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Abstract

Over the past decade, our understanding of T cell activation, differentiation and function has 

markedly expanded, providing a greater appreciation of the signals and pathways that regulate 

these processes. It has become clear that evolutionarily conserved pathways that regulate stress 

responses, metabolism, autophagy and survival have crucial and specific roles in regulating T cell 

responses. Recent studies suggest that the metabolic pathways involving MYC, hypoxia-inducible 

factor 1α (HIF1α), AMP-activated protein kinase (AMPK) and mammalian target of rapamycin 

(mTOR) are activated upon antigen recognition and that they are required for directing the 

consequences of T cell receptor engagement. The purpose of this Review is to provide an 

integrated view of the role of these metabolic pathways and of canonical T cell signalling 

pathways in regulating the outcome of T cell responses.

T cell receptor (TCR) engagement by peptide–MHC complexes initiates a multitude of 

signalling programmes that prepare the cell for differentiation, proliferation and effector 

function. The canonical signalling pathways that lead to activation-induced transcription are 

mediated by nuclear factor-κB (NF-κB), activator protein 1 (AP-1) and nuclear factor of 

activated T cells (NFAT). These three pathways collaborate to promote the expression of 

effector molecules that are crucial for T cell function1–7 (FIG. 1a). It is generally thought 

that TCR-induced signalling only leads to T cell activation when it occurs in the context of a 

second co-stimulatory signal, such as the ligation of CD28 (REF. 8). The precise pathways 

that mediate CD28-induced co-stimulation have not been completely elucidated. However, 

one such model posits that TCR-induced NFAT activation leads to T cell anergy, whereas in 

the context of co-stimulation, NFAT and AP-1 collaborate to promote full T cell activation3. 

Likewise, CD28 signalling leads to the activation of phosphoinositide 3-kinase (PI3K) and 

the subsequent activation of mammalian target of rapa-mycin (mTOR)9. In addition to co-

stimulation, further signals from the microenvironment influence the outcome of TCR 

ligation. For example, specific cytokines are required to promote the differentiation of naive 

CD4+ T cells into various T helper (TH) cell subsets (FIG. 1b). Thus, immuno-logical inputs 

in the form of antigen recognition, co-stimulatory ligand engagement and cytokine 

stimulation guide the outcome of T cell activation and differentiation.
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Recently, the signalling pathways that control cellular metabolism have been shown to have 

a crucial role in dictating the outcome of T cell activation. Overall, this requirement for the 

coordination of T cell metabolism and T cell function reflects two important features of the 

T cell response: the ability of low frequency, antigen-specific naive T cells to rapidly 

increase in number in response to a pathogen, and their ability to generate long-lived 

memory T cells or regulatory T (TReg) cells that can modulate immune responses. In this 

Review, we aim to integrate the metabolic pathways with the canonical T cell signalling 

pathways to provide a comprehensive view of the pathways that regulate T cell immunity. 

This reveals potential new pharmacological targets for enhancing or inhibiting specific T 

cell responses.

Regulation of cellular metabolism

Cellular metabolism provides the means by which cells store and use macromolecules that 

are necessary for growth and for the generation of energy. Depending on nutrient 

availability and external or intracellular cues, cells can use different substrates and distinct 

pathways to produce energy. Likewise, cellular metabolism is dictated by the specific 

function of a cell. Glycolysis is a metabolic pathway by which the catabolism of six-carbon 

sugars (glucose) produces a net sum of two molecules of ATP and two of pyruvate from 

each molecule of glucose10. In the presence of oxygen, pyruvate derivatives enter the 

tricarboxylic acid cycle (TCA cycle) and promote the oxidative phosphorylation of energy 

inter mediates in the mitochondrial matrix to generate a total of ~30 ATP molecules 

(TABLE 1). If oxygen is unavailable, the two molecules of pyruvate that are generated from 

glyco lysis can be converted to lactate, which dramatically reduces the ATP yield but still 

provides an energy source for the cell10. In response to environmental cues, there are 

specific drivers of cellular metabolism that regulate the expression of enzymes that are 

crucial for various metabolic processes.

Glycolysis is promoted by the upregulation of MYC, which is a basic helix–loop–helix 

leucine zipper transcription factor (TABLE 2). MYC promotes the expression of glucose 

transporter type 1 (GLUT1; also known as SLC2A1), pyruvate kinase, lactate 

dehydrogenase A (LDHA) and hexokinase 2, which are required for glucose uptake 

and for the rate-limiting steps of glycolysis11,12. In addition, MYC promotes the expression 

of both glutaminase and glutamine transporters13, and further promotes glutaminolysis by 

transcriptionally repressing the microRNAs miR-23a and miR-23b, which allows for the 

increased expression of glutaminase14. Furthermore, MYC has also been found to have a 

role in promoting mitochondrial biogenesis15.

Glycolysis is also regulated by hypoxia-inducible factor 1α (HIF1α), which is a 

heterodimeric basic helix–loop–helix and Per–Arnt–Sim (PAS) domain-containing 

transcription factor that, during hypoxia, binds to cis-acting hypoxia-response elements and 

leads to the transcription of numerous genes that are important for cell survival in low 

oxygen conditions16 (TABLE 2). Not surprisingly, these genes include those encoding 

enzymes that are required for the glycolytic pathway17. In addition, HIF1α promotes the 

expression of GLUT1 (REF. 18) and enforces ATP synthesis by glycolysis, rather than 
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oxidative phosphorylation, by upregulating pyruvate dehydrogenase kinase 1 

(PDK1), which is an enzyme that inhibits the entry of pyruvate into the TCA cycle19,20.

HIF1α expression is not only regulated by oxygen levels but also depends on external cues 

that are integrated by mTOR activity21. mTOR is an evolutionarily conserved serine/

threonine kinase that integrates a diverse array of environmental cues to regulate growth, 

survival and proliferation22 (TABLE 2). mT O R is present in two distinct protein 

complexes — mTOR complex 1 (mTORC1) and mTORC2 — that each have unique 

downstream targets and functions. Activation of mTORC1 occurs by growth factor 

stimulation of PI3K, which initiates a signalling cascade that results in the inhibitory 

phosphorylation of the mTORC1 repressor tuberous sclerosis 2 (TSC2; also known as 

tuberin) by the kinase AKT23. In addition to growth factors, amino acids also activate 

mTORC1 and this leads to recruitment of mTOR to the lysosomal surface where it can 

interact with, and become activated by, its activator RAS homologue enriched in brain 

(RHEB)24–26. The mechanisms that regulate mTORC2 activation are less clear than those 

for mTORC1. However, it is known that growth factor stimulation enhances mTORC2 

activity and recent studies have implicated a role for the association of the mTORC2 

complex with ribosomes in promoting its activation27.

