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Abstract. Mixed-effects beta regression (BR), boundary-inflated beta regression (ZOI), and coarsening
model (CO) were investigated for analyzing bounded outcome scores with data at the boundaries in the
context of Alzheimer’s disease. Monte Carlo simulations were conducted to simulate disability
assessment for dementia (DAD) scores using these three models, and each set of simulated data were
analyzed by the original simulation model. One thousand trials were simulated, and each trial contained
250 subjects. For each subject, DAD scores were simulated at baseline, 13, 26, 39, 52, 65, and 78 weeks.
The simulation-reestimation exercise showed that all the three models could reasonably recover their
true parameter values. The bias of the parameter estimates of the ZOI model was generally less than 1%,
while the bias of the CO model was mainly within 5%. The bias of the BR model was slightly higher, i.e.,
less than or in the order of 20%. In the application to real-world DAD data from clinical studies,
examination of prediction error and visual predictive check (VPC) plots suggested that both BR and ZOI
models had similar predictive performance and described the longitudinal progression of DAD slightly
better than the CO model. In conclusion, the investigated three modeling approaches may be sensible
choices for bounded outcome scores with data on the edges. Prediction error and VPC plots can be used
to identify the model with best predictive performance.

KEY WORDS: Alzheimer's disease; beta regression; boundary data; bounded outcome scores; disability
assessment for dementia.

INTRODUCTION

Bounded outcome scores can be often found in various
measures for Alzheimer’s disease (AD), such as (1) the
cognitive component of the AD assessment scale (ADAS-
Cog) (1), (2) disability assessment for dementia (DAD) (2), (3)
mini-mental state examination (MMSE) (3), and (4) functional
assessment questionnaire (4). Other examples include visual
analog scale (VAS) for measuring quality of life (5).

Bounded outcome measurements are viewed as
percentage-like data after being scaled into [0,1] interval. One
challenge with this type of data is that their distribution can vary
from unimodal to J, L, or U shaped, and standard statistical
approaches may not be valid in general (6–9). Another
challenge for bounded outcome data is that some data may be
present at the boundaries of the interval (i.e., 0 or/and 1), which
further complicates the analysis of such data (10–12).

Several modeling approaches have been used to handle
bounded outcome data in presence of boundary data (10,13–
17). Beta regression (BR) has been advocated to model
percentage-scaled dependent variable due to its flexibility in
capturing various skewed unimodal and bimodal distributions,
particularly when normalizing transformations do not work well
(6). Although BR models are very useful for proportion data,
the link functions that it uses (e.g., logit link) do not allow the
observations to be on the boundaries. In this case, rescaling the
boundary data away from boundaries before fitting the BR
model was proposed to circumvent the boundary problem
(7,13). More recently, zero- and one-inflated beta regression
models (ZOI) have been proposed to circumvent the problem
associatedwith boundary data (10,12). Coarsening (CO)models
have been shown to be another viable option to model the
bounded outcome data (14,18).

In this manuscript, we investigate the DAD scores, a daily
functioning measure for AD. The DAD score is a continuous
variable with a range from 0 to 100. As multiple modeling
choices are available to allow for complete modeling of the
boundary values and the entire continuous space, a question of
interest could be which model is more suitable for a particular
dataset of this AD endpoint. We conducted simulations using
BR, ZOI, and the CO models to generate total DAD data with
values existing at the edges. Then the performance of each
model was evaluated by estimation using the original simulation
model. The three models were compared and applied to the
real-world placebo data from clinical studies for AD.
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METHODS

Mixed-Effects Beta Regression

The mixed-effects BR model assumes that conditional on
the random effects, the response variable follows a beta
distribution as denoted by:

yij

���μij; τebeta μijτ; 1−μij

� �
τ

� �
ð1Þ

with a density function as follows:

f yij;μij; τ
� �

¼ Γ τð Þ
Γ μijτ
� �

Γ 1−μij

� �
τ

� �yijμijτ−1 1−yij
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where yij is the response variable (0<yij<1) for the ith
subject (i=1 … m) at the jth time (j=1 … nj), μij is the
conditional expectation (mean) of the response process
(0<μij<1), which is linked to a function of random effects
(ηi~N(0, Σ)) and fixed-effects (θ’s) as depicted below in Eq. 3,
and τ is the precision parameter (τ>0). Specifically, conditional
on μij and τ, yij’s are independent.

