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Pattern formation by vascular mesenchymal cells
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In embryogenesis, immature mesenchymal cells aggregate and
organize into patterned tissues. Later in life, a pathological reca-
pitulation of this process takes place in atherosclerotic lesions,
when vascular mesenchymal cells organize into trabecular bone
tissue within the artery wall. Here we show that multipotential
adult vascular mesenchymal cells self-organize in vitro into pat-
terns that are predicted by a mathematical model based on mo-
lecular morphogens interacting in a reaction-diffusion process. We
identify activator and inhibitor morphogens for stripe, spot, and
labyrinthine patterns and confirm the model predictions in vitro.
Thus, reaction-diffusion principles may play a significant role in
morphogenetic processes in adult mesenchymal cells.

I n embryonic development, mesenchymal stem cells organize
into condensations of varying sizes and shapes to form pat-
terned tissues, such as ribs, vertebrae, and honeycombed tra-
beculae in long bones. In adult disease, such as atherosclerosis
and aortic valvular stenosis, these embryonic events recur, as
multipotential vascular mesenchymal cells (VMCs) differentiate
into osteoblasts and other cell types (1). Fully formed bone arises
in the artery wall and in cardiac valves, under the control of
developmental genes (2, 3). This ectopic tissue forms focal and
nodular patterns in a patchy distribution throughout the vascu-
lature. We investigated the pattern formation mechanisms in
these cells.

When cultures of VMCs are enzymatically dissociated and
plated homogeneously in tissue culture, they first form uniform
monolayers, with no apparent pattern. But over ~20 days, the
cells proliferate and organize into a sequence of distinct patterns.
At day 1, the VMCs show no preferred alignment (Fig. 1a). By
day 4, cells begin to align with their neighbors (Fig. 1b, “swirls”).
By day 10, the cells aggregate into regularly spaced, stripe-like
ridges of high cell density, ~40 um in width (Fig. 1c). Over the
next several days, these high-density ridges gradually intercon-
nect into labyrinthine patterns, with a preferred spacing, ~100
pm (Fig. 1d). Cells in the center of the ridge then calcify, forming
the bone mineral hydroxylapatite (2). At higher magnification,
individual monolayer cells can be seen to orient perpendicular to
the edges of the multicellular ridge (Fig. le), suggesting chemo-
tactic migration.

As first proposed by Turing (4), pattern formation in biology
can often be modeled mathematically by postulating “morpho-
gens” that react chemically and diffuse. He showed that a highly
simplified reaction-diffusion partial differential equation could
indeed exhibit pattern formation emerging from a homogeneous
state (4). Reaction-diffusion equations, modeling the interac-
tions of activators and their inhibitors, have since been used to
analyze pattern formation in many chemical and biological
systems (5-9). Pattern formation modeling in biology began with
mathematical models of the chemotaxis of single-celled organ-
isms (10); more sophisticated models for chemotaxis have since
been developed for Dictyostelium and Salmonella (11-14).

The pattern formation paradigm has been extended into
vertebrate cell types (15) and to fundamental physiological
processes such as angiogenesis (16). Some important morpho-
gens have also been identified, including members of the trans-
forming growth factor B and Hedgehog families as well as
retinoic acid (17-20). Mathematical models have been devel-
oped for a number of additional pattern-formation processes,
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including angiogenesis, blood coagulation, and the appearance
of periodic structures in bone and tooth formation (21-23).

A frequent obstacle to extending pattern-formation work into
vertebrate physiology has been the difficulty in identifying the
specific morphogens creating the pattern. But in these VMC
cultures, we can identify the probable inhibitor and activator,
allowing specific predictions from the mathematical model to be
tested experimentally. It is known that VMCs express a powerful
morphogen, bone morphogenetic protein 2 (BMP-2) (2, 24), a
member of the transforming growth factor B superfamily.
BMP-2 is a known chemoattractant (24) and morphogen (17, 25,
26). Its Drosophila homolog, decapentaplegic, is also a recog-
nized morphogen (27).

In Turing-type activator-inhibitor models, the inhibitor must
diffuse more rapidly than the activator, to limit and sculpt the
domain. The VMCs also produce matrix carboxyglutamic acid
protein (MGP), which has been shown to inhibit BMP-2 effects
(28, 29) and, with its unusually small size (=10 kDa), is likely to
diffuse more rapidly than BMP-2. We therefore hypothesized
that MGP acts as the inhibitor for a reaction-diffusion process
forming these patterns.

Thus, identification of the activator was based on the require-
ments that it: (i) is a known chemoattractant, (if) is a known
morphogen, (iii) has a known inhibitor, and (iv) is expected to
diffuse more slowly than its inhibitor. Although other protein
pairs may satisfy one or some of these criteria, the combination
of BMP-2 and MGP stands out as satisfying all four criteria.