The activity of mTORC1 enhances HIF1α expression at both the transcriptional and 

translational level, and thereby stimulates glycolysis and glucose transport28. The 

importance of HIF1α in mediating mTORC1-enhanced glycolysis is illustrated by the 

observation that small interfering RNA (siRNA)-mediated inhibition of Hif1a expression in 

cells that express constitutively active mTORC1 (Tsc2−/− cells) abrogates the expression of 

the glycolytic factors GLUT1, phosphofructokinase 1 and PDK1 (REF. 28). 

Interestingly, a recent report suggests that MYC activity is, in part, regulated by mTORC2 

(REF. 29). It was observed that mTORC2 activity leads to the acetylation of forkhead box 

protein O1 (FOXO1), which initiates the release of MYC from a suppressive miR-34c–

dependent network29.

Although MYC, HIF1α and mTOR signalling promote an increased metabolic output by 

cells, other regulators promote energy conservation during times of limited resources. One 

such regulator is AMP-activated protein kinase (AMPK), which is a heterotrimeric serine/

threonine kinase complex that monitors cellular energy levels (TABLE 2). The binding of 

AMP or ADP to AMPK induces its phosphorylation and activation by upstream 

kinases30,31. AMPK activation enhances glucose uptake and, at the same time, inhibits 

glucose, glycogen and fatty acid synthesis31. This occurs through the phosphoryl-ation and 

inhibition of acetyl-CoA carboxylase 1 (ACC1) and the inhibition of the lipogenic 

transcription factor sterol regulatory element-binding protein 1 (SREBP1; also known as 

SREBF1)32. In addition, AMPK promotes fatty acid oxidation through the phosphorylation 

and inhibition of ACC2. This results in the enhanced expression of carnitine 

palmitoyltransferase 1A (CPT1A), which is the rate-limiting factor in mitochondrial 

lipid uptake10. AMPK also enhances mitochondrial bio genesis and oxidative metabolism by 

promoting the transcriptional activity of peroxisome proliferator-activated receptor-γ co-

activator 1α (PGC1α; also known as PPARGC1A)31. Thus, AMPK regulates cell 

metabolism to limit energy expenditure and replenish ATP production. AMPK activity can 

Pollizzi and Powell Page 3

Nat Rev Immunol. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also diminish mTORC1 signalling through the phosphorylation of TSC2 and regulatory-

associated protein of mTOR (RAPTOR; also known as RPTOR), which is a crucial 

component of mTORC1 (REFS 33,34). Under conditions of prolonged energy deprivation 

(starvation), AMPK promotes autophagy) by phos-phorylating and activating the serine/

threonine protein kinase Unc-51-like kinase 1 (ULK1)35. Thus, AMPK shuts down energy-

demanding synthetic pathways but promotes mechanisms that generate energy — such as 

glycolysis, oxidative phosphorylation and autophagy — as a means of deriving substrates 

from within the cell. By contrast, deficiency of the AMPK activator liver kinase 1 (LKB1; 

also known as STK11), and therefore loss of AMPK activation, promotes enhanced glucose 

and glutamine metabolism through the mTORC1-dependent upregulation of HIF1α during 

normoxic conditions36.

Interestingly, although mTORC1 activity has been shown to increase glycolysis through 

regulation of HIF1α, mTORC1 activity can also promote oxidative phosphorylation. This 

occurs through the increased interaction of the transcriptional repres-sor yin and yang 1 

(YY1) with PGC1α, which induces the expression of mitochondrial genes37. In addition, 

mTORC1 promotes lipid biosynthesis by enhancing the transcription and translation of 

SREBP1 (REF. 28) but limits fatty acid oxidation through the inhibition of CPT1A38. The 

activity of mTORC1 has also been shown to promote nucleotide synthesis. This process 

occurs through the activation of ribosomal protein S6 kinase β1, which post-translationally 

regulates de novo pyrimidine synthesis39,40.

T cells have a specialized metabolism

Most cells use oxidative phosphorylation to maximize ATP production but activated T cells 

(and cancer cells) mainly generate ATP through glycolysis41,42. This use of glycolysis in the 

presence of oxygen was first described by Otto Warburg for cancer cells and it is therefore 

referred to as the Warburg effect43. Although glycolysis provides less ATP than oxidative 

phosphorylation, it has been proposed that avoiding oxidative phosphorylation allows for the 

generation of substrates that are required for the synthesis of amino acids, nucleic acids and 

lipids, all of which are vital for proliferation44. Of note, a recent report has challenged the 

necessity of Warburg physiology in T cell proliferation, instead suggesting that glycolysis is 

required to release translational inhibition of the mRNA that encodes the effector cytokine 

interferon-γ (IFNγ)45. Nonetheless, glucose uptake is essential for glyco lysis and enhanced 

cell surface expression of GLUT1 is a crucial aspect of TCR-induced T cell activation46. In 

this regard, it has been shown that CD28 signalling upregulates the expression of glucose 

transporters47. Similarly, the uptake and metabolism of the amino acid glutamine is essential 

for T cell activation, as glutamine deprivation blocks T cell proliferation and cytokine 

production11,48. Glutamine oxidation can lead to the generation of α-ketoglutarate, 

which is a key intermediate of the TCA cycle and which, in turn, provides substrates for the 

generation of various macromolecules10. Furthermore, T cells require fatty acid metabolism 

for their proliferation and function. Cholesterol synthesis is essential for membrane 

biogenesis and T cells that are deficient in SREBPs (owing to a T cell-specific deletion of 

SREBP cleavage-activating protein (SCAP)) have diminished proliferative capacity and 

reduced antiviral responses49. Along these lines, the expression of SREBP1 is enhanced 

following TCR activation through the suppression of the liver X receptor signalling 

Pollizzi and Powell Page 4

Nat Rev Immunol. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathway50. Thus, T cell activation induces metabolic changes that allow for processes that 

are necessary to promote proliferation and cytokine secretion.