Using a logit link function, a BR model can be formed as:

log
μij

1−μij

 !
¼ g θ;ηi; xij
� � ð3Þ

where g(θ, ηi ,xij) is some function of the regression
covariates, the fixed effect (θ), and random effect (ηi).

The BR model assumes that yij is a variable between 0
and 1. To accommodate data at the boundaries (i.e., 0 or/and
1), the scaling method reported in Verkuilen and Smithson
will be used to move the boundary data slightly away from
the edges (7,13). The scores are linearly transformed from
their original scale (y’ij) to the open-unit interval (0, 1) by first
taking y*ij=(y’ij−a)/(b−a), where b is the highest possible
score on the test and a is the smallest possible score, and then
avoiding zeros and ones by taking yij=y*ij (1−δ)+δ/2, where
δ is a small constant. In this analysis, δ was set to 1×10−8 to
rescale the data for the BR model.

Mixed-Effects Zero- and One-Inflated Beta Regression

The ZOI model uses the beta law to define the
continuous component of the distribution (Eq. 2), while the
discrete component (i.e., boundary data) is characterized by a
mixture distribution as follows:

f y�ij; π0; π1;μij; τ
� �

¼
π0; if y�ij ¼ 0
π1; if y�ij ¼ 1

1−π0−π1ð Þ f y�ij;μij; τ
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; if y�ij∈ 0; 1ð Þ

8><
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where f(y* ij;μij,τ) is the density function for beta
distribution (Eq. 2), π0 and π1 represent the probability of

observations at zero and one, respectively. The sum of the
probability of the zero and one is supposed to be less than 1.

Mixed-Effects Coarsening Model for Boundary Data

A coarsened grid approach has been proposed for
bounded outcome scores with data on boundaries (14,18).
This approach assumes that an underlying latent process
(variable, U) within a bounded interval gives rise to observed
scores with data at the boundaries via a coarsening
mechanism.

Suppose that the normalized response score, y*ij, is a
grouped version of a continuous latent process Uij, which
takes values in (0, 1) and follows a logit-normal distribution:

logit Uij
� ����μij eN μij;σ

2
� �

ð5Þ

Let 0<a1<…<am<1 be a partition of unit interval (0,1).
y*ij is defined to be k/m if ak≤Uij<ak+1,k=1, …, m−1; m is the
range of scores on the original scale. At the boundaries, y*ij=
0 when 0<Uij<0.5/m and y*ij=1 when (m−0.5)/m<Uij<1.
Other normalization transformation (e.g., Czado transforma-
tion) can be also used with the CO approach (18).

Simulations

The simulation data were generated in a context of
disease progression according to DAD scores in patients
with AD. The simulations were inspired by the example
given in the Application section of this manuscript. Each
of the investigated models (i.e., BR, ZOI, and CO model)
was used to simulate the data. A logit link function was
assumed for the BR, the nonboundary part of the ZOI,
and the CO model. Also, for all the three models, a
linear progression model was assumed on the logit scale.
Borrowing from the previous research (19–21), the
placebo effect (fplb(tij)) was assumed to characterize the
transient improvement of the disease in AD. The drug
effect (fdrg(Ci)) was assumed to be disease modifying and
to work on the slope (rate of progression) of the model.
The following equation describes the abovementioned
disease progression, placebo, and drug effects:

log
μij

1−μij

 !
¼ θ0 þ η0i þ θ1 þ η1ið Þ � 1þ f drg Cið Þ

h i
� tij

þ f plb tij
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where θ0 is the intercept that characterizes baseline
disease state, and θ1 characterizes the rate of disease
progression. The random effects of intercept and slope (η0i
and η1i, respectively) are assumed to follow a multivariate
normal distribution with mean equal to the null vector and
variance-covariance matrix:

