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Abstract

Interactions between polar atoms are challenging to model because at very short ranges they form 

hydrogen bonds (H-bonds) that are partially covalent in character and exhibit strong orientation 

preferences; at longer ranges the orientation preferences are lost, but significant electrostatic 

interactions between charged and partially charged atoms remain. To simultaneously model these 

two types of behavior, we refined an orientation dependent model of hydrogen bonds [Kortemme 

et al. 2003] used by the molecular modeling program Rosetta and then combined it with a 

distance-dependent Coulomb model of electrostatics. The functional form of the H-bond potential 

is physically motivated and parameters are fit so that H-bond geometries that Rosetta generates 

closely resemble H-bond geometries in high-resolution crystal structures. The combined potentials 

improve performance in a variety of scientific benchmarks including decoy discrimination, side 

chain prediction, and native sequence recovery in protein design simulations, and establishes a 

new standard energy function for Rosetta.
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1 INTRODUCTION

The accurate modeling of interactions between polar atoms remains an important problem 

that impacts efforts to predict and design macromolecular structure. Hydrogen bonds (H-

bonds) and H-bond networks play a central role in stabilizing polar interactions, and 

considerable effort has been put into building and testing computational procedures for 

modeling them.1–6 The properties that make H-bonds essential for biological function also 

make them challenging to model. H-bonds, like covalent bonds, form geometrically specific 

interactions that help biomolecules adopt conformations necessary for binding and catalysis. 

However, the orientation preferences of H-bonds are weaker than those of covalent bonds, 

allowing a diversity of interaction geometries, and unlike covalent bonds, H-bonds are weak 

enough that they can easily break and form during a folding or binding event. The distance 

and orientation of a specific H-bond in a well-folded protein depends not only on the 

energetic preferences of that bond, but on all the covalent and non-covalent forces that 

determine the low free energy conformation of the protein. These challenges mean existing 

forcefields often under- or double-count the forces contributing to H-bond formation. Recent 

progress in computational methods now allow us to empirically evaluate the performance of 

existing H-bond models and adjust them to improve recapitulation of local geometries as 

well as overall structure prediction accuracy, which we undertake here for the H-bond model 

in the Rosetta forcefield.

Three primary strategies have been developed for modeling H-bonds. First, quantum 

mechanics (QM) calculations can capture the partial covalent bond character of H-bonds, 

but are generally too computationally intensive to use when scoring large numbers of 

alternative conformations of a macromolecule.7–9 Second, many programs for 

macromolecular simulations use an electrostatic model to evaluate H-bonds.10–16 These 

models typically fix isotropic partial charges to atoms and evaluate Coulomb’s law over all 

pairs of charges. In this strategy a H-bond is rewarded because the hydrogen has a partial 

positive charge that interacts favorably with the negatively charged acceptor. This strategy is 

powerful because it applies to a diverse array of chemical types and captures some of the 

known geometric preferences of H-bonds, such as the preference to place the positively 

charged hydrogen directly between the negatively charged acceptor and donor (i.e. AHD = 

180°, in Fig. 1). Such atom-centered electrostatic models, however, cannot capture 

geometric preferences that arise from a non-uniform distribution of electrons on the 

acceptor. A clear example of this occurs with sp2-hybridized oxygens, where an atom-

centered electrostatic model prefers to align the donor, hydrogen, acceptor, and carbon 

bound to the acceptor (labeled BB, in Fig. 1) for a favorable interaction between the donor-

hydrogen dipole and the acceptor-acceptor base dipole. QM calculations and examinations 

of H-bonds in high-resolution crystal structures indicate that the most favorable H-bonds 

instead align the donor-hydrogen dipole with a vector defined by the acceptor and its lone 

pair electrons.17,18 One could capture these preferences in an electrostatic model by placing 

partial charges on the lone pair positions19 or using multipole expansion about the atomic 

centers,20–22 but these are not standard approaches.
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The third strategy for modeling H-bonds includes explicit terms in the energy function that 

depend on the distance and relative orientation of the atoms forming the H-bond, for 

example in classic forcefields such as Lippincott and Schroeder23, structure evaluation 

programs such as DSSP24 and WHAT-IF25, in structure prediction programs such as 

Rosetta17, SMoG26, YETI27, Xplor-NIH28, ligand docking programs such as Hammerhead/

Surflex29, and semi-empirical forcefields such as ABEEMσπ/MM15, MM330–32, and 

PM633, each of which were designed to capture the partial covalent character of H-bonds. 

These and other terms in molecular energy functions are called knowledge-based if they are 

non-parametrically derived from the observed frequencies of local geometric features (e.g. 

H-bond distances and angles) in high-resolution crystal structures, or called empirical if a 

parametric functional form is fit so structure predictions recapitulate experimental data. 