Although the considerations that are described above reflect the metabolic needs of T cells 

during activation and robust proliferation, it has become clear that different T cell subsets 

have unique metabolic needs. Thus, T cell activation and fate are linked to specific 

metabolic programmes that support selective T cell functions. In this regard, immunological 

signals such as co-stimulatory ligands, cytokines and antigen promote metabolism. 

Likewise, metabolic signals such as nutrient availability, hypoxia and growth factors 

regulate immune function. From a signalling perspective, central roles for the energy sensor 

AMPK and the evolutionarily conserved PI3K family member mTOR in integrating 

immuno-logical and metabolic pathways have emerged (TABLE 2). Similarly, the 

transcription factors MYC and HIF1α are central to promoting the expression of the genes 

that are required for metabolic programmes that support T cell responses (TABLE 2). 

Focusing on the metabolic and immunological roles of these molecules provides an 

integrative picture of the signalling pathways that regulate T cell activation, differentiation 

and function. In the following sections, we discuss the roles of these metabolic factors in 

influencing CD4+ and CD8+ effector T cell differentiation (FIG. 2), CD8+ memory T cell 

generation and CD4+ TReg cell function (FIG. 3).

Metabolic regulation of CD4+ TH cell lineages

CD4+ T cells differentiate into distinct helper cell lineages following TCR engagement and 

cytokine stimulation51 (FIG. 1b). To determine whether TH cell subsets have distinct 

metabolic needs, the metabolic profiles of stimulated TH1, TH2 and TH17 cells have been 

assessed52. This study showed that all CD4+ TH cell subsets upregu-late GLUT1 expression 

upon TCR activation and have elevated glycolytic rates52. Thus, TH1, TH2 and TH17 cells 

all use glycolysis upon activation.

Recent studies have elucidated a role for MYC in establishing the metabolic profile that is 

required for effective T cell proliferation. T cell activation induces protein-level expression 

of both MYC and HIF1α within 2 hours of stimulation11, and MYC expression levels are 

highest in proliferating lymphocytes53. However, MYC — but not HIF1α — is required for 

upregulating the expression of the glycolytic machinery and the substrates that are essential 

for glutamine metabolism. Deletion of Myc abrogates the ability of activated T cells to 

undergo glycolysis and to initiate the catabolism of glutamine11. Furthermore, MYC 

deficiency diminishes the expression of the glu-tamine exchanger CD98 (a heterodimer of 

SLC3A2 and SLC7A5), which reduces mTORC1 activity. The absence of MYC in T cells 

markedly inhibits activation-induced glutaminolysis, and the subsequent generation of 

nucleotides and polyamines that is necessary for proliferation11.

Although HIF1α is not required for CD4+ T cell proliferation or interleukin-2 (IL-2) 

production11,54, several groups have shown that is has an important role in the generation 

and function of TH17 cells54,55. HIF1α expression is highly induced under TH17 cell-

polarizing conditions during T cell activation. This upregulation of HIF1α expression is 

dependent on signal transducer and activator of transcription 3 (STAT3) and, importantly, 
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occurs even under normoxic conditions55. Furthermore, HIF1α promotes TH17 cell 

differentiation by directly inducing the transcription of the gene that encodes retinoic acid 

receptor-related orphan receptor-γt (RORγt), and by cooperating with RORγt and the histone 

acetyltransferase p300 (also known as EP300) to drive the transcription of TH17 cell-

associated genes55. In addition, it was found that polarizing T cells in vitro under conditions 

of 5% oxygen promotes TH17 cell differentiation in an mTORC1–HIF1α-dependent 

manner56. Under TH17 cell-polarizing conditions, HIF1α promotes the transcription of the 

genes encoding the rate-limiting enzymes of glycolysis, such as hexo kinase 2, glucose-6-

phosphate isomerase, pyruvate kinase and LDHA, as well as GLUT1 (REF. 54).

HIF1α expression has also been linked to the maintenance of TH17 cells57. By studying T 

cells from patients with inflammation, it was observed that TH17 cells resemble long-lived 

effector memory cells57. Indeed, HIF1α was shown to have an important role in maintaining 

the expression of high levels of anti-apoptotic genes in TH17 cells57. In addition to HIF1α, 

the maintenance of TH17 cells has been linked to the upregulation of T cell factor 7 (TCF7; 

also known as TCF1) and lymphoid enhancer-binding factor 1 (LEF1), which are targets of 

the WNT–β-catenin pathway that are expressed at high levels in stem cells58. Interestingly, 

work that has been carried out in neural stem cells has shown that HIF1α positively 

regulates the expression of TCF7 and LEF1 (REF. 59). Although further work will be 

necessary to support a role for HIF1α in promoting the expression of TCF7 and LEF1 in 

lymphocytes, these data suggest that HIF1α expression may induce stem cell-like properties 

in TH17 cells. Thus, HIF1α coordinates immunological programmes — such as RORγt 

expression and forkhead box P3 (FOXP3) degradation (see below) — with metabolic 

programmes (for example, the upregulation of the glycolytic machinery and inhibitors of 

apoptosis) to promote the development of TH17 cells.

Of note, one group has shown increased T cell activation and IFNγ production in T cells that 

are deficient for the alternatively spliced isoform of HIF1α known as I.1 (REF. 60). As 

IL-17 has been shown to inhibit IFNγ production, it has been proposed that the increase in 

IFNγ in these mice is due to decreased IL-17 production55. Nonetheless, follow-up studies 

have revealed that deletion of the HIF1α isoform I.1 in T cells enhances immunity in a 

model of bacterial infection61. Therefore, the precise role of HIF1α in TH1 and TH2 cell 

differentiation and function remains to be determined.