ω2
00 0
0 ω2
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� �
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The placebo effect (fplb(tij)) and the drug effect (fdrg(Ci))
can be described by an inverse Bateman function and an Emax

model, respectively, as follows:

f plb tij
� � ¼ γ 1−e−Kon ti j

� � ð8Þ

f drg Cið Þ ¼ EmaxCi

EC50 þ Ci
ð9Þ

where γ is a factor defining the magnitude of the placebo
effect, Kon is the rate constant for the onset rate of the
placebo effect, Emax represents the maximum disease-
modifying effect for the hypothetical drug, EC50 denotes the
concentration at which 50% of the maximum effect on the
logit scale is achieved, and Ci represents the drug exposure
(e.g., summary pharmacokinetic measures such as trough
concentration) for the ith subject, which follows a
lognormal distribution with a geometric mean of 0.26
and a standard deviation of 1 on the log scale. The
simulation parameters are specified as follows: θ0=2, θ1=
−0.01, γ=0.5, Kon=0.1, Emax=0.6, EC50=0.2, a=0, b=100,
ω00=1, and ω11=0.0144. For the BR model, the precision
parameter, τ, was set to 3, while for the CO model, σ was
set to 0.88. Extensive Monte Carlo simulation studies (N=
1,000) were conducted in R 2.14.0, and 250 subjects were
simulated for each study. This sample size is relevant to a
phase 2 clinical study for AD. DAD scores were
simulated for each subject at baseline, 13, 26, 39, 52, 65,
and 78 weeks. For the CO model, the simulated underly-
ing latent continuous scores (Uij) were discretized using (k
−0.5)/100≤Uij<(k+0.5)/100, where k=1, 2, …, 99. At the
boundaries, y*ij=0 when 0<Uij<0.005 and y*ij=1 when
0.995<Uij<1. To keep consistency with the CO model, the
boundary data for the BR model were generated using
the same cutoff points at the boundaries, i.e., if the
simulated score was less than 0.005, it was converted to 0,
while if the simulated score was greater or equal to 0.995,
it was converted 1.

For the ZOI model, a multinomial logistic model was
assumed for the probability of the zero and one over time as
follows:

log
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ð10Þ

log
π1 j

1−π0 j−π1 j

� �
¼ α1 þ β1 � log
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1−μij

 !
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where α0 and α1 are the intercepts for zero and one at
time 0 on the logit scale, while β0 and β1 are the coefficients
for change of DAD scores (i.e., disease status) over time on
the logit scale (Eq. 6). This latent variable approach links the
individual linear predictor with latent random effects of the
nonboundary data to the probability of the 0 and 1, and
allows the association of boundary data with the trend of

disease status (i.e., nonboundary data). In addition, the
multinomial logistic model ensured the sum of the probability
of the zero and one to be less than 1. α0 and α1 were set to
−6.54 and −10.1, respectively, while β0 and β1were set to −1.76
and 3.39, respectively. The boundary data at the upper bound
of score interval was created at levels of approximately 1%,
5%, 10%, and 20% by assigning appropriate values for α1 of
the ZOI model and θ0 for the BR and CO models.

The simulated data were analyzed by the three models
using NONMEM®. The performance of the models was
evaluated by re-estimating the model parameters for each
simulated dataset and by comparing bias (%) and the relative
root mean squared error (RRMSE; %) as follows:

BIAS ¼ 1
N

X
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� �
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where N is the total number of simulated datasets, ϕ is
the true value of the parameters in Eqs. 6–11, and bϕn is the
estimate for the nth simulated dataset.

Application of the Models to Progression of Alzheimer’s
Disease

In this section, we demonstrate the application of a
mixed-effects BR, CO, and ZOI models to describe the
progression of DAD scores in patients with AD. The placebo
data from phase 3 studies for an investigational drug in
patients with mild to moderate AD were used. The data
consists of 972 AD patients having DAD measurements
available at baseline, 13, 26, 39, 52, 65, and 78 weeks.
Approximately 0.3% and 11.5% of the DAD data are on
the lower and upper boundaries, respectively.

