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Sexual dimorphism in relation to adipose tissue and
intrahepatocellular lipid deposition in early infancy
C Gale1, KM Logan1, S Jeffries1, JRC Parkinson1, S Santhakumaran1, S Uthaya1, G Durighel2, A Alavi3, EL Thomas4, JD Bell4 and N Modi1

Sexual dimorphism in adiposity is well described in adults, but the age at which differences first manifest is uncertain. Using a
prospective cohort, we describe longitudinal changes in directly measured adiposity and intrahepatocellular lipid (IHCL) in relation
to sex in healthy term infants. At median ages of 13 and 63 days, infants underwent quantification of adipose tissue depots by
whole-body magnetic resonance imaging and measurement of IHCL by in vivo proton magnetic resonance spectroscopy.
Longitudinal data were obtained from 70 infants (40 boys and 30 girls). In the neonatal period girls are more adipose in relation to
body size than boys. At follow-up (median age 63 days), girls remained significantly more adipose. The greater relative adiposity
that characterises girls is explained by more subcutaneous adipose tissue and this becomes increasingly apparent by follow-up. No
significant sex differences were seen in IHCL. Sex-specific differences in infant adipose tissue distribution are in keeping with those
described in later life, and suggest that sexual dimorphism in adiposity is established in early infancy.

International Journal of Obesity (2015) 39, 629–632; doi:10.1038/ijo.2015.4

INTRODUCTION
Sexual dimorphism in adipose tissue distribution and intrahepa-
tocellular lipid (IHCL) are well described in adults.1,2 Adipose tissue
distribution, specifically the accumulation of internal abdominal
(IA) (or visceral) adipose tissue is strongly associated with
cardiovascular and metabolic disease in adults3 (especially adult
men4) and children.5 The age at which sex differences in the
distribution of adiposity begin to manifest remains unclear. Sex
differences are established in adolescent,6 pre-adolescent7 and
pre-school children,8 implicating early childhood or infancy as the
period of divergence, although there is a paucity of data
describing adipose tissue distribution early in life. Here, we
describe the longitudinal changes in directly measured adiposity
and hepatic lipid that occur between birth and 2–3 months in
healthy term babies in relation to infant sex.

METHODS
The results of this study represent secondary analyses of two
previously described cohorts (cohort one recruited in November
1999–October 2001 at the Hammersmith Hospital; cohort two
recruited in March 2010–May 2012 at Chelsea and Westminster
Hospital, both in London, UK) recruited to examine the association
between method of feeding and infant adiposity.9 Participants
were healthy, full-term, appropriate weight for gestational age
infants that underwent longitudinal measurements at two time
points, baseline (shortly after birth) and follow-up (6–12 weeks).
Infants of diabetic mothers and smokers were excluded. Maternal
pre-pregnancy body mass index (BMI) was determined from pre-
pregnancy weight obtained by maternal recall and maternal
height measured at pregnancy booking. Data from both cohorts
are presented together. The study was approved by the National
Research Ethics Committee (10/H0713/5).

Anthropometric measures and magnetic resonance investiga-
tions were performed with infants in natural sleep, as previously
described.9,10 Whole-body magnetic resonance images (MRIs)
were acquired on a Phillips (Amsterdam, Netherlands) 1.5 Tesla
system using a T1-weighted rapid-spin-echo sequence (repetition
time of 500 ms, echo time of 17ms, echo train length of 3) using a
Q body coil. The slice thickness was 5 mm and interslice difference
was 5mm. Voxel size was 0.31 × 0.31 × 0.31 cm. Scanning time was
~ 15min. Analysis of all magnetic resonance images was under-
taken independently of the investigators and blind to participant
identity and sex by VardisGroup, (London, UK, www.vardisgroup.
com), using an image segmentation program (SliceOmatic,
Tomovision, Montreal, Canada). Total adipose tissue volume was
calculated as the sum of six individually quantified adipose tissue
compartments (IA, internal non-abdominal, deep subcutaneous
abdominal, deep subcutaneous non-abdominal, superficial sub-
cutaneous abdominal, superficial subcutaneous non-abdominal)
as previously described,9 Supplementary Figure 1. We calculated
the ratio IA to subcutaneous abdominal, where SCA comprised the
sum of the superficial subcutaneous abdominal and deep
subcutaneous abdominal compartments. In adults, the ratio IA/
SCA correlates more strongly with cardiometabolic risk than the IA
compartment alone.11