Dissecting the mTOR pathway has revealed a crucial role for mTOR in the regulation of 

CD4+ T cell lineage differentiation. T cell-specific deletion of Mtor results in the abrogation 

of TH1, TH2 and TH17 cell differentiation62. Instead, stimulation of mTOR-deficient CD4+ 

T cells induces the accumulation of FOXP3+ TReg cells62. Furthermore, a specific deletion 

of Rheb (leading to the loss of mTORC1) in T cells results in the loss of TH1 and TH17 cell 

differentiation, although TH2 cell generation is unaffected63. By contrast, T cells that lack 

rapamycin-insensitive companion of mTOR (RICTOR), and thus lack mTORC2, are readily 

skewed towards TH1 or TH17 cell lineages (depending on which Cre recombinase is used) 

but they fail to differentiate into TH2 cells63,64. In addition, RICTOR-deficient mice are 

resistant to TH2 cell-mediated diseases63,65. Thus, mTORC1 is required for TH1 and TH17 

cell differentiation, and mTORC2 is necessary for TH2 cell development. Although the 

metabolic profiling of these cells is currently an area of active investigation, we propose that 
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mTOR regulates the metabolic potential of these cells to influence T cell differentiation. Of 

note, recent papers demonstrate that deletion of the mTORC1 component RAPTOR prevents 

the generation of TH1, TH2, TH17 and TReg cells66,67. This is different from Rheb−/− mice, 

in which there are only defects in TH1 and TH17 cell differentiation63. Thus, RHEB-

dependent mTORC1 signalling seems to have more selective effects on immune cells. We 

speculate that the differences that have been observed between Raptor−/−T cells and Rheb−/− 

T cells are due to markedly enhanced or unopposed mTORC2 activity in Raptor−/− T cells, 

as many of the defects that are seen in these mice are not observed in mTOR-deficient T 

cells62. Nonetheless, the differences between the Raptor−/− and Rheb−/− T cells provide an 

opportunity to define mTORC1-dependent processes that selectively regulate T cell 

differentiation.

It should be pointed out that, in contrast to these two studies63,64 on the role of RHEB and 

RAPTOR in T cells, there is a report suggesting that RAPTOR (and therefore mTORC1) is 

not required for TH1 and TH2 cell differentiation and is only crucial for TH17 cell 

differentiation by enhancing the nuclear accumulation of RORγt68. An explanation for these 

discrepant findings remains to be elucidated. We speculate that the inconsistent results may 

be related to the enhanced expansion of a CD4−IFNγ+ cell population that can rapidly 

proliferate in cell cultures after magnetic isolation of RAPTOR-deficient CD4+ T cells 

(J.D.P., unpublished observations).

Other studies have used LKB1-deficient CD4+ T cells (which display a loss of AMPK 

activation) to investigate the roles of the AMPK and mTOR pathways in TH cell 

differentiation. LKB1-deficient CD4+ T cells show elevated production of IFNγ and IL-17, 

and have an enhanced propensity to differentiate into TH1 or TH17 cells69. LKB1 deficiency 

also results in enhanced glucose uptake with elevated protein-level expression of GLUT1 

and hexokinase 2, which indicates that AMPK activation represses glycolysis69. In addition, 

LKB1-deficient T cells have increased expression of mTORC1 gene targets compared with 

wild-type cells, which further supports a crucial role for mTOR in TH1 and TH17 cell 

differentiation69.

The metabolic link to CD8+ effector T cell function

CD8+ effector T cells rely heavily on glycolysis to support their metabolic needs during 

their rapid proliferation in response to infection70. Inhibition of glycolysis during the 

activation of naive CD8+ T cells abrogates effector cell generation71. For example, the 

glucose analogue 2-deoxy-d-glucose inhibits glycolysis and downregulates the expression of 

mRNAs encoding the CD8+ T cell effector proteins IFNγ and perforin72,73. Interestingly, 

IL-2 production is unperturbed by 2-deoxy-d-glucose treatment.

MYC has been shown to be crucial for T cell proliferation and its requirement in T cell 

activation has been further highlighted by studies examining CD8+ T cell function in Myc+/− 

mice. CD8+ T cells that lack one copy of the Myc gene show impaired activation, as 

determined by the abrogated upregulation of CD44 (REF. 74). In addition, studies of HIF1β-

deficient T cells have provided an insight into the role of HIF1β in CD8+ T cell effector 

differentiation and function75. Upon initial activation, HIF1β-deficient T cells readily take 
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up glucose and initiate glycolysis. This is in contrast to MYC-deficient CD8+ T cells, which 

lack the ability to initiate activation and glycolysis11. However, in response to IL-2, HIF1β-

deficient CD8+ T cells fail to sustain GLUT1 levels and they have reduced expression of the 

key rate-limiting glyco-lytic enzymes, such as hexokinase 2, pyruvate kinase, phospho 

fructokinase 1 and LDHA75. Concomitantly, the HIF1β-deficient CD8+ T cells have reduced 

expression of effector molecules (namely, perforin and granzymes), but proliferation, IFNγ 

production and T-bet expression remain intact. Of note, these data indicate that the induction 

of HIF1β depends on mTORC1 activity and thus, mTOR is a crucial regulator of the 

glycolytic machinery that is upregulated by HIF1β expression75. Interestingly, this study 

also showed that mTOR activation in cytotoxic T lymphocytes (CTLs) occurs independently 

of AKT activation. This suggests that CTLs may use an alternative signalling pathway for 

the activation of mTORC1 (REF. 75).

Consistent with this study is a recent report that examines the function of Von Hippel–

Lindau disease tumour suppressor (VHL)-deficient CD8+ T cells, which have enhanced 

expression of HIF1α76. Compared with wild-type T cells, VHL-deficient T cells have 

enhanced effector activity and they more potently reject tumours. Interestingly, although 

such cells expressed increased levels of effector molecules — such as perforin and 

granzymes — the overexpression of HIF1α also resulted in the increased expression of 

inhibitory molecules, such as cytotoxic T lymphocyte antigen 4 (CTLA4) and lymphocyte 

activation gene 3 protein (LAG3)76.

In addition, branched chain amino acids activate the mTOR pathway, as well as providing 

the building blocks for protein synthesis. A recently defined feature of T cell activation is 

the increased cell surface expression of the neutral amino acids transporter solute carrier 

family 7 member 5 (SLC7A5; also known as LAT1). Deletion of SLC7A5 in T cells 

markedly inhibits clonal expansion and effector cell differentiation77. Similarly, T cell-

specific deletion of Raptor abrogates CD8+ T cell effector function (including IFNγ 

production) and proliferation in response to infection66. Furthermore, RAPTOR deficiency 

results in the downregulation of glycolytic transcripts and MYC protein, and the generation 

of transcripts that are important in lipid synthesis and oxidative phosphorylation66. Thus, the 

RAPTOR–mTORC1 pathway coordinates metabolic programmes that are important for T 

cell activation and function.