Prior to this work, the modeling program Rosetta used knowledge-based energy terms to 

evaluate hydrogen-acceptor distances, donor-hydrogen-acceptor angles, and hydrogen-

acceptor-acceptor base angles in H-bonds17. These terms recapitulate distance and 

orientation preferences of H-bonds from QM simulations, and improve Rosetta’s 

performance in a variety of scientific benchmarks. With this H-bond model, Rosetta has 

been used to predict and design a variety of macromolecular structures, including novel 

protein folds and assemblies.34–39 However, many modeling problems, especially those 

involving polar interactions, remain challenging. For example, for Rosetta-designed protein-

protein interactions, the more extensive the H-bond network, the more likely they were to 

fail in the laboratory.40 For these reasons, we revisited the H-bond model in Rosetta to see if 

we could improve its ability to create native-like H-bond geometries and improve 

performance in large-scale benchmarks that depend on energy function accuracy.

Two observations suggest that it should be possible to improve the current knowledge-based 

H-bond model in Rosetta, here denoted as HBv1 (H-Bond potential, version 1). First, some 

orientation preferences noticed in the original H-bond study by Kortemme and Morozov 

were not encoded in Rosetta, most notably, the preference for H-bonds to align with the lone 

pair electrons on the oxygen. This preference is seen in the distribution of the BAχ dihedral 

angle (Fig. 1) defined by the hydrogen atom, the acceptor atom, the acceptor base, and an 

atom covalently bound to the acceptor base; for angles of 0° or 180°, the hydrogen is co-

planar with the lone pair electrons. Kortemme and Morozov found more H-bonds with BAχ 

near 0° and 180°, than with BAχ near 90°. This preference, however, was not implemented 

in the Rosetta energy function.

Second, we hypothesized that since HBv1 is a knowledge-based potential derived solely 

from native H-bond geometries, combining it with the rest of the energy function leads to 

double counting that may produce non-physical H-bond geometries. For instance, in Rosetta 

simulations, both the HBv1 and the van der Waals terms influence the distribution of H-bond 

distances. Correcting model interaction by reducing the dissimilarity between local Rosetta 

and native H-bond distribution—to create empirical potentials—has recently become 

possible for two reasons: We have developed sophisticated sampling protocols, 

incorporating stochastic sampling and gradient-based minimization of both backbone and 

side chain torsion angles, enabling efficient sampling of the intrinsic preferences of the 

energy function,41 and we have developed a computational framework for rapidly exploring 

O’Meara et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and comparing distributions of local geometric features, facilitating evaluating the physical 

realism of Rosetta generated H-bonds.42

In this study, we not only reevaluate the distance and angle dependent functions used within 

HBv1, but also reexamine the decision to use an explicit H-bond term rather than an atom-

centered electrostatic model. As mentioned above, an explicit H-bond term can capture 

orientation preferences at close range, but an electrostatic model can provide other 

advantages, including favorable interactions at longer ranges, potentially allowing H-bond 

donors and acceptors to more easily find each other during conformational sampling, and 

providing repulsive forces between atoms of like charge, where HBv1 provides only 

attractive forces. For example, in previous studies with Rosetta, HBv1 produced non-native 

oxygen-oxygen contacts that would be destabilized under an electrostatic model.43 Other 

work with Rosetta suggests that adding electrostatics to HBv1 can improve performance in 

large-scale scientific tests, such as decoy discrimination.18 Thus, we also explore combining 

the explicit H-bond model in Rosetta with an electrostatics model. Other laboratories, 

however, have reported mixed results when combining explicit H-bond terms with an 

electrostatic model.11,27,44–48 Integrating these closely related models to produce native-like 

H-bond geometries is a significant challenge, but gives an opportunity to capture the dual 

nature of H-bonds: allowing covalent-bond-like orientation preferences while adopting a 

wide array of nearly isoenergetic configurations.

To evaluate H-bond and electrostatic models we used two types of computational tests. First, 

we examined how well low energy structures generated by Rosetta under various energy 

functions recapitulated properties of native H-bonds; we call these feature recovery tests.42 

Feature recovery tests not only report the intrinsic orientation preferences of a particular H-

bond model, but also probe if the model is appropriately balanced with other terms in the 

energy function. Second we evaluated large-scale scientific benchmarks for structure 

prediction and design, including discriminating native from non-native protein 

conformations, predicting free energies of mutation, predicting protein side chain and loop 

conformations, and recovery of native-like sequences when performing protein design 

simulations on native protein backbones.

Using the feature recovery tests and scientific benchmarks we evaluated various functional 

forms for the explicit H-bond model and tested this model in conjunction with a distance-

dependent Coulomb model of electrostatics. We show improved feature recovery test results 

for an H-bond model that includes additional orientation constraints for sp2 and sp3 

acceptors. Using an electrostatics model alone generates H-bonds with non-native 

geometries, but combining explicit H-bond potentials with an electrostatics model can 

produce native-like geometries if the H-bond model is reparameterized to account for the 

new forces generated by the electrostatic potential. The final combined covalent-electrostatic 

model of H-bonding improved performance in all of the scientific benchmarks.
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2 RESULTS

2.1 Measuring recapitulation of native feature distributions

To characterize H-bonding preferences of native conformations we used the Top8000 chains 

set49,50 curated from X-ray crystal structures deposited in the Protein Databank.51 We 

placed H-atoms with Reduce52 and filtered at the 70% homology level and by the 

availability of electron density maps, yielding ~1.3 million intra-protein H-bonds which we 

call the Native set. Then, using Rosetta’s Feature Analysis framework,42 we used the 

