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The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear
equations. It is proved that the proposed method possesses higher R-order of convergence using the same number of functional
evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme.

1. Introduction

Many problems arising in diverse disciplines of mathematical
sciences can be described by a nonlinear equation of the
following form (see, e.g., [1]):

𝑓 (𝑥) = 0, (1)

where 𝑓 : 𝐷 ⊆ R → R is a sufficiently differentiable
function in a neighborhood 𝐷 of a simple zero 𝛼 of (1). If
we are interested in approximating the root 𝛼, we can do it
by means of an iterative fixed-point method in the following
form:

𝑥𝑘+1 = 𝜓 (𝑥𝑘) , 𝑘 ≥ 0, (2)

provided that the starting point 𝑥0 is given.
In this work, we are concerned with the fixed-point

methods that generate sequences presumably convergent
to the true solution of a given single smooth equation.
These schemes can be divided into one-point and multipoint
schemes. We remark that the one-point methods can possess
high order by using higher derivatives of the function, which
is expensive from a computational point of view. On the other
hand, the multipoint methods are allowing the user not to
waste information that had already been used.This approach
provides the construction of efficient iterative root-finding
methods [2].

In such circumstance, special attention is devoted to
multipoint methods withmemory that use already computed

information to considerably increase convergence rate with-
out additional computational costs. This would be the focus
of this paper.

Traub in [2] proposed the following method with mem-
ory (TM):

𝑤𝑘 = 𝑥𝑘 + 𝛽𝑘𝑓 (𝑥𝑘) , 𝛽𝑘 = −
1

𝑓 [𝑥𝑘, 𝑥𝑘−1]
, 𝑘 = 0, 1, 2, . . . ,

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓 [𝑥𝑘, 𝑤𝑘]
,

(3)

with the order of convergence 1 + √2.
The iterative methods with memory can improve the

order of convergence of thewithoutmemorymethodwithout
any additional functional calculations, and this results in a
higher computational efficiency index. We remark that it is
assumed that an initial approximation 𝑥0 close enough to the
sought simple zero and 𝛽0 are given for iterative methods of
type (3).

Recently, authors in [3] designed an approach to make
derivative-free families with low complexity out of optimal
methods. In fact, they conjectured that every time that
one applies the approximation of the derivative 𝑓(𝑥𝑛) ≈
𝑓[𝑥𝑛, 𝑤𝑛], with 𝑤𝑛 = 𝑥𝑛 + 𝛽𝑓(𝑥𝑛)

𝑙, on an optimal order 2𝑞,
we will need 𝑙 ≥ 𝑞 for preserving the order of convergence.
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For instance, choosing the well-known optimal two-step
family of King (KM) [4],

𝑦𝑘 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓 (𝑥𝑘)
, 𝑘 = 0, 1, 2, . . . ,

𝑥𝑘+1 = 𝑦𝑘 −
𝑓 (𝑦𝑘)

𝑓 (𝑥𝑘)

𝑓 (𝑥𝑘) + 𝛾𝑓 (𝑦𝑘)

𝑓 (𝑥𝑘) + (𝛾 − 2) 𝑓 (𝑦𝑘)
, 𝛾 ∈ R,

(4)

and the conjecture of Cordero-Torregrosa, one may propose
the following method (DKM):

𝑦𝑘 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

FD
, 𝑘 = 0, 1, 2, . . . ,

𝑥𝑘+1 = 𝑦𝑘 −
𝑓 (𝑦𝑘)

FD

𝑓 (𝑥𝑘) + 𝛾𝑓 (𝑦𝑘)

𝑓 (𝑥𝑘) + (𝛾 − 2) 𝑓 (𝑦𝑘)
, 𝛾 ∈ R,

(5)

wherein

FD =
𝑓 (𝑥𝑘) − 𝑓 (𝑤𝑘)

𝑥𝑘 − 𝑤𝑘
, 𝑤𝑘 = 𝑥𝑘 + 𝛽𝑓 (𝑥𝑘)

2
,

𝛽 ∈ R \ {0} .