AMPK is activated by an increase in the AMP/ATP ratio, as well as following TCR 

engagement. Interestingly, the activation of AMPK following antigen recognition requires 

the activation of calcium/calmodulin-dependent protein kinase kinases (CaMKKs) but this is 

not necessary for the activation of AMPK by an increase in the AMP/ATP ratio. These 

results suggest that in lymphocytes, AMPK activation in response to antigen anticipates 

ATP depletion even in the presence of adequate nutrients78. Nonetheless, CD8+ T cells that 

lack expression of the catalytic α1-subunit of AMPK (AMPKα1) are activated, proliferate 

and secrete cytokines to an extent that is similar to wild-type T cells79,80. Thus, AMPK 

activation is dispensable for T cell activation in the presence of adequate nutrients. 

However, metabolic stress due to glucose deprivation induces enhanced cell death in 

AMPKα1-deficient T cells80. Similarly, T cells that are deficient in tuberous sclerosis 1 

protein homologue (TSC1; also known as hamartin) have increased mTOR activation and 
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show increased apoptosis as a result of abnormal mito-chondrial potential and the increased 

production of reactive oxygen species81–83.

Memory and TReg cells are metabolically alike

It has been established that glucose uptake and a high glyco lytic rate are required for 

effective CD4+ and CD8+ T cell responses, but both peripherally derived TReg cells and 

CD8+ memory T cells do not primarily use glycolysis for energy generation and instead rely 

on fatty acid metabolism52,84. Compared with effector T cells, CD8+ memory T cells have 

enhanced mitochondrial spare respiratory capacity, which provides the extra energy storage 

that is necessary to promote survival85. Memory T cells must also respond rapidly following 

antigen re challenge. In this regard, it was found that memory T cells have a greater 

mitochondrial mass compared with naïve T cells86. Consequently, following antigen 

rechallenge, effector memory T cells more extensively use oxidative phosphorylation and 

glycolysis compared with activated naive T cells86,87. Furthermore, a recent study suggests 

that memory CD8+ T cells use an AKT-dependent, rapa mycin-insensitive metabolic 

programme that facilitates rapid activation-induced glycolysis87.

A role for mTOR in regulating the differentiation of CD8+ effector and memory T cells was 

revealed by treating mice with low doses of rapamycin during infection with lymphocytic 

choriomeningitis virus (LCMV)88. It was found that mTOR inhibition markedly enhanced 

the generation of memory T cells. Given that rapamycin is used as an immunosuppressive 

agent, these results seem counterintuitive. However, it was shown that rapamycin treatment 

mitigates the expression of T-bet and enhances the expression of eomeso-dermin, which is a 

transcription factor that is associated with memory T cell differentiation89. Furthermore, in a 

model of homeostatic proliferation-induced memory, rapamycin administration abrogates 

the requirement of IL-15 signalling for the upregulation of eomesodermin to promote a 

memory response90. Consistent with these studies is a recent report showing that treatment 

of mice with a 4-1BB aptamer–Raptor-specific siRNA — which targets Raptor to an 

aptamer that binds the CD8+ T cell co-stimulatory molecule 4-1BB (also known as CD137 

and TNFRSF9) — led to diminished mTORC1 activity in CD8+ T cells and the generation 

of an enhanced memory response91.

In addition to coordinating transcription factors that are associated with effector and 

memory T cell generation, it is clear that mTOR regulates CD8+ T cell differentiation by 

guiding metabolic programmes. Pearce et al.84 defined the necessity of fatty acid 

metabolism in CD8+ memory T cell generation. They observed that CD8+ T cells that lack 

tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) have impaired memory 

cell generation owing to defects in fatty acid metabolism. Treatment of Traf6−/− cells with 

metformin (which activates AMPK) or rapamycin restores fatty acid oxidation and 

consequently rescues memory T cell generation. In a similar system, culturing LCMV-

specific T cells with rapamycin before adoptive transfer into infected mice leads to a marked 

increase in the frequency of long-lived memory cells92. However, the inhibition of oxidative 

phosphorylation using oligomycin reduced the survival advantage of the rapamycin-treated 

cells92. In addition, although AMPK deficiency does not affect CD8+ CTL activity, it has 

been found that AMPK is required for CD8+ memory T cell generation, as AMPKα1-
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deficient CD8+ T cells fail to mount an effective secondary response to an in vivo 

infection80.

As discussed, HIF1α has been shown to be crucial for promoting TH17 cell differentiation 

but some studies suggest that it has the opposite effect on TReg cell development. This 

inhibition of TReg cell development was shown to occur through HIF1α-mediated 

degradation of the FOXP3 protein during TH17 cell development via proline hydroxylation 

and subsequent ubiquitylation55. Such studies are consistent with other work showing that 

HIF1α expression is strongly induced in CD4+ T cells under TH17 cell-polarizing 

conditions, whereas its expression is mitigated under conditions that promote CD4+ TReg 

cell development54. Consistent with these findings, the deletion of Hif1a favours the 

generation of TReg cells54,55. Furthermore, blocking glycolysis inhibits TH17 cell 

development but promotes TReg cell differentiation54.

However, in contrast to these studies, other groups have suggested that HIF1α promotes 

TReg cell differen-tiation93,94. For example, it has been shown that hypoxia can enhance the 

expression of FOXP3 in Jurkat T cells in a HIF1α-dependent manner93. Similarly, another 

report showed a marked increase in FOXP3 expression under hypoxic conditions94. This 

upregulation was HIF1α dependent and was mediated by the direct binding of HIF1α to the 

FOXP3 promoter. HIF1α also promotes optimal TReg cell function, as HIF1α-deficient TReg 

cells fail to provide protection in an in vivo colitis model94. Although the precise 

mechanisms that account for the positive and negative roles of HIF1α in TReg cells are yet to 

be delineated, it has been suggested that HIF1α — similarly to IFN-regulatory factor 4 

(IRF4), B lymphocyte-induced maturation protein 1 (BLIMP1; also known as PRDM1), 

GATA-binding protein 3 (GATA3) and B cell lymphoma 6 (BCL-6) — might have an 

intrinsic role in both effector and TReg cell differentiation and function94.