ReportToDB RosettaScripts Mover to extract geometric observables (features) including H-

bond degrees of freedom (Fig. 1), donor and acceptor chemical types (S.4.1), and primary 

sequence separation (SeqSep) into a relational database. Finally, using feature analysis R 

scripts, we sampled feature instances from the feature database, derived feature distributions 

using kernel density estimation, and visualized them using grammar of graphics.53,54

To characterize H-bonding preferences of candidate energy functions we optimized each 

native conformation with Rosetta’s FastRelax protocol,41 which iterates between discrete 

sidechain optimization and quasi-Newton minimization while ramping up Lennard-Jones 

repulsion. FastRelax typically displaces a native structure ~1.5 Å all-atom RMSD from its 

starting coordinates (Tbl. 1). Assuming the experimentally observed crystal structure is at a 

minimum in nature’s energy function, systematic discrepancies between Rosetta-relaxed the 

Native feature distributions reveal problems with the energy function.

Sections (2.3–8) describe H-bond feature discrepancies identified in HBv1, and corrected in 

a new model, HBv2.

2.2 HBv1 and HBv2 Functional Forms

Given donor and acceptor, the HBv1 model is the sum of 3 terms of the AHdis, BAH, and 

AHD degrees of freedom, clipped at 0 and down weighted by solvent exposure of the sites 

(wenv ∈ [0.2, 1]),

(1)

The model parameters depend on the hybridization of the acceptor (sp2, sp3, or ring), 

whether the sites are backbone or sidechain, and the sites’ sequence separation. BAH and 

AHD functions switch between a “long” range and “short” range form depending on the 

length of the H-bond (AHdis). Further details about HBv1, including cross-term fade 

functions (2.8, S.3.22) and the backbone/sidechain-exclusion rule (2.6) are discussed below.

To more explicitly capture the preference of H-bonds to align with the lone pair electrons on 

acceptors, the HBv2 model replaces  with a term  (Fig. 2) that evaluates both 

BAH and BAχ and replaces the hard min with a smooth min, s(x) = {x, −2.5x2 + 0.5x − 0.025, 

0} with breaks at −0.1 and 0.1,

(2)
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HBv2 expands the chemical types based on chemical groups (S.4.2). It eliminates 

dependence on sequence separation and the separate AHD and BAH functions for short and 

long values for AHdis

2.3 Modeling sp>2 hybridized acceptors

To investigate sp2 acceptor H-bond angle preferences, we compared the joint (BAH, BAχ) 

distribution for Native against HBv1, which does not model the BAχ angle, visualized by the 

density-preserving Lambert-azimuthal projection (Fig. 2D, S.3.2).

Overall, the Native distribution (Figs. 3,4,5B, S.3.1, S.3.3) concentrates density in two lobes 

in the sp2 plane consistent with the planar orientation of the lone-pair orbitals. For some 

chemical types, such as carboxylate-hydroxyl (D/E to S/T) and carboxamide-hydroxyl (N/Q 

to S/T), we observe equal density for the trans and cis orbitals, while for others, such as 

carboxyl-guanidino (D/E to R) and backbone-backbone with SeqSeq > 5, the trans orbital 

receives more density (Fig. 3,4). It was not immediately obvious whether the observed 

differences between the two orbitals would require that the energy function assign different 

energies to them; perhaps other factors could explain the differences. For example, bidentate 

salt-bridges (D/E to R)55 may explain carboxyl-guanidino’s trans orbital preference and the 

predominance of anti-parallel β-sheets may explain backbone/backbone’s cis orbital 

preference.

HBv1 recapitulates BAH angle preferences, but the BAχ distribution bears very little 

resemblance to the Native distribution: The carboxylate-hydroxyl BAχ distribution is flat, 

giving a “donut” shape plot (S.3.3). The carboxylate-amino (D/E to K) distribution is out-of-

phase, peaking at 90° and 270° with troughs at 0° and 180°. The backbone-backbone 

distribution is similarly distorted. The fact that the Native BAχ distribution does not emerge 

from the HBv1 energy function suggests the combination of the , and 

functions and sterics is insufficient. Surprisingly, we found for HBv2 that a simple, 

symmetric potential (Fig. 2) reproduced not only the in-plane preference, but also interesting 

features of the Native sp2 distributions in a range of contexts. It reproduced the relative in-

plane preferences for carboxylate-hydroxyl versus carboxamide-hydroxyl H-bonds; the 

“beetle” shape in the Lambert-azimuthal projection for long-range backbone-backbone H-

bonds (Fig. 4); and the strong preference for a BAχ dihedral of 180° that carboxyl-guanidino 

H-bonds show (S.3.1). That is, sterics (broadly construed as “the shape of chemical groups”) 

explains a significant fraction of the differences between the distributions of different 

acceptor/donor chemical types. We parameterize HBv2 consistently across all sp2 hybrized 

acceptors, allowing steric interactions between them and their donors to form (with some 

exceptions) native-like H-bond distributions.