(6)

In this work, we propose a two-stepmethodwithmemory
possessing a high efficiency index according to the well-
known family of King’s methods (5).

Our inspiration andmotivation for constructing a higher-
order method are linked in a direct manner with the fun-
damental concept of numerical analysis that any numerical
method should give as accurate as possible output results with
minimal computational cost. To state the matter differently,
it is necessary to pursue methods of higher computational
efficiency.

For more background concerning this topic, one may
refer to [5, 6].

The paper is organized as follows. In Section 2, the
aim of this paper is presented by contributing an iterative
method with memory based on (5) for solving nonlinear
equations. The proposed scheme is an extension over (4)
and has a simple structure with an increased computational
efficiency. In Section 3, we compare the theoretical results
by applying the definition of efficiency index and further
supports are furnished whereas numerical reports are stated.
Some concluding remarks will be drawn in Section 4 to end
the paper.

2. A New Method with Memory

In this section, we propose the following iterative method
with memory based on (5):

𝑦𝑘 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

FD
, 𝑤𝑘 = 𝑥𝑘 + 𝛽𝑘𝑓 (𝑥𝑘)

2
, 𝑘 = 0, 1, 2, . . . ,

𝑥𝑘+1 = 𝑦𝑘 −
𝑓 (𝑦𝑘)

FD

𝑓 (𝑥𝑘) + 𝛾𝑓 (𝑦𝑘)

𝑓 (𝑥𝑘) + (𝛾 − 2) 𝑓 (𝑦𝑘)
, 𝛾 = −

1

2
,

(7)

wherein the self-accelerating parameter is 𝛽𝑘. The error
equation of (5) is (𝛾 = −1/2)

𝑒𝑘+1 = −𝑐2 (𝑓

(𝛼)
2 𝛽𝑐2 + 𝑐3) 𝑒

4

𝑘
+ 𝑂 (𝑒5

𝑘
) , (8)

where 𝑐𝑗 = (1/𝑗!)(𝑓
(𝑗)(𝛼)/𝑓(𝛼)). We now must find a way so

as to vanish the asymptotic error constant 𝜂 = −𝑐2(𝑓
(𝛼)2𝛽𝑐2+

𝑐3).
Toward this goal, one can increase the 𝑅-order by consid-

ering the following substitution:

𝛽 = −
𝑐3

𝑓 (𝛼)2 𝑐2
. (9)

Since the zero is not known, relation (9) cannot be used in
its exact form and we must approximate it recursively. This
builds a variant with memory for King’s family by using

𝛽𝑘 ≈ −
𝑐3

𝑓


(𝛼)2 𝑐2

, (10)

where 𝑐𝑗 ≈ 𝑐𝑗. Now if we consider 𝑁3(𝑡) to be Newton’s
interpolation polynomial of third degree set through four
available approximations 𝑥𝑘, 𝑥𝑘−1, 𝑦𝑘−1, 𝑤𝑘−1 at the end of
each cycle, we can propose the following new method with
memory:

𝛽𝑘 = −
𝑁
3
(𝑥𝑘)

3𝑁
3
(𝑥𝑘)
2
𝑁
3
(𝑥𝑘)

,

𝑦𝑘 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

FD
, 𝑤𝑘 = 𝑥𝑘 + 𝛽𝑘𝑓 (𝑥𝑘)

2
,

𝑘 = 0, 1, 2, . . . ,

𝑥𝑘+1 = 𝑦𝑘 −
𝑓 (𝑦𝑘)

FD

𝑓 (𝑥𝑘) − 1/2𝑓 (𝑦𝑘)

𝑓 (𝑥𝑘) − 5/2𝑓 (𝑦𝑘)
.