In this analysis, the logit link function that is similar to
Eq. 6 in the simulation was used for the BR, the nonboundary
part of the ZOI, and the CO model. However, no placebo
effect and drug effect were evaluated, i.e., fplb(tij)=0 and
fdrg(Ci)=0. Before implementing the CO model, the DAD
scores were discretized first using the CO model concept, i.e.,
the cut points were k−0.5 (k=1, 2, …, 99). Also, if the score
was less than 0.5, it was converted to 0, while if the score was
greater or equal to 99.5, it was converted 100.

For the ZOI model, the boundary data were modeled
using Eqs. 10 and 11 (model 1). In addition, two alternative
models were tested for the log odds of the 0 and 1 in the ZOI
model. The first model (model 2) assumed an arbitrary slope
on time for changes of probability of 0 or 1 over the time as
follows:

log
π0 j

1−π0 j−π1 j

� �
¼ α0 þ κ0 � t j ð14Þ
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log
π1 j

1−π0 j−π1 j

� �
¼ α1 þ κ1 � t j ð15Þ

where κ0 and κ1 are the slope for change of
probability of 0 and 1 over time on the logit scale. The
other model assumed that the log odds of the 0 and 1
were function of both time and disease progression (i.e.,
the nonboundary data, model 3):

log
π0 j

1−π0 j−π1 j

� �
¼ α0 þ κ0 � t j þ β0 � log

μij

1−μij

 !
ð16Þ

log
π1 j
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1−μij

 !
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The BR, CO, and selected ZOI models were com-
pared using prediction error and visual predictive check

(VPC). The prediction error (PE) was defined as: PEij

¼ ∑
i
∑
j

yij−E yij
� �� �

2 where yij is the value of the

observation in the ith subject at jth time; and E(yij) is
the expected value of the jth observation in the ith

subject. For the BR model E yij
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¼ bμij ; for the ZOI

model, E yij
� �

¼ bπ1 j þ 1−bπ0 j−bπ1 j� �� bμij ; for the CO mod-
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¼ ∑m
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k
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−Φ log ak
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� , where Φ

is the cumulative density function ofN bμij;σ
2

� �
. The PE for the

overall data was calculated for the three models. To assess the
performance of the models at the boundaries and inner points of
the (0, 1) interval, we also calculated the PE on the boundaries
and inner points separately.

Table I. Estimation Bias and Relative Root Mean Squared Error (RRMSE) for the Zero- and One-Inflated Beta Regression Model (ZOI)

Bias (%) RRMSE (%)

1% 5% 10% 20% 1% 5% 10% 20%

θ0 −0.3 −0.3 −0.2 −0.3 1.5 1.5 1.5 1.4
θ1 −0.3 −0.2 −0.1 0.1 3.4 3.5 3.2 3.6
γ −0.3 −0.2 0 −0.2 3.1 3.2 6.8 6.7
Kon −0.1 −0.2 −0.2 0.1 5.6 5.7 2.3 1.9
Emax 1 2.1 −0.2 0.1 6.6 15.9 2.8 3.3
EC50 3.5 1.8 1.9 1.1 21.6 16.1 5.4 7
α0 2.9 2.7 2.4 2.7 6.9 6.6 9.1 6.6
α1 1.4 0.9 0.1 −0.4 7.2 4.3 26.4 21.5
β0 1.1 0.8 0.5 0.6 13.6 12.9 13.7 13.3
β1 2.7 1.3 −0.1 −0.6 8.6 5.3 3 2.5
ω00 −0.9 −0.7 −0.6 −1.2 4.3 4 3.6 3.8
ω11 −1.4 −1.3 −1.3 −2 5.3 5.2 4.7 5.3