Mathematical Model

We constructed a simplifying mathematical model of the VMC
pattern formation process, consisting of a system of partial
differential equations. Activator and inhibitor concentrations
were modeled as continuously distributed over a 2D domain.
Our reaction kinetics were based on the known interactions of
BMP-2 with MGP in our experimental preparation. These
kinetic mechanisms led us to build on a model of Gierer and
Meinhardt (5, 30). The effective concentrations of activator and
inhibitor are represented as U(x, y) and V(x, y). Our initial state
consisted of uniform distributions of U and V/ with small (2%)
random perturbations. U and V' then evolve according to the
following equations, which we write in dimensionless variables:

au DIV U? U

a =~ PO v ey ¢ [
1%
E = (VZV) + ’y(U2 —el +°9), [2]

where D = Dy/Dy is the ratio of the diffusion coefficients of
activator and inhibitor, respectively, and vy is a factor that relates
the chemical kinetics, the spatial domain size, and the diffusion
rates. [If y* is the dimensional value (:7!) of this scaling
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Fig.1. Pattern formation in cultured VMCs in vitro. Over 20 days, VMCs plated in vitro develop from a monolayer of randomly oriented cells of nearly uniform density
(approximately day 1; stage 1) (a), to local alignment of cells into regions (“swirls"’) of nearly uniform size (approximately day 4; stage 2) (b), to ridges of high cell density
(dark areas) (approximately day 10; stage 3) (c), to connected ridges forming a labyrinthine pattern (approximately day 16; stage 4) (von Kossa stain) (d). (e) At X3 higher
magnification, a phase-contrast image of an unstained ridge shows the perpendicular orientation of cells in the monolayer relative to the edges of the multicellular
ridge. [Bar = 250 um (a and b); c and d are at the same magnification as b; bar in e shows the approximate size, shape, and orientation of a single cell.]
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Fig.2. Numerical solutions of the mathematical model corresponding to each of the stages from Fig. 1. Model results are displayed as levels of U with black for high
and white for low levels. (a) Initially, the model shows a diffuse distribution of activity peaks (maxima of U). (b) Later, local alignment patterns develop, as shown by
the direction field of the activator gradient, grad U (arrows), which would correspond with cell orientation and direction of migration in the culture. (c and d) This is
followed by development of stripe-like concentrations of U (c) then formation of a labyrinthine pattern (d). (e) At higher detail (=~%3), gray arrows depict the direction
field of grad U, which corresponds to the perpendicular orientation of cells in culture. Model parameter values: y = 15,000, D = D1/D,, D1 = 0.01, D, = 2.0, ¢ = 0.01,
k = 0.65,S =0, e = 0.02. The basis for parameter selection and robustness of the model is discussed in Supporting Text, which is published as supporting information
on the PNAS web site. These images are regions of the overall simulation that correspond in spatial scale with the culture images, which are subregions of the overall
plate.
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parameter, then y = y* L2D,~!, where L is the linear dimension
of the domain.] In Eq. 1, the activator U spurs its own production
autocatalytically. It is known that this autocatalysis saturates (31)
(see also Fig. 5, which is published as supporting information on
the PNAS web site), hence we chose the sigmoidal form U?/(1+
kU?). (The parameter k governs the saturation level of the
autocatalytic reaction.) The inhibition of U by V' is modeled by
the V term in the denominator. There is also first-order degra-
dation of U at a rate c. In Eq. 2, the term U? is used to represent
the observation that MGP expression is induced by BMP-2 in a
greater-than-linear manner by BMP-2 at the level of MGP that
is inhibitory for BMP-2 (32). The e}’ term represents first-order
degradation of the inhibitor at a rate e. S represents an exoge-
nous source of inhibitor. Parameter selection, sensitivity, and
other details of the model are addressed in Supporting Text.

We simulated this mathematical model numerically and com-
pared the results to the four stages seen in culture. In the early
stages of the simulation, the distribution of activator peaks was
evenly scattered (Fig. 2a). In the next stage, the gradient (grad
U) of activator activity shows a similar pattern of local alignment
as observed in the cell culture (Fig. 2b). In the third stage of the
simulation, a stripe pattern emerges (Fig. 2c), and this develops
into a labyrinthine pattern with a preferred spacing length (Fig.
2d). At this stage, a detail of the gradient (grad U) of the activator
activity shows perpendicular orientation at the edges of the
stripes (gray arrows, Fig. 2e).