Consider backbone-backbone H-bonds. HBv1, which was formulated as a knowledge-based 

potential, uses different  terms for backbone-backbone contacts with a sequence 

separation > 4, = 4, and < 4. The terms have minima at 158°, 150°, and 123°, and score term 

weights 1, 0.5, and 0.5, respectively. In contrast, HBv2 uses the same  term (Eq. 2) 

for all sp2 acceptor H-bonds yet, to a high degree, recapitulates the BAH distributions 
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conditional on sequence separation (Fig. 4, S.3.8). Since comparing conditional feature 

distributions for near-native conformations does not reveal inter-class energetic preferences 

(e.g. should helical H-bonds be “worth” more than β-sheet H-bonds?), we make HBv2 assign 

equal minimum energy to each H-bond (S.3.9) and assess this decision through structure 

prediction scientific benchmarks discussed below.

HBv2 offers a cautionary example about double counting in knowledge-based potentials. If 

we had set out to fit non-parametric BAχ potentials for each chemical context we would have 

encoded steric effects. The dynamic range for carboxyl-hydroxyl BAχ energies would have 

been higher than those for carboxamide-hydroxyl contacts and the trans orbital would have 

been preferred over the cis orbital in carboxyl-guanidino contacts. When combined with 

sterics already present in our sidechain geometries, this would have “double counted” the 

trans orbital preference and produced the wrong distributions. Additionally, to be 

computationally feasible, macromolecular prediction protocols typically introduce bias 

relative to the canonical ensemble for the energy function, for example, by including 

coordinate minimization, or terminating sampling before proper mixing has been achieved. 

Therefore using empirical methods to test the energy function in the context of relevant 

prediction protocols ensures the energy function is useful in practice.

Surprisingly, use of the HBv2 model improves the close Hα-O distance distribution across β-

strands (S.3.26), which some have attributed to weak carbon H-bonding.56–59 This suggests 

that the sp2 character of β-sheet H-bonds may contribute to β-strand shearing and shorten 

Hα-O distances.

A further benefit of a simple model, such as the  term, is that identifying contexts 

with poor recapitulation can suggest further energy function refinements. For example, 

native H-bonds with sidechain donors and backbone acceptors have less sp2 character than 

those to sidechain sp2 acceptors (S.3.1). This may result from averaging over constrained 

secondary-structure-dependent motifs such as ST-turns. HBv2 should show these motif 

effects as it consists of relaxed-natives; however, it over-accentuates the BAχ angular 

dependence. Intriguingly, backbone-lysine contacts, which illustrate this failure (S.3.4), 

should be mediated by electrostatics due to the formal charge and relative flexibility of 

lysine sidechains, which HBv1 and HBv2 model only at the residue level. When combined 

with the Elec model (Sec 2.10–11), the sp2 character is reduced across the board, making the 

ElecHBv2 more close to the Native distribution.

2.5 Modeling sp3 hybridized acceptors

In both HBv1 and HBv2, the acceptor type determines how BAH is measured. In HBv1, the 

BAH for hydroxyl (sp3) acceptors is measured as the angle between the donor hydrogen, the 

heavy-atom acceptor (e.g. OG on serine) and the hydroxyl hydrogen (e.g. HG on serine) 

attached to the acceptor (Fig. 5A); the “base” is taken as the hydrogen instead of the carbon 

to which the hydroxyl oxygen was bound (e.g. CB on serine). The rationale for this decision 

was to avoid hydroxyl/hydroxyl H-bonds where the two hydrogens would both donate and 

the two oxygens would both accept.
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We compared the distributions of BAH and HAH angles (measured from CB and HG, 

respectively) from Native and HBv1. Surprisingly, HBv1’s BAH distribution matched the 

Native distribution better than the HAH distribution, despite HAH being explicitly modeled 

(S.3.10 and S.3.11). We were also curious whether we could see a preference for sp3-

hybridized acceptors to accept at the lone-pair positions in a way analogous to what we 

observed for sp2-hybridized acceptors. Since hydrogen atoms are invisible in crystal 

structures and their locations have to be inferred, we examined H-bonds only where the 

hydroxyl acted as an acceptor and where the location of a second nearby acceptor could 

unambiguously locate the hydroxyl hydrogen. We again relied on the Lambert-azimuthal 

projection, this time placing the hydroxyl hydrogen along the positive x-axis. Instead of 

observing two peaks in the distribution above and below the x-axis where the two sp3 lobes 

would be found, we found a single, broad distribution (Fig. 5B). In contrast to the Native 

distribution, the HBv1 distribution was too narrow and curved in the wrong direction.

We fit a new polynomial for the  function in EHBv2 for sp3 hybridized acceptors, 

again as a polynomial of cos(BAH). We also included a sinusoidal penalty term for locating 

the hydroxyl hydrogen near the donor hydrogen. For sp3 hybridized acceptors, the 

function uses the BAχ dihedral (e.g. defined by [Hγ, Cβ, Oγ, Hdon] for serine acceptors, Fig. 

5A):

(3)

The coefficients for the polynomial were fit while enforcing a derivative of 0° at BAH=180° 

(unlike the BAH polynomials used in HBv1), although the cos (BAχ) term adds a derivative 

discontinuity/numerical instability of its own. Our choice is for computational efficiency, 

and could be replaced with a term that examined the [HOH, O, Hdon] angle (Angle (2) in Fig. 

