Abstract
The etiologic role of Al3+ in Alzheimer disease has been controversial. Circular dichroism (CD) spectroscopic studies on two synthetic fragments of human neurofilament protein mid-sized subunit (NF-M), NF-M13 (KSPVPKSPVEEKG) and NF-M17 (EEKGKSPVPKSPVEEKG), and their alanine-substituted and/or serine-phosphorylated derivatives were carried out in an attempt to find a molecular mechanism for the effect of Al3+ to induce aggregation of neuronal proteins or their catabolic fragments. Al3+ and Ca2+ ions were found to induce beta-pleated sheet formation in the phosphorylated fragments. The cation sensitivity depended on the length and charge distribution of the sequence and site of phosphorylation. Al3+-induced conformational changes were irreversible to citric acid chelation, whereas Ca(2+)-induced conformational changes were reversible with citric acid. Studies of the alanine derivatives demonstrated which residues affected Al3+ or Ca2+ binding. Peptides containing at least one free (nonphosphorylated) serine residue were shown to form an intramolecular Al3+ complex, rather than an intermolecular one. In the intramolecular (intrachain) complex, the ligand function of the deprotonated serine hydroxyl was delineated [(Al.pepH-1)-type complex]. Ca2+ ions did not show a tendency for intramolecular complexing. The potential role of Al3+ in Alzheimer disease tangle and plaque formation is strongly suggested.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel-Ghany M., el-Sebae A. K., Shalloway D. Aluminum-induced nonenzymatic phospho-incorporation into human tau and other proteins. J Biol Chem. 1993 Jun 5;268(16):11976–11981. [PubMed] [Google Scholar]
- Bittar E. E., Xiang Z., Huang Y. P. Citrate as an aluminum chelator and positive effector of the sodium efflux in single barnacle muscle fibers. Biochim Biophys Acta. 1992 Jul 27;1108(2):210–214. doi: 10.1016/0005-2736(92)90027-j. [DOI] [PubMed] [Google Scholar]
- Bizzi A., Gambetti P. Phosphorylation of neurofilaments is altered in aluminium intoxication. Acta Neuropathol. 1986;71(1-2):154–158. doi: 10.1007/BF00687978. [DOI] [PubMed] [Google Scholar]
- Candy J. M., Oakley A. E., Klinowski J., Carpenter T. A., Perry R. H., Atack J. R., Perry E. K., Blessed G., Fairbairn A., Edwardson J. A. Aluminosilicates and senile plaque formation in Alzheimer's disease. Lancet. 1986 Feb 15;1(8477):354–357. doi: 10.1016/s0140-6736(86)92319-6. [DOI] [PubMed] [Google Scholar]
- Clauberg M., Joshi J. G. Regulation of serine protease activity by aluminum: implications for Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1009–1012. doi: 10.1073/pnas.90.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delamarche C. A homologous domain between the amyloid protein of Alzheimer's disease and the neurofilament subunits. Biochimie. 1989 Jul;71(7):853–856. doi: 10.1016/0300-9084(89)90049-7. [DOI] [PubMed] [Google Scholar]
- Díaz-Nido J., Avila J. Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. Neurosci Lett. 1990 Mar 2;110(1-2):221–226. doi: 10.1016/0304-3940(90)90815-q. [DOI] [PubMed] [Google Scholar]
- Exley C., Price N. C., Kelly S. M., Birchall J. D. An interaction of beta-amyloid with aluminium in vitro. FEBS Lett. 1993 Jun 21;324(3):293–295. doi: 10.1016/0014-5793(93)80137-j. [DOI] [PubMed] [Google Scholar]
- Ganrot P. O. Metabolism and possible health effects of aluminum. Environ Health Perspect. 1986 Mar;65:363–441. doi: 10.1289/ehp.8665363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goedert M., Crowther R. A., Garner C. C. Molecular characterization of microtubule-associated proteins tau and MAP2. Trends Neurosci. 1991 May;14(5):193–199. doi: 10.1016/0166-2236(91)90105-4. [DOI] [PubMed] [Google Scholar]
- Good P. F., Perl D. P. Aluminium in Alzheimer's? Nature. 1993 Apr 1;362(6419):418–418. doi: 10.1038/362418b0. [DOI] [PubMed] [Google Scholar]
- Good P. F., Perl D. P., Bierer L. M., Schmeidler J. Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer's disease: a laser microprobe (LAMMA) study. Ann Neurol. 1992 Mar;31(3):286–292. doi: 10.1002/ana.410310310. [DOI] [PubMed] [Google Scholar]