As indicated above, a crucial role for mTOR in CD4+ T cell differentiation was identified by 

studying mice in which Mtor expression was selectively deleted in T cells62. It was found 

that under TH1, TH2 and TH17 cell-polarizing conditions, the mTOR-deficient T cells failed 

to differentiate into the respective CD4+ effector T cell subsets and instead became FOXP3+ 

TReg cells62. These findings are consistent with previous studies showing that rapamycin 

promotes the generation of TReg cells both in vitro and in vivo95–97, as well as other studies 

suggesting that activation of the AKT–mTOR pathway through sphingosine-1-phosphate 

impedes the development of thymus-derived TReg cells during thymic generation and 

instead favours the generation of TH1 cells98. Furthermore, activation of the AKT–mTOR 

pathway by overexpression of a constitutively active form of AKT inhibits TReg cell genera-

tion99. These findings are consistent with observations that TReg cells rely less on glycolysis 

and more on fatty acid metabolism52.

Interestingly, several reports cite the necessity of mTORC1 activity in promoting TReg cell 

function67,100. However, this seems to be at odds with the findings that Mtor deletion and 

rapamycin treatment promote TReg cell function. To reconcile these observations, we have 

proposed that decreased mTOR activity promotes the generation of ‘memory’ TReg cells and 

that high mTOR activity may be necessary for promoting the function of ‘effector’ TReg 

cells101. Such a model is consistent with the observation that strong TCR engagement in the 
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presence of transforming growth factor-β (TGFβ) promotes TReg cell generation, even 

though it also promotes increased mTOR activity (J.D.P., unpublished observations).

Targeting metabolism for immunoregulation

It is well established that potent inhibition of T cells can be achieved by blocking the 

activation of NFAT, NF-κB and AP-1. Indeed, the robust ability of the cal-cineurin 

inhibitors cyclosporine A and FK506 to inhibit T cell responses has revolutionized 

transplantation102. However, blocking NFAT activation also inhibits tolerance and the 

activation of TReg cells103. Thus, more selective pharmacological agents are needed to 

specifically target effector T cell responses. As HIF1α, MYC, AMPK and mTOR have 

crucial and selective roles in defining T cell function and fate, they represent novel and 

specific targets for immune modulation.

As an example, a recent drug screen identified the cardiac glycoside digoxin as an inhibitor 

of HIF1α104. Interestingly, digoxin has been shown to be a potent inhibitor of TH17 cell 

differentiation105,106. Digoxin treatment selectively inhibits TH17 cell generation without 

affecting the differentiation of other effector T cell subsets. Furthermore, digoxin — as well 

as other RORγt-specific inhibitors — mitigates TH17 cell-mediated autoimmune disease in 

mice105,107. These studies showed that digoxin blocks RORγt activity. However, in light of 

the ability of digoxin to inhibit HIF1α, it is possible that the abrogation of HIF1α-induced 

gene expression might also be contributing to the reduced TH17 cell response. Similarly, 

direct targeting of MYC could be a potent immunosuppressive strategy. Indeed, it has been 

shown that inhibitors of bromo domain and extra-terminal domain (BET) protein and MYC 

protein can suppress CD4+ T cell-mediated cytokine production and autoimmunity108.

Targeting AMPK as a means of regulating T cell function has also been studied. The AMPK 

agonist 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) has been used to 

decrease disease severity in mouse models of acute and chronic dextran sulphate sodium-

induced colitis109. This was associated with decreased TH1 and TH17 cell responses109. In 

another study, AICAR treatment mitigated disease severity in experimental autoimmune 

encephalomyelitis (EAE)110. This effect was associated with a reduction in the levels of TH1 

cell-associated cytokines (IFNγ and TNF) and an increase in the expression of IL-4 and 

IL-10 (REF. 110). Furthermore, compared with control-treated mice, treatment with another 

AMPK activator, metformin, reduced GLUT1 expression and increased the percentage of 

airway-infiltrating TReg cells in a mouse model of asthma52. Likewise, metformin has been 

shown to decrease the TH17 cell response and mitigate disease severity in EAE111. Overall, 

these data suggest that targeted activation of AMPK may prove to be a potent strategy for 

treating inflammatory diseases. Additionally, metformin treatment enhances memory T cell 

generation in mice84 and therefore AMPK activation might also have a role in potentiating 

vaccine efficacy.

Targeting mTOR has proven to be an effective means of suppressing immune responses. 

Indeed, the mTORC1 inhibitor rapamycin has been used to prevent transplant 

rejection102,112. Interestingly, the mechanism of action of rapamycin was initially thought to 

be related to its ability to inhibit T cell proliferation9. In fact, rapa mycin is a relatively poor 
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inhibitor of proliferation and the effectiveness of this agent is most probably owing to its 

ability to inhibit effector T cell metabolism, inhibit effector T cell differentiation and 

promote TReg cell differ-entiation113. Along these lines, it should be noted that whereas 

rapamycin was initially thought to only inhibit mTORC1 activity, it is clear that — 

particularly under conditions of prolonged exposure — rapamycin can also inhibit mTORC2 

activity114. This might explain the ability of rapamycin to promote the generation of TReg 

cells. Alternatively, given that rapamycin can promote the generation of memory T cells, 

investigators are exploring the use of rapamycin to enhance vaccine responses. Indeed, this 

strategy has proven effective in a non-human primate model of vaccinia virus 

vaccination115. Whereas rapamycin (and other rapalogues) inhibit mTOR activity by 

sterically blocking the formation of the mTOR complex, mTOR kinase inhibitors have also 

been developed more recently. These agents are designed to inhibit the activity of both 

mTORC1 and mTORC2 (REFS. 116, 117 ). These inhibitors are designed to become new 

cancer therapies but their use in regulating immune responses should also be explored.