θ0 baseline disease state, θ1 rate of disease progression, γ magnitude of the placebo effect, Kon onset rate of the placebo effect, Emax maximum
disease-modifying effect, EC50 concentration at which 50% of the maximum effect, α0 intercept for zero, α1 intercept for one, β0 coefficient for
change of disease status on zero, β1 coefficient for change of disease status on one, ω00 standard deviation of interindividual variability on
baseline, ω11 standard deviation of interindividual variability on rate of progression

Table II. Estimation Bias and Relative Root Mean Squared Error (RRMSE) for the Beta Regression Model (BR)

Bias (%) RRMSE (%)

1% 5% 10% 20% 1% 5% 10% 20%

θ0 2.9 4.5 4.8 4 7.1 5.2 5.2 4.3
θ1 5.1 2.1 3.8 3.3 9.9 8.9 8.2 8
γ 2.8 0 −3.8 −12.4 10.8 10.8 10.6 16.7
Kon 7 8.9 17.7 21.2 24.2 47.1 30.2 48.9
Emax 10.7 10.4 16.7 20.4 35.1 24.8 28.9 28.9
EC50 11.2 9.3 24.5 3.7 96.5 56.8 81.4 53.1
ω00 7.8 12.9 12.6 −3.3 8.5 13.3 13 4.5
ω11 1.2 −7.8 −20.7 −23.8 8.9 10.3 22.1 40.3

θ0 baseline disease state, θ1 rate of disease progression, γ magnitude of the placebo effect, Kon onset rate of the placebo effect, Emax maximum
disease-modifying effect, EC50 concentration at which 50% of the maximum effect, ω00 standard deviation of interindividual variability on
baseline, ω11 standard deviation of interindividual variability on rate of progression
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The percentile VPC was used to assess the model. The
median and 5th and 95th percentiles of the observed data were
computed, and then the median and 90% prediction intervals of
these quantities were computed based on 1,000 simulations and
compared with the observed percentiles. The uncertainties of
the parameter estimates were not used in the simulations for the
VPC. The NONMEM codes for the ZOI, CO, and BR models
are presented in the Appendices 1, 2, and 3, respectively.

RESULTS

The majority of NONMEM runs (approximately 95% or
above) were successfully converged. Results from successful
model minimizations were used to calculate the bias and
RRMSE of parameters. Tables I, II, and III show the bias and
RRMSE for the model parameter estimates of the investigat-
ed models.

Overall, the bias of the model parameter estimates was
less than or in the order of 20% for all the three models. The

bias of the ZOI model was generally less than 1% with a few
exceptions, while the bias of the parameter estimates of the
CO model was also mainly within 5%. However, the CO
model exhibited some difficulties in estimating EC50, for
which the bias was approximately 10%. The bias from the BR
model was slightly higher but was still within 10% for most
parameters when the boundary data were less than 5%. The
higher bias of the BR model was probably due to rescaling of
the data. When amount of boundary data increased from 1%
to 20%, there was little influence on the performance of CO
and ZOI by the change in the percentage of boundary data.
The amount of boundary data appeared to have some impact
on the parameter estimates of the BR model, i.e., the bias of
the BR model tended to increase with an increase in the
percentage of the boundary data from 5% to 20%.

Relatively large variability was associated with the
estimates of EC50. The RRMSE of EC50 for the BR and
CO model was greater than 50%, while the RRMSE of EC50

was within 20–30% for the ZOI model. There was little

Table III. Estimation Bias and Relative Root Mean Squared Error (RRMSE) for the Coarsening Model (CO)

Bias (%) RRMSE (%)

1% 5% 10% 20% 1% 5% 10% 20%

θ0 −1.4 −0.4 −0.3 −0.2 8.3 2.1 1.5 1.1
θ1 −0.1 0.2 −0.1 0.4 6.4 6.3 6.6 6.9
γ 0.9 1.4 0.7 0.8 9 9 9.6 9.4
Kon 2.7 1.9 3 2.5 18.6 18.2 19.8 20.5
Emax 2.3 1.7 2.2 2.6 15 14.7 15.8 14.4
EC50 13.3 10.3 11.7 9.6 51.8 49.7 53 47.1
ω00 −0.6 −0.8 −1.3 −2.2 3.2 3.2 3.4 3.8
ω11 −1 −1.2 −1.6 −2.1 5 5.2 5.2 6