- Greger J. L. Dietary and other sources of aluminium intake. Ciba Found Symp. 1992;169:26–49. doi: 10.1002/9780470514306.ch3. [DOI] [PubMed] [Google Scholar]
- Hall F. L., Mitchell J. P., Vulliet P. R. Phosphorylation of synapsin I at a novel site by proline-directed protein kinase. J Biol Chem. 1990 Apr 25;265(12):6944–6948. [PubMed] [Google Scholar]
- Hollósi M., Otvös L., Jr, Urge L., Kajtár J., Perczel A., Laczkó I., Vadász Z., Fasman G. D. Ca(2+)-induced conformational transitions of phosphorylated peptides. Biopolymers. 1993 Mar;33(3):497–510. doi: 10.1002/bip.360330316. [DOI] [PubMed] [Google Scholar]
- Hollósi M., Urge L., Perczel A., Kajtár J., Teplán I., Otvös L., Jr, Fasman G. D. Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein. J Mol Biol. 1992 Feb 5;223(3):673–682. doi: 10.1016/0022-2836(92)90983-q. [DOI] [PubMed] [Google Scholar]
- Johnson G. V., Jope R. S. Phosphorylation of rat brain cytoskeletal proteins is increased after orally administered aluminum. Brain Res. 1988 Jul 19;456(1):95–103. doi: 10.1016/0006-8993(88)90350-2. [DOI] [PubMed] [Google Scholar]
- Khachaturian Z. S. The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging (Milano) 1989 Sep;1(1):17–34. doi: 10.1007/BF03323872. [DOI] [PubMed] [Google Scholar]
- Landsberg J. P., McDonald B., Watt F. Absence of aluminium in neuritic plaque cores in Alzheimer's disease. Nature. 1992 Nov 5;360(6399):65–68. doi: 10.1038/360065a0. [DOI] [PubMed] [Google Scholar]
- Lee G., Cowan N., Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain. Science. 1988 Jan 15;239(4837):285–288. doi: 10.1126/science.3122323. [DOI] [PubMed] [Google Scholar]
- Leterrier J. F., Langui D., Probst A., Ulrich J. A molecular mechanism for the induction of neurofilament bundling by aluminum ions. J Neurochem. 1992 Jun;58(6):2060–2070. doi: 10.1111/j.1471-4159.1992.tb10947.x. [DOI] [PubMed] [Google Scholar]
- Martin R. B. Citrate binding of Al3+ and Fe3+. J Inorg Biochem. 1986 Oct-Nov;28(2-3):181–187. doi: 10.1016/0162-0134(86)80081-2. [DOI] [PubMed] [Google Scholar]
- McLachlan D. R. Aluminum and Alzheimer's disease. Neurobiol Aging. 1986 Nov-Dec;7(6):525–532. doi: 10.1016/0197-4580(86)90102-8. [DOI] [PubMed] [Google Scholar]
- Meiri H., Banin E., Roll M., Rousseau A. Toxic effects of aluminium on nerve cells and synaptic transmission. Prog Neurobiol. 1993 Jan;40(1):89–121. doi: 10.1016/0301-0082(93)90049-x. [DOI] [PubMed] [Google Scholar]
- Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
- Nixon R. A., Clarke J. F., Logvinenko K. B., Tan M. K., Hoult M., Grynspan F. Aluminum inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes. J Neurochem. 1990 Dec;55(6):1950–1959. doi: 10.1111/j.1471-4159.1990.tb05781.x. [DOI] [PubMed] [Google Scholar]
- Nixon R. A., Sihag R. K. Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci. 1991 Nov;14(11):501–506. doi: 10.1016/0166-2236(91)90062-y. [DOI] [PubMed] [Google Scholar]
- Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
- Perczel A., Park K., Fasman G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem. 1992 May 15;203(1):83–93. doi: 10.1016/0003-2697(92)90046-a. [DOI] [PubMed] [Google Scholar]
- Prevelige P. E., Jr, Fasman G. D. Structural studies of acetylated and control inner core histones. Biochemistry. 1987 May 19;26(10):2944–2955. doi: 10.1021/bi00384a041. [DOI] [PubMed] [Google Scholar]
- Shea T. B., Balikian P., Beermann M. L. Aluminum inhibits neurofilament protein degradation by multiple cytoskeleton-associated proteases. FEBS Lett. 1992 Jul 28;307(2):195–198. doi: 10.1016/0014-5793(92)80766-a. [DOI] [PubMed] [Google Scholar]
- Troncoso J. C., Sternberger N. H., Sternberger L. A., Hoffman P. N., Price D. L. Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum. Brain Res. 1986 Feb 5;364(2):295–300. doi: 10.1016/0006-8993(86)90842-5. [DOI] [PubMed] [Google Scholar]
- Yamamoto H., Saitoh Y., Yasugawa S., Miyamoto E. Dephosphorylation of tau factor by protein phosphatase 2A in synaptosomal cytosol fractions, and inhibition by aluminum. J Neurochem. 1990 Aug;55(2):683–690. doi: 10.1111/j.1471-4159.1990.tb04187.x. [DOI] [PubMed] [Google Scholar]