Future perspectives

In this Review, we have demonstrated that metabolic signalling programmes are integral to 

T cell activation, differentiation and function. Thus, whereas classical immunotherapies 

target ubiquitous pathways of T cell activation, we propose a more selective means of 

regulating immune responses by targeting specific metabolic signalling programmes. As 

such, we believe that selective metabolic inhibitors might prove to be clinically useful 

immunomodulators. In the case of immunosuppression, such agents would have the 

advantage of inhibiting effector T cell function but also enhancing TReg cell function. For 

example, whereas calcineurin inhibitors (such as cyclosporine A and FK506) block the 

generation of TReg cells, mTOR inhibition does not118. To this end, treating liver transplant 

recipients with siro-limus (an mTOR inhibitor), rather than FK506, increases the number of 

liver FOXP3+ TReg cells119. Likewise, a calci neurin inhibitor-free regimen (using 

sirolimus) has been developed to promote stable mixed donor chimer-ism after non-

myeloablative allogeneic haematopoietic stem cell transplantation for adult sickle cell 

disease120. Furthermore, there seems to be promise in the strategy of directly inhibiting 

glycolysis. In mouse models, 2-deoxy-d-glucose has been shown to prevent the development 

of EAE and to promote TReg cell generation52,54, as well as promoting CD8+ memory T cell 

generation71. Likewise, inhibitors of glutamine metabolism — which are being developed as 

anticancer agents — might turn out to be potent inhibitors of effector T cell responses121. 

Therefore, future work should not be focused on indiscriminate switching on or off of T cell 

responses but rather on modulating T cell responses depending on what immune mechanism 

is required. This therapeutic approach may harness the most potent response and minimize 

undesired effects.
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Glossary

Glucose transporter type 1 
(GLUT1)

A unidirectional transporter that facilitates the transport of 

glucose across the plasma membrane

Lactate dehydrogenase A 
(LDHA)

An enzyme that catalyses the conversion of pyruvate to 

lactate

Hexokinase 2 An enzyme that initiates the first reaction of glycolysis by 

phosphorylating glucose to produce glucose-6-phosphate

Pyruvate dehydrogenase 
kinase 1 (PDK1)

An enzyme that phosphorylates and inactivates pyruvate 

dehydrogenase, thereby inhibiting the catalysis of pyruvate 

to acetyl-CoA and preventing the initiation of the 

tricarboxylic acid cycle

Phosphofructokinase 1 A rate-limiting enzyme of glycolysis that requires ATP to 

convert fructose-6-phosphate into fructose-1,6-

bisphosphate

Carnitine 
palmitoyltransferase 1A 
(CPT1A)

A rate-limiting mitochondrial enzyme that is necessary for 

fatty acid oxidation. CPT1A catalyses the transfer of the 

acyl group of long-chain fatty acids to acylcarnitine, which 

allows for its transport from the cytosol to the 

mitochondria

Autophagy An evolutionarily conserved process in which acidic 

double-membrane-bound vacuoles sequester intracellular 

contents (such as damaged organelles and 

macromolecules) and target them for degradation through 

fusion with secondary lysosomes

α-ketoglutarate A key intermediate of the tricarboxylic acid cycle that can 

be derived from glutaminolysis
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Figure 1. Canonical T cell signalling pathways: signal 1 and signal 2
a | Signal 1 (T cell receptor (TCR) engagement) in the setting of signal 2 (co-stimulation; 

depicted as CD28) leads to full T cell activation122. This is facilitated by the activation of 

three canonical transcription factors — nuclear factor-κB (NF-κB), activator protein 1 

(AP-1) and nuclear factor of activated T cells (NFAT)6,7,123,124. This, in turn, leads to the 

expression of multiple cytokines, chemokines and cell surface receptors, all of which 

promote T cell activation and proliferation3. Alternatively, TCR recognition alone (in the 

absence of co-stimulation) leads to an ‘off’ signal in the form of T cell anergy5,125. Under 

these conditions, NFAT is activated in the absence of full AP-1 activation, which leads to 

the expression of genes such as diacylglycerol kinase-α (DGKA) and the E3 ubiquitin-

protein ligases CBLB and GRAIL (which encodes gene related to anergy in lymphocytes; 

also known as RNF128), which inhibit full T cell activation3. b | Upon T cell activation, 

cytokines in the T cell microenvironment determine the outcome of antigen recognition with 

regard to effector T cell differentiation51. As shown for CD4+ T cells, interleukin-12 

(IL-12), IL-4 and IL-6 activate signal transducer and activator of transcription 4 (STAT4), 

STAT6 and STAT3, respectively. This leads to the expression of T-bet, GATA-binding 

protein 3 (GATA3) and retinoic acid receptor-related orphan receptor-γt (RORγt), which 

facilitates the generation of T helper 1 (TH1), TH2 and TH17 cells. Alternatively, 

transforming growth factor-β (TGFβ) signalling through SMAD2-SMAD4 promotes the 

expression of forkhead box P3 (FOXP3) and the generation of regulatory T (TReg) cells. 

DAG, diacylglycerol; IKK, inhibitor of NF-κB kinase; InsP3, inositol-1,4,5-trisphosphate; 

LAT, linker for activation of T cells; MAPK, mitogen-activated protein kinase; MAPKK, 

MAPK kinase; PI3K, phosphoinositide 3-kinase; PKCθ, protein kinase Cθ; PLCγ, 
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phospholipase Cγ; PtdInsP2, phosphatidylinositol-4,5-bisphosphate; SLP76, SH2 domain-

containing leukocyte protein of 76 kDa (also known as LCP2); ZAP70, ζ-chain-associated 

protein kinase of 70 kDa.
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Figure 2. Integrating immunological and metabolic signalling programmes to promote effector T 
cell generation and function
The figure shows the coordinated integration of canonical T cell signalling (blue) and 

metabolic regulators (green) to promote the generation and function of effector T cells. In 

this perspective, hypoxia-inducible factor 1α (HIF1α) and MYC are just as integral to T cell 

effector generation as nuclear factor of activated T cells (NFAT), activator protein 1 (AP-1) 

and nuclear factor-κB (NF-κB). Similarly, mammalian target of rapamycin (mTOR) 

signalling is as crucial in effector T cell activation and differentiation as the activation of 

mitogen-activated protein kinase (MAPK), protein kinase Cθ (PKCθ) and calcineurin. 