5A). The effects of this discontinuity seem mild, however, and are not discernable in the 

distributions produced by HBv2. The BAH, HA, and Lambert-azimuthal BAH/BAχ 

distributions for HBv2 match the Native distribution well (Fig. 5B, S.3.10, S.3.11).

2.6 Modeling hydroxyl donor behavior

We were surprised that the Native distributions of the χ2 dihedral angles for donor serines 

and threonines (controlling the placement of the hydroxyl hydrogen atom) did not cluster at 

the staggered dihedral angles of 60°, − 60°, and 180°. Instead, they were non-uniformly 

distributed (S.3.12), generally with a broad depression at χ2 = 0°, often with a peak at χ2~ ± 

90° and broad density between 90° and 270°. In HBv1, SER/THR χ2 was sampled only at 

the staggered values, missing many H-bonds that could have been formed to nearby 

acceptors. We expanded χ2 sampling, taking samples at 20° intervals starting from 0°.60 The 

resulting distribution for χ2 matched the Native distribution from structures generated in the 

AbRelax protocol in spite of having no explicit penalty for χ2 near 0°; sterics again seems 

the most likely source of the nonrandom shape of the χ2 distribution. This indicated that a 

special potential on χ2 to recover the observed distribution was not needed.

O’Meara et al. Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast to serine and threonine, tyrosine shows a striking preference to donate in the 

plane, as has been previously observed.61,62 In HBv1, TYR χ2 was sampled at 0° and 180° 

when building rotamers during packing, yielding the correct distribution, and we preserved 

that behavior in HBv2. We nevertheless added a term to the score function, yhh_planarity, 

which puts a sinusoidal penalty on χ2 to prevent H-bonds formed in the phenol plane from 

minimizing out of it.

In studying the way we modeled sp3 donors, we reevaluated HBv1’s rule that excludes 

sidechain/backbone H-bonds if the backbone group is already participating in a backbone/− 

backbone H-bond. The aim of this rule is to avoid forming H-bonds in α-helices where a 

serine on residue i donates to a backbone carbonyl on residue i − 3, or where a threonine on 

residue i donates to a backbone carbonyl on residue i − 4. Such intra-helical H-bonds are 

rarely observed in real proteins, but are commonly found in Rosetta designs made without 

this rule. We hoped HBv2’s more stringent geometric requirements would allow us to 

disable this rule, but these intra-helix H-bonds form with quite good H-bond geometries (S.

3.13–16). We therefore preserved this rule in HBv2.

2.7 Improving AHD distributions

In HBv1, the polynomial  defined the dependence on the AHD 

angle. The cosine transformation is the appropriate volumetric normalization for the AHD 

angle, and is more rapidly computed than the angle itself. The HBv1 polynomials, however, 

were fit with no restriction that their derivatives should be 0° at an AHD angle of 180°. This 

left a derivative discontinuity at 180°, the energy minimum, accumulating density at the pole 

when structures were minimized. Our attempts to constrain HBv2 polynomials to have a 

derivative of zero at AHD = 180° produced AHD distributions that insufficiently favored H-

bonds with AHD near 180° until we fit polynomials to AHD itself, , 

which produced native-like distributions (S.3.18 and S.3.19).

2.8 Improving AHdis distributions

The AHdis distance distributions generated by HBv1 differ from Native in both the location 

and shape of the peaks. In most cases, the peak locations matched those of the Native, with 

notable exceptions for hydroxyl donors, while the HBv1 distributions were consistently 

sharper (Fig. 6).

The HBv1 distributions also showed consistent artifacts with small, sharp peaks occurring at 

1.9 and 2.1 Å (S.3.20). We have previous encountered this type of artifact at the locations of 

derivative discontinuities; discontinuities frustrate gradient-based minimization, producing 

pileups.42 Now, HBv1 employed piecewise linear functions of the cross terms that range 

between zero and one (fade functions) to disable the interaction when any one dimension 

becomes too extreme and also to interpolate between the short- and long-range angle 

polynomials. The terms from (Eq. 1) have the following functional form,
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(4)

which is visually depicted in (S.3.22). Notably, the spline knots of  and 

coincided with the artifacts at 1.9, 2.1, and 2.3 Å and, indeed, using smooth polynomial fade 

functions partially reduced the artificial accumulation at these distances. Use of the fade 

functions, however, also increased the complexity of the H-bond functional form. For 

example, the H-bond energy depends on AHdis not only through  via poly(AHdis) but 

also through  via  and  via .

To mitigate the derivative discontinuities for HBv2, rather than simply smoothing the fade 

functions (through e.g. splines), we removed them, simplifying the functional form. Instead, 

for each term, at the boundary of acceptable geometry, we raised the energy sufficiently to 

overcome the contributions from the other terms and disable the interaction.