(11)

Note that, for example, we have the following formulation
for the interpolating polynomial:

𝑁
3
(𝑥𝑘) = [

𝑑

𝑑𝑡
𝑁3(𝑡)]

𝑡=𝑥𝑘

= 𝑓 [𝑥𝑘, 𝑥𝑘−1] + 𝑓 [𝑥𝑘, 𝑥𝑘−1, 𝑦𝑘−1] (𝑥𝑘 − 𝑥𝑘−1)

+ 𝑓 [𝑥𝑘, 𝑥𝑘−1, 𝑦𝑘−1, 𝑤𝑘−1] (𝑥𝑘 − 𝑥𝑘−1) (𝑥𝑘 − 𝑦𝑘−1) .

(12)

Acceleration in convergence for (11) is based on the use of
a variation of one free nonzero parameter in each iterative
step. This parameter is calculated using information from
the current and previous iteration(s) so that the developed
method may be regarded as method with memory according
to Traub’s classification [2].

We are at the time to write about the theoretical aspects
of our proposed solver (11).



The Scientific World Journal 3

Theorem 1. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxima-
tion𝑥0 is sufficiently close to𝛼, then, the𝑅-order of convergence
of the two-step method (11) with memory is at least 4.23607.

Proof. Let {𝑥𝑘} be a sequence of approximations generated
by an iterative method. The error relations with the self-
accelerating parameter 𝛽 = 𝛽𝑘 for (11) are in what follows:

𝑒𝑘 = 𝑤𝑘 − 𝛼 ∼ 𝑐𝑘,1𝑒𝑘, (13)

𝑒𝑘 = 𝑦𝑘 − 𝛼 ∼ 𝑐𝑘,2𝑒
2

𝑘
, (14)

𝑒𝑘+1 = 𝑥𝑘+1 − 𝛼 ∼ 𝑐𝑘,4𝑒
4

𝑘
. (15)

Using a symbolic computations, we attain that

−𝑐2 (𝑓

(𝛼)
2 𝛽𝑐2 + 𝑐3) ∼ 𝑒𝑘−1. (16)

Substituting the value of −𝑐2(𝑓
(𝛼)2𝛽𝑐2 +𝑐3) from (16) in (15),

one may obtain

𝑒𝑘+1 ∼ 𝑐𝑘,4𝑒𝑘−1𝑒
4

𝑘
. (17)

Note that in general we know that the error equation should
read 𝑒𝑘+1 ∼ 𝐴𝑒

𝑝

𝑘
, where𝐴 and 𝑝 are to be determined. Hence,

one has 𝑒𝑘 ∼ 𝐴𝑒
𝑝

𝑘−1
, and subsequently

𝑒𝑘−1 ∼ 𝐴
−1/𝑝𝑒
1/𝑝

𝑘
. (18)

Thus, it is easy to obtain

𝑒
𝑝

𝑘
∼ 𝐴−1/𝑝𝐶𝑒

4+1/𝑝

𝑘
, (19)

wherein 𝐶 is a constant. This results in

𝑝 = 4 +
1

𝑝
, (20)

with two solutions {−0.236068, 4.23607}. Clearly the value for
𝑝 = 4.23607 is acceptable and would be the convergence
𝑅-order of method (11) with memory. The proof is com-
plete.

The increase of 𝑅-order is attained without any (new)
additional function calculations so that the novel method
with memory possesses a high computational efficiency
index. This technique is an extension over scheme (5) to
increase the 𝑅-order from 4 to 4.23607.

The accelerating method (11) is new, simple, and useful,
providing considerable improvement of convergence rate
without any additional function evaluations in contrast to the
optimal two-step methods without memory.

We also remark that an alternative form of our proposed
method with memory could be deduced using backward
finite difference formula at the beginning of the first substep
and a minor modification in the accelerators; that is to

say, we have the following alternative method with memory
possessing 4.23607 as its 𝑅-order (APM) as well:

𝛽𝑘 =
𝑁
3
(𝑥𝑘)

3𝑁
3
(𝑥𝑘)
2
𝑁
3
(𝑥𝑘)

,

𝑦𝑘 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

FD
, 𝑤𝑘 = 𝑥𝑘 − 𝛽𝑘𝑓 (𝑥𝑘)

2
,

𝑥𝑘+1 = 𝑦𝑘 −
𝑓 (𝑦𝑘)

FD

𝑓 (𝑥𝑘) − 1/2𝑓 (𝑦𝑘)

𝑓 (𝑥𝑘) − 5/2𝑓 (𝑦𝑘)
.