Thicker arrows indicate the activation of metabolic programmes. Thinner arrows indicate 

signalling cascades. DAG, diacylglycerol; FOXP3, forkhead box P3; GLUT, glucose 

transporter; IKK, inhibitor of NF-κB kinase; IL-6R, interleukin-6 receptor; InsP3, 

inositol-1,4,5-trisphosphate; LAT, linker for activation of T cells; MAPKK, MAPK kinase; 

PI3K, phosphoinositide 3-kinase; PKCθ, protein kinase Cθ; PLCγ, phospholipase Cγ; 

PtdInsP2, phosphatidylinositol-4,5-bisphosphate; SLP76, SH2 domain-containing leukocyte 
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protein of 76 kDa (also known as LCP2); STAT, signal transducer and activator of 

transcription; TCR, T cell receptor; TH cell, T helper cell; ZAP70, ζ-chain-associated protein 

kinase of 70 kDa.
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Figure 3. Integrating immunological and metabolic signalling programmes to promote CD8+ 

memory and CD4+ regulatory T cell generation
This figure depicts the integration of the canonical T cell signalling pathways (blue) and 

metabolic regulators (green for activated and red for inhibited). AMP-activated protein 

kinase (AMPK) activation promotes metabolic programmes that enhance the generation of 

memory and regulatory T (TReg) cells. Alternatively, it is the inhibition of mammalian target 

of rapamycin (mTOR) and hypoxia-inducible factor 1α (HIF1α) activation that promotes the 

generation of CD8+ memory or CD4+ regulatory TReg cells. From this perspective, memory 

T cells and TReg cells share similar metabolic requirements. Thicker arrows indicate the 

downstream consequences of AMPK activation, and of the inhibition of mTOR and HIF1α. 

AP-1, activator protein 1; DAG, diacylglycerol; FOXP3, forkhead box P3; IKK, inhibitor of 

NF-κB kinase; InsP3, inositol-1,4,5-trisphosphate; LAT, linker for activation of T cells; 

LKB1, liver kinase B1; MAPK, mitogen-activated protein kinase; MAPKK, MAPK kinase; 

NFAT, nuclear factor of activated T cells; NF-κB, nuclear factor-κB; PI3K, 

phosphoinositide 3-kinase; PKCθ, protein kinase Cθ; PLCγ, phospholipase Cγ; PtdInsP2, 

phosphatidylinositol-4,5-bisphosphate; SLP76, SH2 domain-containing leukocyte protein of 

76 kDa (also known as LCP2); TCR, T cell receptor; TH cell, T helper cell; ZAP70, ζ-chain-

associated protein kinase of 70 kDa.
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Table 1

A summary of metabolic pathways and molecules

Metabolic process Description Substrate(s) Crucial components

Glycolysis • A metabolic process that 
results in the catabolism of 
six-carbon sugars into two 
molecules of pyruvate

• The pyruvate can be 
converted into lactate or 
further catabolized in the 
TCA cycle

Glucose • GLUT1, GLUT3 or 
GLUT4 (for glucose 
uptake)

• Hexokinase 2

• Phosphofructokinase 1

• Pyruvate kinase

• Lactate dehydrogenase A

• PDK1

TCA cycle A series of enzyme-catalysed chemical 
reactions that result in the reduction of 
NAD+ molecules, which can be 
substrates of the electron transport chain 
during oxidative phosphorylation

Acetyl-CoA (synthesized 
from sugars, lipids or amino 
acids)

• Pyruvate dehydrogenase

• Citrate synthase

• α-ketoglutarate 
dehydrogenase

Oxidative phosphorylation Oxidation of energy intermediates 
during the electron transport chain 
establishes a proton gradient across the 
mitochondrial inner membrane, which 
drives ATP synthesis

• NADH

• FADH2

• Oxygen

Fatty acid oxidation Catabolism of fatty acids into acetyl-
CoA, which can be further broken down 
in the TCA cycle for ATP synthesis in 
the electron transport chain

Fatty acids • CPT1A

Glutaminolysis • Catabolism of the amino 
acid glutamine for energy 
generation

• Yields pyruvate or 
intermediates of the TCA 
cycle

Glutamine • CD98 (for glutamine 
uptake)

• Glutaminase

• α-ketoglutarate 
dehydrogenase

Fatty acid synthesis Anabolic process leading to the 
generation of fatty acids from acetyl-
CoA and malonyl-CoA precursors

• Acetyl-CoA

• Malonyl-CoA

• ACC1

• SREBPs

ACC1, acetyl-CoA carboxylase 1; CD98, a heterodimeric glutamine exchanger comprising SLC3A2 and SLC7A5; CoA, coenzyme A; CPT1A, 
carnitine palmitoyl-transferase 1A; GLUT, glucose transporter; PDK1, pyruvate dehydrogenase kinase 1; SREBPs, sterol regulatory element-
binding proteins; TCA cycle, tricarboxylic acid cycle.
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Table 2

Regulators of metabolism are also regulators of T cell differentiation and function

Regulator Description Metabolic function T cell function

MYC Transcription factor • Drives cell proliferation, cell 
growth and apoptosis

• Enhances glycolytic and 
glutaminolytic metabolism

• Activated upon TCR stimulation11

• Required for TCR-induced proliferation 
and activation of T cells11

HIF1α Transcription factor Under hypoxic conditions, regulates gene 
expression necessary for survival in low 
oxygen primarily by promoting metabolic 
switch to glycolysis

• Activated upon TCR stimulation11

• Necessary for TH17 cell differentiation 
and survival54–57

• Induces transcription of Rorc (which 
encodes RORγt) and mediates FOXP3 
degradation54,55

• Sustains cytotoxic response in CD8+ T 
cells75,76

AMPK Serine/threonine kinase • Senses the intracellular AMP/ATP 
ratio

• During low ATP levels, promotes 
ATP conservation by inhibiting 
cell cycle progression and 
mitochondrial biogenesis, and also 
regulates metabolic switch to 
catabolism

• Activated upon TCR stimulation78

• Required for CD8+ memory T cell 
generation80,92

mTOR Serine/threonine kinase Regulates cell growth, proliferation, survival 
and metabolic gene expression, resulting in 
enhanced glycolysis and lipid biosynthesis

• Activated upon TCR stimulation75

• Regulates TH1, TH2, TH17 and TReg cell 
differentiation62–67

• Necessary for CD8+ effector T cell 
generation66,75

AMPK, AMP-activated protein kinase; FOXP3, forkhead box P3; HIF1α, hypoxia-inducible factor 1α; mTOR, mammalian target of rapamycin; 
RORγt, retinoic acid receptor-related orphan receptor-γt; TCR, T cell receptor; TH cell, T helper cell; TReg cell, regulatory T cell.
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