From Stripes to Spots

The mathematical model also provided two predictions. The first
is that addition of exogenous inhibitor will convert the stripe
pattern to a spot pattern (Movie 1, which is published as
supporting information on the PNAS web site). This is because
an increase of V' (due to the exogenous source) will lessen
activator growth, so that activator diffusion and decay dominate
over activator production far from regions of high activator
concentration. The prediction of stripe-to-spot conversion was
then confirmed in the experimental culture: when exogenous
MGP was added to the preparation, cultures developed a
spot-like, instead of a stripe-like, pattern of high cell density
regions (Fig. 3).
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tion of exogenous inhibitor, compared with predictions of

] the mathematical model. (a) After treatment with 40 nM

exogenous MGP, cells aggregated into a spot-like pattern
™. instead of the stripe pattern shown in Fig. 1 c and d. (b)
Addition of a source term to the mathematical model, to
simulate treatment with exogenous inhibitor, also yielded
a spot-like pattern. (c) Higher-power photomicrograph of
the in vitro spot-like pattern showing radial orientation of
cells at the edges of the rounded aggregate. (d) Simulation
corresponding to ¢ showing the direction field of grad U as
gray arrows. Regions of high activator concentration are
shown in black. Cells were cytochemically stained for alka-
line phosphatase in a and c. Model parameter values are
the same as for Fig. 2, except for addition of a dimensionless
source term (S = 0.006) in Eq. 2 as a pulse.

From stripes to spots: in vitro patterns after addi-

Y7
ttt v

-_-r—

T 24 \'\\ ‘
.:1) {;?'

Fig. 4. Mode doubling with warfarin: in vitro pattern after addition of
exogenous inhibitor of MGP compared with control (a, ¢, e, and g) and with
corresponding predictions of the mathematical model (b, d, f, and h). (a and
b) Early pattern formation in vitro (a) and in the mathematical model (b). (c)
With addition of warfarin (4 nM), the spatial frequency of ridges doubled. (d)
The mathematical model shows a corresponding pattern. (e-h) Higher power
of a-d, illustrating mode splitting. Model parameters are the same as for Fig.
2, except that midway through the simulation, the initial value of y = 15,000
was increased to 30,000 to represent the addition of warfarin (d and h).
Cultures in a, ¢, e, and g are stained by the von Kossa method.
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Stripe Doubling

The second prediction from the model is that the pattern would
change in response to the drug warfarin, which partially blocks
the inhibitory action of MGP on BMP-2. Warfarin inhibits
regeneration of vitamin K1 epoxide and thereby blocks vitamin
K-dependent -y-carboxylation of the glutamic acid residues in
MGP (33, 34). These modified residues are required for MGP
function (35). There are several possible mechanisms by which
warfarin may alter this system: It may alter MGP charge, size,
and shape (hence its diffusion coefficient); its binding to extra-
cellular matrix; the functional domain surface area; the inter-
action between the two morphogens; and/or the expression level
of a morphogen. Warfarin also may act on other proteins, even
ones that are not vitamin K-dependent (36).

In the cell cultures, warfarin treatment resulted in a char-
acteristic refinement of the labyrinthine pattern [Fig. 4: con-
trol (¢ and e); treated (¢ and g)]. The density of ridges doubled
as new ridges formed. In the model, increases in +y alone (but
not k) produced corresponding stripe doubling [Movie 2,
which is published as supporting information on the PNAS web
site; Fig. 4: original (b and f); increased vy (d and h)]. “Stripe
doubling” has been described in mathematical models of
epithelial pigmentation (6) and in more general mathematical
models (37, 38).

The mathematical model is also consistent with experiments
showing that overexpression of BMP-2 in developing chick limbs
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increases the size of high-density cartilage condensations (25).
Overexpression was incorporated into the mathematical model
by increasing the production of activator, which increased the
size of the regions of high U value (results not shown), corre-
sponding to increased size of regions of high cell density.

These findings suggest that vascular mesenchymal cells self-
organize following the predictions of a reaction-diffusion math-
ematical model. This model did not require a separate equation
for cell movement; the effect of the chemotactic response of the
cells on U (more cells leading to increased activator production)
(24) is incorporated in the positive feedback term of Eq. 1. Thus,
the results generated by the model represent a “chemical prepat-
tern” (7, 39). We cannot exclude the possibility that other models
with different kinetics (see, for example, Fig. 6, which is pub-
lished as supporting information on the PNAS web site) may
predict similar patterns.

Importantly, the pattern formed governs not only the aggre-
gation of cells but also their ultimate differentiation and min-
eralization, which occur only within the stripes and spots of the
pattern. Moreover, the patterns of mineralization induced by
morphogens in these vascular cells may have a role in athero-
sclerotic vascular calcification (2, 35, 36) and suggest possible
mechanisms for the teratogenic effects of warfarin on the
skeleton.
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