(21)

Theorem 2. Let the function 𝑓(𝑥) be sufficiently differentiable
in a neighborhood of its simple zero 𝛼. If an initial approxima-
tion𝑥0 is sufficiently close to𝛼, then, the𝑅-order of convergence
of the two-step method (21) with memory is at least 4.23607.

Proof. The proof of this theorem is similar toTheorem 1. It is
hence omitted.

3. Numerical Computations

Computational efficiency of different iterative methods with
and without memory can be measured in a prosperous
manner by applying the definition of efficiency index. For an
iterative method with convergence (𝑅-)order 𝑟 that requires
𝜃 functional evaluations, the efficiency index (also named
computational efficiency) is calculated by Ostrowski-Traub’s
formula [2]:

𝐸 = 𝑟1/𝜃. (22)

According to this, we find

𝐸 (SM) ≈ 1.4142 < 𝐸 (3) ≈ 1.5737 = 𝐸 (4) ≈ 1.5874

= 𝐸 (5) ≈ 1.5874 < 𝐸 (11) ≈ 1.6180,
(23)

where SM is the quadratically convergent method of Stef-
fensen without memory [7].

It should be remarked that Džunić in [8] designed
an efficient one-step Steffensen-type method with memory
possessing (1/2)(3+√17) 𝑅-order of convergence as follows:

𝑤𝑘 = 𝑥𝑘 + 𝛽𝑘𝑓 (𝑥𝑘) ,

𝛽𝑘 = −
1

𝑁
2
(𝑥𝑘)

, 𝑝𝑘 = −
𝑁
3
(𝑤𝑘)

2𝑁
3
(𝑤𝑘)

,

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓 [𝑥𝑘, 𝑤𝑘] + 𝑝𝑘𝑓 (𝑤𝑘)
,

(24)
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Table 1: Results of comparisons for Example 3 and to find 𝛼 = 2.

Methods |𝑓(𝑥
1
)| |𝑓(𝑥

2
)| |𝑓(𝑥

3
)| |𝑓(𝑥

4
)| coc

KM 18.577 64890. 7.2226 × 1010 3.2493 × 109 —
OM 4.7484 0.0023129 1.3928 × 10−16 1.8313 × 10−69 4.00000
DKM 0.53362 5.3207 × 10−7 5.2711 × 10−31 5.0774 × 10−127 4.00000
PM 0.53362 1.9202 × 10−6 3.6106 × 10−30 1.6392 × 10−130 4.22928

Table 2: Results of comparisons for Example 4.

Methods |𝑓(𝑥1)| |𝑓(𝑥2)| |𝑓(𝑥3)| |𝑓(𝑥4)| coc
KM 2.0873 0.0095650 7.7971 × 10−12 3.4597 × 10−48 4.00000
OM 0.81344 0.0010884 1.5476 × 10−15 6.3280 × 10−63 4.00000
DKM 2.1909 0.013379 2.9909 × 10−11 7.5008 × 10−46 4.00000
PM 2.1909 0.0011772 7.0556 × 10−16 8.4197 × 10−68 4.23539
APM 1.9861 0.00089226 2.3251 × 10−16 7.5243 × 10−70 4.23526

and Cordero et al. in [9] presented a two-step biparametric
Steffensen-type iterative method with memory possessing
seventh 𝑅-order of convergence:

𝑤𝑘 = 𝑥𝑘 + 𝛽𝑘𝑓 (𝑥𝑘) , 𝛽𝑘 = −
1

𝑁
3
(𝑥𝑘)

,

𝑝𝑘 = −
𝑁
4
(𝑤𝑘)

2𝑁
4
(𝑤𝑘)

,

𝑦𝑘 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓 [𝑥𝑘, 𝑤𝑘] + 𝑝𝑘𝑓 (𝑤𝑘)
,

𝑥𝑘+1 = 𝑦𝑘 −
𝑓 (𝑦𝑘)

𝑓 [𝑥𝑘, 𝑦𝑘] + 𝑓 [𝑤𝑘, 𝑥𝑘, 𝑦𝑘] (𝑦𝑘 − 𝑥𝑘)
.