IHCL content was quantified as previously described.9 Briefly,
proton magnetic resonance spectra were acquired at 1.5T from
the right lobe of the liver using a point-resolved spectroscopy
sequence, repetition time 1500ms, echo time 135ms, without
water saturation and with 128 signal averages. Spectra were
analyzed in the time domain using the AMARES algorithm
included in the MRUI software package (http://sermn02.uab.es/
mrui/mrui_download/) by a single investigator (ELT) blinded to
infant identity and sex. Peak areas for all resonances were
obtained and lipid resonances quantified with reference to water
resonance, after correcting for T1 and T2. Hepatic water, known to
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be relatively constant,12 was used as an internal standard. The
results are presented as the ratio IHCL CH2/water.

Statistical analyses
Analyses were performed using SPSS version 20 (IBM Corporation,
Armonk, NY, USA). Statistical significance was defined as Po0.05.
Where data were not normally distributed (Po0.05 from the
Shapiro–Wilk test), a natural log transformation was undertaken.
Where data remained non-normal in distribution, non-parametric
tests were used.
We compared girls and boys using multivariable regression to

examine total adipose tissue, each adipose tissue depot and IHCL,
with infant weight as a covariate to adjust for body size. The ratio
IA/SCA is a measure of metabolic load; to compare boys and girls,
the optimal index for infancy13 (IA/SCA0.6) was calculated. This
index has not to our knowledge been correlated with metabolic
variables in infancy. This index is correlated with body weight at
follow-up (Po0.05; Spearman’s correlation), therefore multivari-
able regression was used with infant weight as a covariate. As
ethnicity and maternal BMI are associated with adiposity in
infancy,14,15 sensitivity analyses were undertaken after exclusion of
non-Caucasian infants and with adjustment for maternal BMI. No
significant association has been detected between method of
infant feeding and directly measured adipose tissue,9 therefore
the feeding group was not included in the multivariable
adjustment.

RESULTS
Longitudinal adiposity data were acquired from 70 infants (40
boys and 30 girls); these data have been previously described.9

Mean (SD) gestation, birth weight and birth weight SDS
scores were 39.8 (1.4) weeks, 3.441 (0.397) kg and − 0.12 (0.79)
for boys and 40.0 (1.2) weeks, 3.350 (0.404) kg and − 0.02 (0.85) for
girls. Mean (s.d.) maternal pre-pregnancy maternal BMI was 22.8
(2.4) kgm− 2 for boys and 24.3 (5.3) kg m−2 for girls. Demographic
data and unadjusted adiposity data are presented by infant sex in
Table 1.
Adjusted analyses are shown in Table 2. After adjusting for body

size, girls had significantly more total and superficial subcutaneous
abdominal adipose tissue than boys in early infancy (median age

13 days). At follow-up (median age 63 days), all adjusted adipose
depots were larger in girls; these differences reached statistical
significance for internal non-abdominal, deep subcutaneous
abdominal, superficial subcutaneous abdominal and superficial
subcutaneous non-abdominal adipose tissue depots. Sensitivity
analyses with adjustment for maternal BMI and after exclusion of
non-Caucasian infants did not alter these findings (Supplementary
Table 1). No significant difference was detected in the ratio IA:
SCA0.6 between boys and girls (P= 0.38 at baseline; P= 0.43 at
follow-up). No sex-specific differences in IHCL were detectable at
baseline or follow-up.

DISCUSSION
We confirm, in this longitudinal cohort of healthy term babies, that
sex-specific differences in total adiposity are present from shortly
after birth. These differences become more pronounced by
2–3 months by which time a difference in adipose tissue distribution,
characterised by higher subcutaneous adipose tissue volumes in
girls, is detectable. The greater relative adiposity in girls compared
with boys is in keeping with recognised sex differences,16,17 but to
our best knowledge a sex difference in adipose tissue distribution
in early infancy has not been described previously in longitudinal
measurements. The strengths of this study include the use of an
established gold standard method, whole-body MRI,18 to quantify
adipose tissue distribution in combination with blinded image
analysis. Important limitations include the secondary nature of this
study and that initial measurements were taken at a median of
13 days, so we are unable to comment on differences present
at birth.
Sex-specific differences in adult adipose tissue distribution were

first recognised by Vague et al.;1 these differences, namely more IA
adipose tissue and less subcutaneous adipose tissue in men, are
implicated in the higher cardiovascular risk seen in men compared
with pre-menopausal women.4 There are limited data on the
ontogeny of sex-specific differences in adipose tissue distribution.
We have previously noted small differences in newborns with
greater total adipose tissue, and larger abdominal and non-
abdominal compartments in girls.15 By the age of 5 years, boys
have more IA adipose tissue than girls but a similar amount of SCA
adipose tissue,8 and by puberty, differences in keeping with those