Kortemme (2003) introduced fading to switch between short and long range polynomials, 

based on their observation that the native AHD distribution is more concentrated at 180° for 

shorter H-bonds than longer H-bonds. They interpreted this to mean that in nature increasing 

H-bond length increases the tolerance for AHD angle deviations, which they encoded into 

the HBv1 H-bond functional form. To test this interpretation, we compared the cumulative 

distribution function (CDF) of the AHD angle conditional on AHdis for Native and natives 

relaxed with and without the fade functions (HBv1 and HBv2) (S.3.21). Surprisingly, HBv2 

was able to recapitulate the dependence of AHD on AHdis. We hypothesized that the 

dependence observed in Native could instead be caused by other terms in the energy 

function such as steric and electrostatic repulsion that exclude wide angles at short H-bonds.

To further investigate the origin of the distance dependence, we plotted the Native joint 

AHD × AHdis distribution. This distribution, when normalized so random interactions have a 

flat distribution, shows a low-density boundary separating H-bonds with short distances and 

linear angles from random contacts with greater distances and more bent angles (Fig. 7, red 

line). The slope of this trough suggests there is a trade off between good distances and good 

angles, so that for long H-bonds, to form an interaction requires a more linear AHD angle—

opposite the intuition used for HBv1. However, there is an excluded region covering very 

short and very bent contacts. The complete absence of interactions is consistent with stiff 

steric or electrostatic repulsion, perhaps between atoms covalently bonded to the atoms 

participating in the H-bond. The slope of the feasible boundary (Fig. 7, blue line) explains 

the observed angular dependence on AHdis. Since the AHD CDF could be reproduced in the 

absence of the face functions, we did not include them in HBv2, simplifying the functional 

form.
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With these structural changes to the HBv2 functional form, we manually fit the coefficients 

for the  polynomials for each of the donor/acceptor types. We iteratively modified the 

potential, generated relaxed native structures, and compared the resulting H-bond 

distributions against those of native structures (S.3.23, S.3.24). This allowed us to 

recapitulate the remarkable variation in distance distributions observed in native structures. 

For hydroxyl donors, we first had to extend the Rosetta atom typing because HBv1 treated 

hydroxyl donors as equivalent to amide donors. We also had to adjust the Lennard-Jones 

parameters to allow for the extremely close contacts (1.7 Å) that are preferred by hydroxyl 

donors. Though hydroxyl hydrogens are not visible in crystal structures and their locations 

must be inferred, the very-close contacts that they prefer are also visible in the shortened 

acceptor-heavyatom-donor distances (S.3.25); hydroxyl/− carboxylate heavyatom-acceptor 

distances are 0.2 Å closer than backbone-nitrogen/carboxylate heavyatom-acceptor 

distances, which matches the gap between the peaks at 1.7 Å vs 1.9 Å for hydrogen-acceptor 

distances.

2.9 Scientific benchmarks with the HBv2 model

Our aim in developing HBv2 was to improve the physical realism of Rosetta-generated H-

bonds, with a broader goal of improving protein structure prediction and design. To test the 

impact of HBv2 on the predictive capacity of Rosetta we performed 8 large-scale scientific 

benchmarks. The Decoy Discrimination test examined the ability of the energy function to 

discriminate near-native conformations from non-native conformations for a given 

sequence. This protocol differs from many standard decoy discrimination benchmarks in 

that it refines the starting decoys with the given energy function.63 This is a more rigorous 

approach that prevents an energy function from taking advantage of idiosyncrasies in the 

original models, however it does require a large amount of computer time (~200,000 CPU 

hours to test a single variation of an energy function). In the Rotamer Recovery 
benchmarks (One, Cluster, and All) the side chains were removed from native backbones 

and the side chain packing protocol in Rosetta was used to rebuild them. Performance was 

quantified by recording the fraction of rebuilt side chains that adopt the native rotamer. This 

was performed in three separate ways: rebuilding all the side chains at once (All), rebuilding 

small clusters of residues while holding neighbors in their native conformations (Cluster), 

or rebuilding only a single residue in the context of the native protein (One). In the 

Monomer and Interface Sequence Recovery benchmarks the sequence optimization 

protocol in Rosetta was used to design new sequences for a set of proteins or protein-protein 

interfaces and the designed sequences were compared to the native sequences. In the ddG 
benchmark we compared single residue mutation ΔΔG predictions against experimentally 

measured values.42,60 In the Relax Native benchmark we refined native structures with the 

FastRelax protocol and examined how far the structures moved from the crystal structure. 

To test how sensitive the scientific benchmarks were to the overall weight placed on the H-

bond energy term, we performed many of the benchmarks with a range of weights for the H-

bond term.

“Score12” has been the standard full atom score function in Rosetta for several years. 

During this period improvements to the energy function have not been made to the default 
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version of Score12, but rather have been accessible through command line flags that indicate 

the user wants to use a given change to the energy function. Here, we group these changes 

into the HBv1 energy function. These modifications include updated idealized coordinates 

for the amino acid side chains, switching to a new rotamer library compiled by Dunbrack 

and colleagues,64 adjustments to the knowledge-based torsion potential that remove 

derivative discontinuities,42 and reversion of EEF1 solvation parameters to their original 

values (S.5). As expected, HBv1 either outperformed Score12 or performed equally well in 

the scientific benchmarks, and served as the baseline for the changes described here.