θ0 baseline disease state, θ1 rate of disease progression, γ magnitude of the placebo effect, Kon onset rate of the placebo effect, Emax maximum
disease-modifying effect, EC50 concentration at which 50% of the maximum effect, ω00 standard deviation of interindividual variability on
baseline, ω11 standard deviation of interindividual variability on rate of progression

Table IV. Parameter Estimates for the DAD Progression in Patients with Mild to Moderate Alzheimer’s Disease

Logit scale Original scale

Estimate 90% CI Estimate 90% CI

Beta regression
Baseline 1.77 1.68 1.86 85.45 84.35 86.48
Rate of progression (point/week) −0.012 −0.014 −0.011 −0.30 −0.34 −0.28
SD of IIV on baseline 1.26 1.200 1.320
SD of IIV on rate of progression 0.015 0.013 0.017
Coarsening model
Baseline 2.12 1.99 2.25 89.28 87.99 90.45
Rate of progression (point/week) −0.014 −0.016 −0.013 −0.36 −0.39 −0.32
SD of IIV on baseline 1.77 1.660 1.880
SD of IIV on rate of progression 0.019 0.017 0.021
Zero- and one-inflated beta regression
Baseline 1.68 1.60 1.76 84.29 83.24 85.29
Rate of progression (point/week) −0.012 −0.013 −0.011 −0.30 −0.33 −0.27
Intercept for zero −6.54 −7.91 −5.17
Intercept for one −10.10 −11.19 −9.01
Evolution of DAD on zero −1.76 −2.45 −1.07
Evolution of DAD on one 3.39 2.99 3.79
SD of IIV on baseline 1.15 1.09 1.21
SD of IIV on rate of progression 0.013 0.012 0.015

CI confidence interval, SD standard deviation, IIV interindividual variability
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influence of percentage of the boundary data on the RRMSE
of the parameter estimates for all the three models. In
general, the variability in the placebo-related parameter
(e.g., Kon) and the drug-related parameters (i.e., Emax and
EC50) was larger. This is probably caused by the estimation
difficulties associated with the nonlinearity for the placebo
response model and the drug effect model.

Modeling Results for DAD Progression in AD Subjects

The parameter estimates for the BR, CO, and ZOI
model of the DAD data were listed in Table IV. The
estimated baseline DAD score and DAD progression rate
were similar based on the 3 different models. The estimated
baseline ranged from 84 to 89, while the rate of progression
ranged from −0.36 to −0.3 points/week. The negative slope
(rate of progression) values suggest a loss of functional
abilities in terms of DAD compared with baseline.

Table V compares the 3 ZOI models tested. Compared
with the arbitrary time functions for the boundary data in the
ZOI model (model 2, Eqs. 14 and 15), the disease status
model (model 1) markedly improved the objective function

value (i.e., OFV decreased from −4,392 to −6,308). The
model incorporating both time and disease status (model 3)
provided identical OFV as model 1, and the slopes on time
were not statistically significant, suggesting that disease status
over time explained all the variability over time, and the
arbitrary time function was not needed.

The percentile VPC plots (Fig. 1) suggests that both
BR and ZOI models described the longitudinal progres-
sion of DAD reasonably well, as the predicted percen-
tiles (the 5th, 50th, and 95th) closely matched the
corresponding observed percentiles. The CO model
overpredicted the median profile but underpredicted the
5th percentile.

Table VI lists the prediction error between the BR, ZOI,
and CO models. Compared with the BR and ZOI models,
although the prediction error of the CO model appeared to
be smaller at the boundaries, the CO model did not predict
the nonboundary data as well as the other two models.
Overall, the BR and ZOI models had almost identical
prediction error, and seemed to predict the DAD data better
than the CO model. This finding is consistent with the
observation from the VPC.