(25)

Note that our main aim was to develop King’s family in
terms of efficiencies index and was not to achieve the highest
possible efficiency index.

Although these methods possess higher computational
efficiency indices than our proposed method (11), we exclude
them from numerical comparisons since our method is not a
Steffensen-type method and it is a Newton-type method with
memory. For more refer to [10].

Now, we apply and compare the behavior of different
methods for finding the simple zeros of some different
nonlinear test functions in the programming package Math-
ematica [11] using multiple precision arithmetic to clearly
reveal the high 𝑅-order of PM and APM. We compare
methods with the same number of functional evaluations per
cycle.

We notice that, by applying any root solver with local
convergence, a special attention must be paid to the choice
of initial approximations. If initial values are sufficiently
close to the sought roots, then the expected (theoretical)
convergence speed is obtainable in practice; otherwise, the
iterative methods show slower convergence, especially at the
beginning of the iterative process.

In this section, the computational order of convergence
(coc) has been computed by

coc =
ln 𝑓 (𝑥𝑘) /𝑓 (𝑥𝑘−1)


ln 𝑓 (𝑥𝑘−1) /𝑓 (𝑥𝑘−2)


. (26)

The calculated value coc estimates the theoretical order of
convergence well when pathological behavior of the iter-
ative method (i.e., slow convergence at the beginning of
the implemented iterative method, oscillating behavior of
approximations, etc.) does not exist.

Here the results of comparisons for the test functions are
given by applying 1000 fixed floating point arithmetic using
the stop termination |𝑓(𝑥𝑘)| ≤ 10

−100.

Example 3. Weconsider the following nonlinear test function
in the interval𝐷 = [1.5, 2.5]:

𝑓 (𝑥) = (𝑥 − 2 tan (𝑥)) (𝑥3 − 8) , (27)

using the initial approximation 𝑥0 = 1.7. The results are
provided in Table 1.

In this section, we have used 𝛽0 = 0.0001 whenever
required. Furthermore, for DKM we considered 𝛾 = −1/2.

Example 4. We compare the behavior of different methods
for finding the complex solution of the following nonlinear
equation:

𝑔 (𝑥) = (−1 + 2𝐼) +
1

𝑥
+ 𝑥 + sin (𝑥) , (28)

using the initial approximation 𝑥0 = 1 − 3𝐼 where 𝛼 =
0.28860 ⋅ ⋅ ⋅ − 1.24220 ⋅ ⋅ ⋅ 𝐼. The results for this test are given
in Table 2.

It is evident from Tables 1 and 2 that approximations to
the roots possess great accuracy when the proposed method
withmemory is applied. Results of the fourth iterate in Tables
1 and 2 are given only for demonstration of convergence speed
of the tested methods and in most cases they are not required
for practical problems at present.
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We also incorporated and applied the developedmethods
with memory (11) and (21) for different test examples and
obtained results with the same behavior as above. Hence,
we could mention that the theoretical results are upheld by
numerical experiments and thus the newmethod is goodwith
a high computational efficiency index.

4. Summary

In this paper, we have proposed a new two-step Steffensen-
type iterative method with memory for solving nonlinear
scalar equations. Using one self-correcting parameter calcu-
lated by Newton interpolatory polynomial, the 𝑅-order of
convergence of the constructed method was increased from
4 to 4.23607 without any additional calculations.

The new method was compared in performance and
computational efficiency with some existing methods by
numerical examples. We have observed that the computa-
tional efficiency index of the presentedmethod withmemory
is better than those of other existing two-step King-type
methods.
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