Switching from HBv1 to HBv2 resulted in only modest changes to the scientific benchmarks 

(Tbl. 1). There were small improvements in all three of the side chain recovery benchmarks, 

while the decoy discrimination score was slightly better for HBv1 at H-bond weights below 

0.8 while there was a slight preference for HBv2 at an H-bond weight of 1 (Fig. 8). Overall, 

these results suggest that the benchmarks are not very sensitive to the fine details of H-bond 

geometries that are being considered here. Since the geometric features of H-bonds are more 

native-like using HBv2, and the benchmark results were largely unchanged, we consider 

HBv2 an improvement over HBv1.

2.10 Benchmarking an electrostatics potential in the absence of explicit H-bond potentials

As discussed in the introduction, an alternative approach for modeling H-bonds is to use 

Coulomb’s law to calculate electrostatic forces between atoms. This approach was not 

adopted in previous versions of Rosetta because there was evidence that it would not favor 

H-bonds with native-like geometries. To directly test this assumption, we introduced a 

Coulomb potential into Rosetta. To focus on short-range interactions like H-bonds and to 

retain the computational efficiency of the Rosetta energy function, we implemented a 

distance dependent dielectric model of electrostatics, where the dielectric constant is 

proportional to 1/r.65,66 We used partial charges from CHARMM 19.67 Additionally, we 

removed the low-resolution, knowledge-based “fa_pair” term from Rosetta that favored 

placing amino acids with opposite charges near each other. We call this model Elec; its 

implementation details are given in (S.4.3.2).

Given its simplicity and lack of orientation dependence, we were not surprised to see that 

the H-bond feature distributions for structures refined with the Elec energy function did not 

closely resemble the distributions from native structures. H-bond distances (AHdis) were 

longer and showed higher variance (Fig. 6). For sp2 acceptor H-bonds, the BAH, BAχ feature 

distributions lack the clean bimodal character observed in natives, though some motif 

specific effects that reflect steric constraints were recapitulated, for instance the preferred 

geometries of H-bonds in helices and sheets. For sp3 acceptor groups the BAH and BAχ 

distributions were broader than the Native feature distributions (Fig. 5B).

Despite the non-native geometries of H-bonds generated with the Elec potential, it 

performed well in many of the scientific benchmarks. Decoy discrimination, monomer 

sequence recovery, and rotamer recovery of whole proteins (All) were all better with Elec 

than with either HBv1 or HBv2. The repulsive forces between like-charged atoms and the 

attractive forces between atoms of unlike charge that are not forming H-bonds must be 

helping distinguish native from nonnative conformations. These favorable results 
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encouraged us to develop an electrostatics potential that preserved native-like H-bond 

geometries.

2.11 Combining the electrostatic model with the explicit H-bond potentials

Morozov previously showed that combining an electrostatics model with the explicit H-bond 

model in Rosetta could lead to better decoy discrimination, but no effort was made at that 

time to combine the potentials in a way that favored H-bonds with native-like geometries.18 

We sought to combine Coulomb electrostatics with the HBv2 potential in a way that 

preserved the shape of the energy landscape as a function of AHdis, i.e. the first derivatives 

of the HBv2 and the new combined potential and were parameterized to be similar. It is the 

first derivative of the potentials that determine the local distributions; the combined potential 

ought to balance against the rest of the Rosetta force field in a similar manner to HBv2. 

Thus, we formed ideal H-bonds from pairs of amino acids evaluating the Coulomb potential 

over the AHdis dimension. We then we refit the  polynomials for each pair by 

subtracting the electrostatic contribution at each distance and shifting the whole potential to 

set the minimum value to −0.5, to be consistent with HBv1 and HBv2 (in both HBv1 and 

HBv2, each of the f, g, and h functions have a minimum value of −0.5). We refer to this new 

combined potential as ElecHBv2. We also tested another potential, ElecHBv1, which is 

purely the addition of the electrostatics term to the HBv1 potential.

To determine the overall weight to place on the H-bond potential when combining it with 

the Coulomb potential we tested several benchmarks (decoy discrimination, sequence 

recovery, rotamer recovery) with varying weights assigned to the H-bond term (Fig. 8). All 

of the benchmarks had maximum values near a weight of 0.8, and so this was chosen as the 

final weight in ElecHBv2. Using ElecHBv2, all of the benchmarks show improved 

performance over HBv2 and Elec. Interestingly, in some cases the feature distributions for 

ElecHBv2 were also improved over HBv2. This was most striking for hydroxyl acceptors 

(Fig. 5B). The HBv2 distributions are much narrower than the Native distribution and the 

Elec distributions are broader; the combined potential is a closer match than either. In 

general, many of the feature distributions for HBv2 were tighter than for Native, and adding 

the Coulomb term broadened the potentials to be more native-like (Figs. 3,4,5B).

Including an explicit Coulomb potential in the Rosetta force field does require considering 

more atom pairs when calculating energies and affects the smoothness of the energy 

function, which influences convergence rates during optimization. To evaluate the 

computational cost, 35 proteins of varying size were optimized with the FastRelax protocol 

using the various energy functions. The average run time differed by less than 15% when 

comparing Score12, Elec, HBv1, and ElecHBv2 (S.6.1).

