 (3)
160,000 74.53 (2) 0.18 (3) 98.59 (2) 0.18 (4) 84.27 (3) 0.36 (3)
QH 74.48 (8) 98.69 (8) 84.64 (8)

LS 74.68 (1) 100.08 (1) 86.14 (1)

—Energy 54.53 (7) 0.73 (4) 82.48 (5) 0.80 (5) 66.43 (7) 0.68 (5)

All results are in kcal/mol. T = 100 K. The first result in the last line is for the average energy, and the second
is forits fluctuation. The HSMCresults are presented only for the smallest bin size, 5 = Aak/15, but for all the future
samples sizes, ny. F is defined up to an additive constant. The free energy obtained with the QH approximation
(Eq. 14) and the LS method is based on larger samples. The statistical error is given in parentheses, e.g., 82.48 (5) =

82.48 + 0.05.
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Table 5. Results for the entropy, TSA, of (Gly)e

Table 6. Results for the free energy, FA, of (Gly)1s

Extended Helix Extended Helix
Bin size ns TSA TSA Bin size ne —FA AFA —FA AFA
Aag/10 20,000 33.26 (8) 24.54 (4) Aay/15 20,000 100.70 (6) 1.20 (6) 154.81 (3) 0.69 (7)
40,000 32.48 (6) 24.73 (5) 40,000 99.96 (4) 0.81(4) 155.03 (2) 0.47 (6)
80,000 32.13 (6) 24.74 (5) 80,000 99.59 (3) 0.57(3) 155.05(2) 0.33 (4)
160,000 31.96 (5) 24.73 (5) 160,000 99.41(2) 0.42(3) 154.03 (1) 0.24(2)
Aag/15 20,000 33.26 (8) 24.50 (4) QH 99.8 (1) 155.2 (1)
40,000 32.52 (6) 24.72 (5) LS 100.34 (4) 157.60 (7)
80,000 32.15 (6) 24.74 (5) —Energy 67.44 (6) 0.94 (10) 130.31(8) 1.13(10)
160,000 31.97 (5) 24.73 (5) -
QH 325 () 258 (2) All results are in kcal/mol and T = 100 K. The QH and LS results were
LS 32:80 @ 26:90 ©) obtained from samples of 2.5 X 10% and 5 X 10% conformations, respectively.

All results are in kcal/mol and T = 100 K. The QH and LS results were
obtained from samples of 2.5 X 10% and 5 X 10* conformations, respectively.
The parameters and statistical error are defined in Tables 2 and 3. The entropy
is defined up to an additive constant.

The main interest in this study is to determine the relative
stability of the three wide microstates. In the upper part of Table
4, we present results for the differences, TAS, AF, and AE
between these microstates for (Gly)io. Within their uncertainty
of 0.1-0.2 kcal/mol, the differences are very stable for the three
bin sizes, for ny = 40,000-160,000, for samples as small as 200
conformations, and for the helix-extended differences also for
100 conformations. This demonstrates that, in practice, complete
HSMC can be quite efficient. For the model studied, the helix is
the most stable, where its free energy is lower by 14.3 and 24.1
kcal/mol than that of the hairpin and extended microstates,
respectively. These differences are mostly governed by the
energy differences, 11.9 and 27.95 kcal/mol, where the TAS
values are only 1.7 and 3.9 kcal/mol, respectively.

It is of interest to test the performance of complete HSMC for
larger peptides, and we therefore also applied it to (Gly)is. Two
samples of size 600 each spanning the extended and helical wide
microstates were generated by MC [as described for (Gly)1], where
400 and 600 conformations of them were reconstructed by HSMC,
respectively. The dihedral angle values of these samples are con-
centrated around their canonical values with deviations Acy (Eq. 4)
very close to those obtained for (Gly), in Table 1, where significant
differences exist only for Ay of the first and last residues. Results
for TSA, FA, and its fluctuation, AFA, appear in Tables 5 and 6,
which are structured as Tables 2 and 3. The corresponding results
for TSA are basically unchanged (i.e., converged) as bin size
decreases, i.e., in going from Aay/5 (results not shown) to Aay/10,
and to Aqy/15. Within each bin size, the helix results are constant
as well, meaning that already a future sample size of ny = 40,000 is
sufficient. On the other hand, for the extended microstate, the
results for each bin size decrease as ny is increased and larger ny is
needed to reach convergence; for ny = 320,000, the expected
extrapolated result is 7S = 31.90, which is used in calculating the
differences for (Gly),c in Table 4.

As expected, for both microstates, the LS results (b = 1,/ =
10) slightly overestimate the HSMC values, whereas the QH
results are equal to the HSMC values within a relatively large
statistical error. The free energy fluctuations, as expected,
decrease monotonically as the approximation improves, and they
are smaller than the energy fluctuations by a factor of 4.7 and 2.2
for the helix and extended microstates, respectively. The LS and

1. White, R. P. & Meirovitch, H. (2004) Proc. Natl. Acad. Sci. USA 101,
9235-9240.

2. Véasquez, M., Némethy, G. & Scheraga, H.A. (1994) Chem. Rev. 94, 2183-2239.

. Stillinger, F. H. & Weber, T. A. (1984) Science 225, 983-989.

4. Elber, R. & Karplus, M. (1987) Science 235, 318-321.
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The parameters and statistical error are defined in Tables 2 and 3. The free
energy is defined up to an additive constant.

QH results were obtained from relatively large samples of 5-10*
and 25-10° conformations, respectively, hence the corresponding
energies are slightly different from those based on the smaller
HSMC samples; thus, whereas the FA(LS) and F(QH) are close
to FA(HSMCQ), a strict comparison is not straightforward. In
Table 4 the differences, TAS, AF, and AE for the extended and
helix microstates are presented with acceptable errors of 0.2-0.3
kcal/mol (see above). It should be pointed out that the results
for S and the energy of the helix scale with increasing peptide
size, whereas the energy of the extended state does not; there-
fore, AE, and AF, do not scale in going from (Gly);o to (Gly)e.

At this stage of development of the complete HSMC method,
reconstructing a single conformation of (Gly)io based on ny =
160,000 requires ~90-min central processing unit (CPU) time on a
2.6-GHz Athlon processor, meaning that a n; = 40,000 run, which
is sufficient for providing the 0.1-0.2 kcal/mol accuracy, requires
23-min CPU time; for (Gly);e, the time increases by a factor of ~2.2.
However, one can increase the efficiency further by decreasing the
amount of sampling (ry) for the smaller future peptides and using
importance sampling methods to enhance the number of counts.

Summary

We have introduced here the complete HSMC method for a
peptide chain in vacuum. In this initial study, we sought to treat
a simple model with minimal degrees of freedom and therefore
chose a polyglycine model with constant bond lengths and bond
angles described by the AMBER force field. Although ignoring the
contribution of the bond lengths to differences in entropy is a
valid approximation, the contribution of the bond angles is
significant and should not be ignored; however, adding this
contribution is straightforward and is currently being studied by
us. To be able to generate stable wide microstates around helix,
extended, and hairpin structures, the temperature was decreased
to 100 K; the corresponding samples were approximately QH,
which allowed comparing the HSMC results with those obtained
by the QH method. However, unlike the QH method, the
complete HSMC is general, in the sense that it can be applied to
any chain flexibility, where side chains visit all of the available
rotamers, for example. Complete HSMC is probably the only
method for calculating the absolute entropy of peptide chains
that, practically, is exact.
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