Table 1. Anthropometric data, adipose tissue compartment volumes and IHCL at baseline and follow-up by infant sex

Baseline Follow-up

Boys Girls Boys Girls

n 40 30 40 30
Age (days) 13 [7–20] 13 [5–18] 64 [54–70] 62 [56–71]
Weight (kg) 3.637 (0.489) 3.546 (0.518) 5.492 (0.687) 5.219 (0.533)
Weight SDSa − 0.25 (0.94) − 0.17 (0.78) − 0.12 (0.99) 0.13 (0.55)
n 40 29 39 30
Total AT (l) 0.709 [0.608–0.932] 0.730 [0.626–0.906] 1.548 [1.278–1.801] 1.485 [1.345–1.817]
Superficial subcutaneous abdominal AT (l) 0.098 [0.075–0.122] 0.104 [0.087–0.0139] 0.257 [0.198–0.316] 0.258 [0.223–0.326]
Superficial subcutaneous non-abdominal AT (l) 0.512 [0.436–0.692] 0.515 [0.461–0.653] 1.124 [0.935–1.270] 1.085 [0.927–1.263]
Deep subcutaneous abdominal AT 0.015 [0.010–0.021] 0.017 [0.011–0.022] 0.037 [0.028–0.046] 0.044 [0.031–0.053]
Deep subcutaneous non-abdominal AT (l) 0.012 [0.010–0.022] 0.013 [0.010–0.016] 0.020 [0.016–0.023] 0.020 [0.015–0.024]
Internal abdominal AT (l) 0.017 [0.013–0.022] 0.017 [0.012–0.027] 0.030 [0.022–0.038] 0.030 [0.023–0.042]
Total internal AT (l) 0.071 [0.055–0.091] 0.069 [0.060–0.097] 0.118 [0.096–0.148] 0.130 [0.110–0.156]
IA/SCAa 0.16 [0.12–0.20] 0.14 [0.11–0.16] 0.10 [0.08–0.15] 0.10 [0.08–0.13]
IA/SCA0.6 0.067 (0.021) 0.062 (0.022) 0.069 (0.024) 0.067 (0.025)
n 31 23 31 23
IHCLb 0.656 [0.425–1.965] 1.142 [0.667–1.644] 1.818 [1.397–2.168] 2.123 [1.278–3.229]

Abbreviations: AT, adipose tissue; IA, internal abdominal; IHCL, intrahepatocellular lipid; SCA, subcutaneous abdominal. Values are median and [interquartile
range] or mean (s.d.) and units are as specified except athat has no units and bthat is ratio CH2/water.
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described in adults are established.7 Our observations suggest
that sexual divergence in adipose tissue distribution occurs in
early infancy. Adipose tissue is considered an important energy
reserve in the weaning period,19 and the greater relative
adiposity of baby girls may contribute to the survival advantage
they manifest in early life.20 Sex-specific differences in IHCL are
described in adults,2 but we find no evidence for such a
difference in infancy. We have previously commented on the
substantial increase in IHCL during early infancy suggesting that
the high content is not of pathological relevance as in older age
groups.8

Sex-related adiposity differences have been attributed to sex
hormones; testosterone mediates deposition of adipose tissue in
abdominal regions and oestrogen in gluteo-femoral regions.21

Androgen receptors are more densely expressed in visceral than in
subcutaneous adipose tissue.22 There is surge shortly after birth in
luteinising hormone (LH), follicle-stimulating hormone (FSH) and
sex hormones, although levels are generally low in childhood. This
has been termed a ‘minipuberty of early infancy’;23 in boys FSH, LH
and testosterone concentrations increase during the first week
before decreasing by about 6 months, whereas in girls FSH, LH
and oestrogen increase shortly after birth and remain raised until
2–3 years.23 The gender-related divergence in adipose tissue
distribution we observed may be mediated by these hormonal
fluctuations.
Adipose tissue quantity and distribution are important deter-

minants of health. Data presented here indicate that the sex-
specific divergence seen in adults develops during early infancy. If
confirmed this supports the importance of the infant period in
mediating trajectories of adipose tissue development.
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