Table V. Comparison of Parameter Estimates for Three Different Zero and One-Inflated Beta Regression (ZOI) Models in Patients with Mild
to Moderate Alzheimer’s Disease

Model 1 (OFV=−6308) Model 2 (OFV=−4392) Model 3 (OFV=−6308)

Estimate 90% CI Estimate 90% CI Estimate 90% CI

Baseline 1.68 1.60 1.76 1.57 1.50 1.64 1.68 1.60 1.76
Rate of progression −0.012 −0.013 −0.011 −0.012 −0.013 −0.011 −0.012 −0.013 −0.011
Intercept for zero (α0) −6.54 −7.91 −5.17 −7.01 −8.20 −5.82 −6.46 −8.14 −4.78
Intercept for one (α1) −10.10 −11.19 −9.01 −1.81 −1.98 −1.64 −10.10 −11.23 −8.97
Evolution of DAD on zero (β0) −1.76 −2.45 −1.07 −1.78 −2.42 −1.14
Evolution of DAD on one (β1) 3.39 2.99 3.79 3.38 2.98 3.78
Slope of time on zero (κ0) 0.027 0.006 0.048 −0.002 −0.017 0.013
Slope of time on one (κ1) −0.006 −0.010 −0.003 −0.001 −0.008 0.005
SD of IIV on intercept 1.15 1.09 1.21 1.06 1.00 1.12 1.15 1.09 1.21
SD of IIV on progression rate 0.013 0.012 0.015 0.013 0.011 0.014 0.013 0.012 0.014

CI confidence interval, SD standard deviation, IIV interindividual variability, OFV objective function value

Fig. 1. Visual predictive check for the models of disability assessment of dementia (DAD). In each panel, the upper, middle, and lower profiles
indicated by the open circles represent the 95th, 50th, and 5th percentiles of the observed data. The upper, middle, and lower curves indicated
by the lines are the median model-based prediction for the 95th, 50th, and 5th percentiles. The shaded areas are the 90% confidence intervals
of the corresponding percentiles of the simulations based on the model
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DISCUSSION

Since bounded outcome scores are bounded within
certain range, their conditional expectation function is
nonlinear (22). In addition, the error distributions of bounded
outcome data are heteroskedastic because their variance
approaches zero as their conditional mean approaches either
side of the edges (22). Therefore, regular regression models,
such as normal linear or nonlinear regression models, are not
suitable for such situations (12,22). In this manuscript, we
compared the BR, ZOI, and CO models for such data. The
simulations have shown that all the models have the ability to
reasonably recover the underlying true values. In the
application, we have shown that in the real-world modeling
practice, VPC and prediction error can be used to identify the
model that better describes a particular set of data.

Rescaling of the data is required for the BR model. It was
recommended that sensitivity analysis is needed for different
choices of the small constant (δ) used in the data rescaling (13).
Based on the simulation scenarios where 1% and 10% boundary
data was generated, we performed a sensitivity analysis to evaluate
the estimation accuracy with δ=0.01, 1×10−5, and 1×10−8. The
results (Supplementary Table 1) suggest that in the current
simulation scenarios, the magnitude of the bias for fixed effect
parameters was less than or in the order of 20% regardless of
choice of δ. Further simulations suggested that 20% bias of
parameter estimates may only lead to approximately 5% or less
change in the median prediction of the DAD scores over the time
(data not shown). It seems that the random-effects parameters
tended to be underestimated when δ was large. In addition, it is
interesting to notice that when the amount of boundary data was
10%, the accuracy of some parameter estimates (i.e., θ0, Kon, and
EC50) became worse with decrease in δ. Rescaling of the boundary
data forces the BR model to accommodate the boundary data. A
simple simulation (Appendix 4) suggests that although the smaller
δ (e.g., 1×10−8) allowed the rescaled data to resemble the original
data, the BR model estimated distribution appears to deviate
markedly from the distribution of the 90%nonboundary data since
it had to account for the rescaled data near the boundary during
estimation (Supplementary Fig. 1). Conversely, a relatively larger δ
(e.g., 0.01) better described themajority of the nonboundary data
(Supplementary Fig. 2). θ0, Kon, and EC50 may be more
sensitive to the deviation from the distribution of the
nonboundary data than the other model parameters.
Therefore, sensitivity analysis may be critical to evaluate
the influence of choice of δ in real-world analysis.

It is worth mentioning that, while rescaling is required
for the BR model to move the boundary data away from the

edges, coarsening (i.e., grouping or rounding) of the data is
needed for the CO model, where the cutoff point for
coarsening process may be subjective (14). This is particularly
true when the CO model is applied to the continuous
bounded outcome data. Therefore, the underlying assump-
tion for both BR and CO models is that boundary observa-
tions do not represent qualitatively different responses from
the other data within the boundaries but instead are the result
of finite precision of measurement. By contrast, the ZOI
model separately models the boundary data and the data
within the boundaries through a mixture model approach,
and no data modifications are required for this approach. We
developed a ZOI model by linking the probability of the 0
and 1 with the disease status (the nonboundary data). This
extension allows the probability of boundary data consistent
with the trend of the nonboundary data and interpretation of
the covariate effects for the overall data, which is easier to
understand (23).

Inverse Bateman Function (IBF) was often used to describe
the placebo response that temporarily improves the disease
symptom (19–21). The IBF contains two exponential expressions
with an amplitude parameter that control the rate of appearance
and loss of placebo response. The IBF placebo model was first
attempted in the simulation study. However, it was found that the
parameters of the IBF placebo model could not be accurately
estimated even when the structural model was correctly specified,
and the bias of these parameter estimates could be more than
10,000%. This was probably because the sampling times were not
optimized for implementing the three-parameter IBF model.
Therefore, we only used the two parameters characterizing
amplitude (γ) and rate of placebo response development (Kon) in
the simulation study.

The measurements of cognition and daily function are key
outcome endpoints for clinical trials inAD (24). TheDAD scale
is a validated activities of daily living (ADL) measure that was
designed for patients with AD and was used as one of the co-
primary efficacy endpoints in phase 2/3 clinical studies
(25,26).The higher total DAD score suggests better functioning.
It was reported that average decline inDADwas approximately
15 points after a year, i.e., a declining rate of about 0.3 point/
week (27). This result is consistent with the declining rate (0.3–
0.36 points/week) estimated based on the placebo data from the
phase 3 studies (Table V).

In summary, BR, ZOI, and CO models can reasonably
handle the boundary data and may be sensible modeling
choices for bounded outcome scores with data at the
boundaries. The BR and ZOI models appeared to predict
the longitudinal progression of DAD better than the CO
model in the application to the data from the clinical studies,
while the BR and ZOI models had almost identical predictive
performance in this example.
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Table VI. Comparison of Prediction Error for the Beta Regression
(BR), Coarsening Model (CO), and Zero- and One-Inflated Beta
Regression (ZOI) Models in Patients with Mild to Moderate

Alzheimer’s Disease

ZOI BR CO

Zero 1.4 0.3 0.7
One 1.3 1.2 0.5
Nonboundary 23 24 27.5
Overall 25.7 25.5 28.7

1277Modeling of Bounded Outcome Scores with Data on the Boundaries



APPENDIX 1

Table VII. A Sample NONMEM Code for the Mixed-Effects Boundary-Inflated Beta Regression Model Is Presented Below

≤ ≤
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APPENDIX 2

Table VIII. A Sample NONMEM Code for the Mixed-Effects Coarsening Model Is Presented Below

  

≤ ≤
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APPENDIX 3

Table IX. A Sample NONMEM Code (28) for the Beta Regression Model is Presented Below
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APPENDIX 4

Nine hundred (900) random data were sampled from
a beta distribution, beta(95, 5). Then, 100 of 1’s were
added to the data as boundary data. BR was performed to
re-estimate the parameters of the beta distribution based
on the combined data after rescaling with a small δ. The
density of the original data, rescaled data, and re-
estimated distribution are shown in Supplementary Figs. 1
(δ=1e−8) and 2 (δ=1e−2).
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