3 DISCUSSION

HBv1 was developed using the traditional paradigm for knowledge-based potentials: fit the 

functional form to the Native feature distribution. A danger of this approach is that observed 

complexity in the Native distribution may not require a complex potential, but may result 

from the interaction between a simple potential and other components of the energy function 
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such as sterics or electrostatics. In the latter case, then directly encoding the Native 

distribution as a potential can lead to unnecessary complexity and “double count” the other 

potentials. In contrast, we developed the HBv2 model using an empirical paradigm: fit the 

functional form so feature distributions in simulated structures match the Native feature 

distributions. Through iterative exploration of aspects of the model we discovered that a 

simple, physically-motivated functional form was able to recapitulate a range of subtle 

details of H-bonding. We developed a single potential for all sp2 acceptors (all backbone 

secondary structure types and all sidechain types) having two symmetric minima 

corresponding to the donated hydrogen pointing at the acceptor lone pair electrons. Even 

with this uniformity, when combined with the full energy function (HBv2 or ElecHBv2), it 

was able to recapitulate the varied geometries of H-bonds in α-helices, tight turns and β-

sheets (Fig. 4) as well as H-bonds to charged (Fig. 3) and uncharged sidechains (S.3.1). 

Further, the uniformity facilitates generalizing the potential to new contexts, such as 

noncanonical amino acids and small molecule ligands.

In this study we used both local feature analysis and large-scale scientific benchmarks to 

guide and evaluate our changes to the energy function. In many cases, we found that the two 

approaches were complementary. Feature analysis was particularly useful at identifying 

specific components of the energy function that could be improved. For instance, atom-atom 

distance distributions revealed sharp peaks due to discontinuities in the first derivatives of 

the potentials, and Lambert-azimuthal projections made it clear that HBv1 was not 

producing native-like geometries for H-bonds with sp2-hybridized acceptors. Large-scale 

benchmarks such as decoy discrimination are not always well suited to finding mistakes of 

this type, and indeed in many cases fixing small deficiencies in the potential did not lead to 

large changes in the scientific benchmarks. However, the scientific benchmarks were useful 

in evaluating large changes to the potential that went beyond fixing a particular problem. 

The best example of this was the boost in performance gained from adding a Coulomb 

potential to the Rosetta force field. A further advantage of training our energy function using 

the same protocols that we use for protein structure prediction and design is that the biases 

these protocols introduce (e.g. through minimization) are learned by the energy function; 

when we later go to predict new protein structures, the energy function will give us the right 

distribution of conformations. The upshot is that when we develop new sampling protocols, 

we might need to retrain our energy function.

Rosetta has been used successfully for a wide variety of structure prediction and design 

applications that require high-resolution modeling. Outside of nucleic acid modeling, the 

energy function has generally not included a Coulomb potential. How has Rosetta been so 

successful without an energy term that is standard in most molecular mechanics forcefields? 

With this question in mind, it is interesting to compare the relative performance of the 

explicit H-bond and Coulomb potentials in the various scientific benchmarks (Tbl. 1). In 

ΔΔG prediction, rotamer recovery and sequence recovery the two approaches perform 

similarly. This similarity is not because H-bonding is unimportant—removing both the 

Coulomb potential and the explicit H-bond term leads to a large drop in performance (Fig. 8, 

HBv2, H-bond weight = 0). These results suggest that for many applications using either an 

explicit H-bond term or a Coulomb potential to model H-bonds may give similar results. 

O’Meara et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, other benchmarks and feature analyses suggest that there are important 

differences between the two approaches. Using the Coulomb potential alone resulted in H-

bond geometries that are not commonly observed in native proteins, and HBv2 produced 

overly sharp feature distributions. In decoy discrimination the Coulomb potential 

outperformed HBv2, perhaps because it accounts for repulsion forces absent from HBv2. 

Strikingly, the combined potential, ElecHBv2, outperformed the other potentials in all of the 

scientific benchmarks, and the feature distributions for ElecHBv2 were more native-like than 

HBv2 in many cases. The strong performance of ElecHBv2 may reflect the dual nature of H-

bonds: partially as electrostatic phenomena that arise from uneven distributions of charge, 

and partially covalent bonds with distinct geometrical preferences.

The results from both feature analyses and scientific benchmarks have led the Rosetta 

community to adopt ElecHBv2 (now known as Talaris2014) as the default full atom energy 

function, in place of Score12. There are many aspects of ElecHBv2 that may be amenable to 

further improvement. Currently, the HBv2 potential assigns the same energy to all H-bonds 

with ideal geometries, regardless of the atom types that are involved. Adding the Coulomb 

potential modulates H-bond strength to some degree—e.g., H-bonds with charged groups 

are now stronger—but further perturbations that depend on atom types or environment may 

be better. The preference of a polar group to be buried or exposed is a fine balance 

determined by H-bonding, van der Waals interactions, electrostatics and desolvation effects; 

efforts to tune H-bonding strength should be coupled with an evaluation of the calculated 

desolvation free energies. