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Abstract. The empirical scaling from adult to pediatric using allometric size adjustments based on body
weight continued to be the mainstream method for pediatric dose selection. Due to the flexibility of a
polynomial function to conform to the data trend, an empirical function for simulating age-matched
weight and body mass index by gender in the pediatric population is developed by using a polynomial
function and a constant coefficient to describe the interindividual variability in weight. A polynomial of
up to fifth order sufficiently described the pediatric data from the Center for Disease Control (CDC) and
the World Health Organization (WHO). The coefficients of variation to describe the variability were
within 17%. The percentages of the CDC simulated weights for pediatrics between 0 and 5 years that fell
outside the WHO 90% and 95% confidence boundaries were well within the expected percentage values,
indicating that the CDC dataset can be used to substitute for the WHO dataset for the purpose of
pediatric drug development. To illustrate the utility of this empirical function, the CDC-based age-
matched weights were simulated and were used in the prediction of the concentration–time profiles of
tenofovir in children based on a population pharmacokinetic model whose parameters were
allometrically scaled. We have shown that the resulting 95% prediction interval of tenofovir in newborn
to 5 years of age was almost identical whether the weights were simulated based on WHO or CDC
dataset. The approach is simple and is broadly applicable in adjusting for pediatric dosages using
allometry.
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INTRODUCTION

Allometric size adjustments provide a mechanistic,
physiologically based approach that integrates physiological
parameters like blood flows and weight of organs (1). The
discussion of allometry here is primarily based on the

mathematical power law expression Y ¼ a⋅ weight
median

� �b
� �

,

where Y is the parameter of interest, weight refers to body
weight normalized by the median, a is the median weight-
centered parameter value, and b is the allometric exponent). Size
is the primary covariate and is frequently referenced to a 70-kg
person using the allometric exponent of 0.75 for clearance and 1
for volume (2). The use of these coefficients is supported by
fractal geometric concepts and observations from diverse areas in
biology (3). This approach was shown to perform poorly for
interspecies scaling, even after several types of correction (4).
One of the main limitations in the extrapolation from one species

to another is when significant differences in metabolic pathways
and enzyme activities exist. For intraspecies scaling, however, it is
expected to work much better given that organ sizes increase
proportionately over age, and it is not highly confounded by
differences in the body composition and organ functionalities (5–
8). The extrapolation from the adult data to pediatric takes into
account size differences but does not account for maturation
processes in enzymatic activities or ontology, which are other
sources of pharmacokinetic variabilities (9). For example, the
hepatic metabolic capacity in neonate is different from that of a 5-
year-old child. Some enzymes are present at birth (CYP3A7,
UGT), whereas others develop over time (2E1, 2D6, 3A4, and
2C9) (10). Nonlinear allometric size adjustments using fixed
allometric coefficients have been used repeatedly in pediatric
dose extrapolation (5,11–13). Body weight is the primary variable
used for dosing drug in children (10,14). When allometric size
scaling is applied in population pharmacokinetic for extrapolation
to pediatric population, the current practice is to simulate age-
matched weights from individual table values which often
assumed uniform distribution for specific weight range for an
age interval. This “square box” approach could potentially
allocate a larger weight of older children to a younger individual
and vice versa (e.g., 15 kg for a 1-year-old). The resulting weights
often do not reflect the true age–weight relationship in the
pediatric population. Sumpter and Holford previously developed
a Hill-type equation to describe the relationship between weight
and postmenstrual age from neonates to adults (15). Their model
was rather quite complex, and its application in pharmaceutical
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drug development was also limited. A continuous function across
an age range would be more efficient and accurate, and a
polynomial function is well suited for this purpose.

Twomajor sources of pediatric growth charts are theWorld
Health Organization (WHO) and the Center for Disease
Control (CDC) (16,17). The CDC growth chart was criticized
for leaning on the heavier side such that infants would be more
likely to be considered underweight and less likely as over-
weight (18,19). This is particularly relevant at a time of
increasing awareness of the problems of obesity. The WHO
published a new growth chart from children who were under
5 years of age from six countries including Brazil, Ghana, India,
Norway, Oman, and the USA (specifically California) (16). The
data were more representative of the growth pattern of
pediatrics around the world. These two data sources were used
to develop polynomial functions to characterize weight–age
relationship in the pediatric population.

MATERIALS AND METHODS

Model Development

The age-matched weights and body mass index in
pediatric male and female from newborn to 20 years
reported by the CDC and from 0 to 5 years collected by

the WHO (20) were used to develop polynomial functions
to describe their relationship.

The polynomial function f(x) of up to the eighth order
was evaluated:

f xð Þ ¼ Ax8 þ Bx7 þ Cx6 þDx5 þ Ex4 þ Fx3 þGx2 þHxþ I ð1Þ

where A:I are coefficients of the polynomial function. The
above function was fitted to the median body weight and
body mass index (BMI) as a function of age and modeled
separately for males and females, as well as for dataset
from the CDC and WHO. The CDC dataset had the data
from 0 to 2 years and from 2 to 20 years truncated. The
model for the CDC age–weight relationship was devel-
oped based on the truncated dataset. The Akaike
information criterion (AIC) and the combination of visual
inspection of the graphical outputs were used to evaluate
which polynomial order was most suitable to describe the
median dataset.

Once the polynomial function for the median dataset was
determined, the 5th and 95th percentiles of the body weight
and BMI were used to determine the coefficient of variation
(CV%) that characterizes the interindividual variability such
that:

5th percentile ¼ Ax8 þ Bx7 þ Cx6 þDx5 þ Ex4 þ Fx3 þGx2 þHxþ I
� �� exp −1:644854εð Þ ð2Þ

95th percentile ¼ Ax8 þ Bx7 þ Cx6 þDx5 þ Ex4 þ Fx3 þGx2 þHxþ I
� �� exp 1:644854εð Þ ð3Þ

where the critical value 1.644854 is the inverse of the standard
normal cumulative distribution. The parameters A:I are fixed
to the previously determined coefficients. The ε, which is the
CV for the interindividual variability, is evaluated by the
nonlinear least square algorithm (nls). The resulting model-
generated results from Eq. 1 through 3 were compared to the
median, 5th, and 95th percentiles of the CDC and WHO
datasets using chi-squared test.

The final model was further evaluated by simulating
10,000 individuals in each group and sampling (with replace-
ment) from the set of age values from the CDC and WHO
datasets. The median, 2.5th, and 97.5th percentiles from the
simulation were compared graphically to the reported per-
centiles from the two agencies. The percentages of the
simulated body weight outside the specific age–weight
boundaries (90% and 95% CI) of that reported by the two
agencies were then determined programmatically.

To evaluate whether the pediatric data from the WHO
and CDC for ages between 0 and 5 years are similar enough,
the reported median, 3rd, 5th, 95th, and 97th percentiles were
compared graphically and also by evaluating the percentage
of simulated individual weight between the ages of 0 and
5 years using the polynomial model for one agency that fall
outside the specific age–weight boundaries (90% and 95%
CI) of the other agency and vice versa.

The adequacy of the model to describe the data was
determined by comparing visually how well the predicted
95% prediction interval approximated the reported 95% CI
of the data from the two agencies. Assuming that the model is
adequate, the 95% prediction interval of the simulated
datasets should be close to these bands. The final polynomial
models for the CDC dataset were used to randomly simulate
age-matched weight data from a total of about 3,000 children
and adolescents to be used in the allometric scaling of select
population pharmacokinetic model of tenofovir from the
literature (21).

Population Pharmacokinetic Model of Tenofovir

The two-compartment model described for tenofovir (21)
had the following pharmacokinetic parameters: apparent oral
clearance (CL/F), apparent intercompartmental clearance (Q/F),
apparent volume of distribution of the central compartment (Vc/
F), apparent volume of distribution of the peripheral compart-
ment (Vp/F), and absorption rate constant (ka). The relative
bioavailability term (F) was fixed to 1. Exponential interindivid-
ual variability terms were included in the pharmacokinetic
parameters CL/F andVc/F. Allometric scaling by weight centered
on 70 kg was associated with CL/F, Vc/F, and Vp/F, using the
power coefficient of 0.75 for the clearance and 1 for the volume
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parameters. The parameter values were 59.8 L/h for CL/F, 92.8 L/
h forQ/F, 386 L for Vc/F, 666 L for Vp/F, and 0.43 h−1 for ka. The
interindividual variability estimates, ω, were 0.48 for ωCL/F and
1.39 for ωVc/F, and the covariance between CL/F and Vc/F was
0.73. The simulation (n=1,000) was based on pediatric age
between 5 and 18 years which was the age range of the 93
pediatric patients in the original study, assuming 50% males and
50% females. The dosage used in the simulation for pediatrics
ages 5 to 18 years followed their recommendation wherein
children without lopinavir and ritonavir combination should
receive 150, 225, and 300 mg tenofovir if their weights are 20 to
30, 30 to 40, and over 40 kg, respectively. The age-matched
weights for this population (5 to 18 years) were simulated using
the polynomial functions developed for the CDC dataset.

We also simulated tenofovir profiles for pediatrics less
than 5 years of age using the following dosage regimens
assuming oral tablet formulation: 80, 100, 120, and 140 mg for
<12 kg body weight, 12 kg≤weight<14 kg, 14 kg≤weight
<17 kg, and 17 kg≤weight<20 kg, respectively. The polyno-
mial functions for the CDC and WHO dataset for newborn to
5 years were used to simulate age-matched weights, separate-
ly with 1,000 virtual individuals for each group.

Simulation of Sumpter and Holford Model

The empirical model using Eq. 1 of Sumpter and Holford
(15) was used to simulate 10,000 age-matched weights in
pediatric population (gestational age between 0 and 18 years).
The interindividual variability was characterized by an
exponential model. A graphical approach similar to one
previously described was utilized to evaluate the suitability
of their model to describe the CDC dataset.

Software

The evaluation of polynomial function was performed
using the general linear model ; the test of the appropriate
order of polynomial was evaluated using the function
which gave the AIC values associated with the polynomial
order. The determination of the CV for the exponential error
model associated with the polynomial function was accom-
plished using the nonlinear least square function . The
model-predicted age-matched data and the percentiles from
the two agencies were compared using the chi-squared test

. The fitting and evaluation algorithms and
the 10,000 simulations to determine the 95% prediction
intervals including the simulations based on equations from
Sumpter and Holford (15) were done in R 3.1.0.

The 1,000 individual profiles of tenofovir were simulated
using the population pharmacokinetic model of tenofovir
from the literature (21). The simulation was accomplished
using NONMEM (version VII.2) and NM-TRAN preproces-
sor (ICON Development Solutions, Ellicott City, MD). The
subroutine was ADVAN4 TRANS4. The models were run
using PerlspeaksNONMEM 3.5.5 running ActivePerl 5.12
(ActiveState, Vancouver, Canada) and G-fortran 95.

RESULTS

The polynomial functions to simulate the age-matched
weight and BMI are listed in Table I, wherein the coefficients of

the polynomial function, relative standard error, the CV%,AIC
values, and percent of the simulated weights outside the 90%
and 95% CI of the reported data for each group are displayed.
The fourth and fifth order polynomial equations were sufficient
to describe the age–weight relationship in pediatrics by evalu-
ating graphically the simulated data between 0 and 20 years of
age. The median and specific percentiles of age-matched weight
data in male and female subjects between the ages of 0 and 20
years reported by the CDC are plotted in Fig. 1. Figure 2 shows
the simulations for the WHO dataset for newborn to 5-year-old
children. In the CDC dataset, we noticed that the polynomial
function established for the expanded age group had a tendency
to simulate larger weights in the 0- to 2-year age group.
Alternatively, when we used a higher order polynomial
equation, the new model fitted the lower age group well, but
there were larger deviations in the upper age range. For this
reason, we used the truncated datasets (0–2 and 2–20 years) and
developed separate polynomial functions for each dataset. The
exponential error model best characterized the interindividual
variability since the distribution of body weight above the
median was larger than that below the median. The additive
error model which assumed identical distributions above and
below the median was deemed unsuitable to describe the
interindividual variability. The proportional error model was
not attempted since it is equivalent to a first-order geometric
series expansion of an exponential model structure. Given that
the ε was related to the polynomial function by an exponential
relationship, the standard deviations were, in fact, constant CV
in the linear scale. In the CDC dataset, we noticed that the CVs
were smaller in the younger age group with values approxi-
mately 11% to 12%, whereas the 5- to 20-year age groups were
between 17 and 18%; thus, a separate CV was evaluated for the
age–weight relationship for newborn to 5 years. The magnitude
of the CV% values was consistent in the ≤5-year age group and
the 0–2-year age group of the CDC dataset, as well as the 0–5-
year age group of the WHO dataset. The simulated age–weight
data are summarized by the 95% prediction interval, represent-
ed as gray lines in Figs. 1 and 2. The polynomial equations
adequately described the age-matched weight data, given that
the 95% prediction intervals as a function of age of the
simulated data were within the 95% CI of the original CDC
and WHO datasets (Figs. 1 and 2). In addition, the percent of
the simulated dataset that fell outside the 90% and 95%
confidence boundaries closely matched the expected values
(Table I).

To determine whether one could use the CDC dataset in
lieu of the WHO dataset, we evaluated the percentage of the
simulated pediatric weights for one agency that fell outside
the confidence boundary of the other agency (Table II). The
percentages of simulated pediatric (0–5 years) male weights
using the polynomial function for the CDC male dataset that
falls outside the WHO confidence boundaries (90% and 95%
CI) were 9.1% and 5.6%, respectively; for female pediatric
weights, these percentages were 8.4% and 4.9%, respectively.
The major deviation was in pediatric male weights simulated
from the polynomial function based on the WHO dataset
when compared to the CDC confidence bounds with percent-
age values of 18.8% and 13.6%, respectively. The simulated
WHO female pediatric weights were also within the expected
percentages that fell outside the confidence limits at 9.2% and
5.5%, respectively.
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The simulations for the age-matched BMI in pediatrics
between 2 and 20 years are shown in Fig. 3; the polynomial
coefficients, distribution parameters, and precision are also
listed in Table I. The 95% prediction intervals of the
simulated BMI were contained within the 95% CI of the
surveyed data from the CDC. Due to the asymmetric
distribution of BMI above and below the median that could
not be characterized by the exponential error model assuming
constant CV, the median was shifted slightly upwards to
accommodate for a symmetric log-linear distribution, such
that the distances from the median to the 2.5th or the 97.5th

percentiles are identical in the log scale. Thus, the gray line
representing the median of the simulated BMI is slightly
larger than the median of the CDC dataset. This approach
significantly simplifies the simulation process.

To evaluate the predictive utility of these polynomial
functions, the population pharmacokinetic model of tenofovir
in pediatrics from Bouazza et al. (21) was simulated. The
dosage used in the simulation followed their recommendation
wherein children without lopinavir and ritonavir combination
should receive 150, 225, and 300 mg tenofovir if their weights
are 20 to 30, 30 to 40, and over 40 kg, respectively. We further

Fig. 2. Age-matched weight in male and female pediatrics from newborn to 5 years. The middle gray line represents the median and the outer
gray lines are 95% prediction interval of the 10,000 simulated weights by the age. The WHO data are represented by black lines: ,
median; M, 80% confidence interval (CI); , 90% CI; , 95% CI of WHO growth charts. Source data from World
Health Organization

Fig. 1. Age-matched weight in male and female infants, children, and adolescents between newborn and 20 years of age. The middle gray line
represents the median and the outer gray lines are 95% prediction interval of the 10,000 simulated weights by the age. The CDC data are
represented by black lines: median; , 80% confidence interval (CI); , 90% CI; , 95% CI of CDC growth
charts. Source data from Center for Disease Control
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simulated tenofovir profiles for dosage regimens for newborn
to 5 years of age using the weight based on the polynomial
functions developed for both the CDC and WHO dataset:
80 mg for less than 12 kg body weight, 100 mg between 12
and 14 kg, 120 mg between 14 and 17 kg, and 140 mg between
17 and 20 kg. The pharmacokinetic was described by a two-
compartment model with first-order absorption parameter-
ized on CL/F, Vc/F, Vp/F, Q/F, and ka with population values
(interindividual variability) of 59.8 L/h (0.48), 386 L (1.39),
666 L, 92.8 L/h, and 0.43 h−1, respectively. The 95%
prediction interval and median of the simulated profiles for
pediatric ages 5 to 19 years are represented by dashed line
and for newborn to 5 years by the dotted line (for CDC-based
weights) and shaded area (for WHO-based weights). The
boundaries contained majority of the actual data, as shown in
Fig. 4. This figure also showed that the tenofovir profiles
overlapped closely whether the weights were simulated from
either the CDC or the WHO datasets for pediatrics ages 0 to
5 years.

DISCUSSIONS

Sumpter and Holford previously used a Hill-type func-
tion to describe body weight and postmenstrual age relation-
ship in premature neonates, infants, children, and adults (15).
However, with this approach using the CDC and WHO

datasets and adding 9 months to adjust from postnatal age to
postmenstrual age, their equation did not quite capture the
overall variability of the CDC dataset (Fig. 5). Additionally,
their simulated weights had an upward tendency in the older
adolescents, whereas the distributions in the younger pediat-
rics tended to be overly large. This prompted us to utilize a
simpler approach using polynomials to establish an empirical
formulation for the purpose of simulating age-matched weight
and body mass index in pediatric population. The utility of an
empirical function and distribution for prediction of weight by
age has important applications in designing clinical trials for
studying drug exposure and effect in children. We note that
the body weight and BMI are a measure of size scaling. Other
physiologically based assumptions will be required to account
for maturity especially in the younger age groups. We have
also shown that using the polynomial function to simulate
age-matched weights in pediatric population, the population
pharmacokinetic model of tenofovir in the literature predict-
ed well the observed concentration–time course in the
pediatric population.

The empirical relationships of 0 to 20 years of age with
body weight and body mass index were established using
polynomial equations, since polynomials are known for their
versatility. The log-normal distribution best characterized the
interindividual variability in body weight and BMI distribution.
The two population references from the CDC and WHO have

Fig. 3. Age-matched body mass index in male and female children and adolescents between 2 and 20 years. The middle gray line represents the
median and the outer gray lines are 95% prediction interval of the 10,000 simulated weights by the age. The CDC data are represented by black
lines: , median; , 80% confidence interval (CI); , 90% CI; , 95% CI of CDC growth charts. Source data from
Center for Disease Control

Table II. Comparison of CDC Simulated Dataset for 0 to 5 years of Age to WHO Confidence Boundaries and Vice Versa

Description % outside (90% CI, 95% CI)

Percentage of CDC simulated pediatric male weights outside the WHO CI bounds (9.1, 5.6)
Percentage of CDC simulated pediatric female weights outside the WHO CI bounds (8.4, 4.9)
Percentage of WHO simulated pediatric male weights outside the CDC CI bounds (18.8, 13.6)
Percentage of WHO simulated pediatric female weights outside the CDC CI bounds (9.2, 5.5)

CDC Center for Disease Control, WHO World Health Organization, CI confidence interval
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been used in many normalization of adult dose according to age
and body weight for pediatric dosage prediction in the literature
(22,23). The CDC dataset tended to have larger body weights
between 0.5- and 2.5-year-old children than the WHO dataset
(see Supplemental Figure). We have determined that the
percentages of the simulated weights of one agency that were
outside the 90% and 95% confidence limit of the other agency

were within the expected values, except for the simulatedWHO
male pediatric weights against the CDC confidence bounds. The
result suggests that the simulated CDC age-matched weights in
pediatric population can be used in lieu of the WHO pediatric
body weight. In addition, we have shown that the resulting 95%
prediction intervals of tenofovir in newborn to 5 years of age
were very close and almost identical whether the weights were

Fig. 4. Simulation of tenofovir concentrations in 1,000 pediatric patients between the age
of 5 and 19 years, showing 95% prediction intervals (dashed lines) and median (solid line)
based on population pharmacokinetic model of tenofovir. The dotted lines and shaded areas
are 95% prediction intervals for newborn to 5 years based on weights simulated from the
CDC and WHO, respectively. Actual data from Bouazza et al. (21) are represented by
filled circles

Fig. 5. Age-matched weight in male and female pediatrics 0 to 18 years in age based on equations from Sumpter and Holford (15). Points
represent simulated age-matched weight. The CDC data are represented by black lines: , median; , 80% confidence interval
(CI); , 90% CI; , 95% CI of CDC growth charts. Source data from Center for Disease Control
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simulated based on WHO or CDC dataset. The results are
important in the sense that the CDC and WHO pediatric
weights are interchangeable from modeling and simulation
perspectives in support of pediatric drug development.
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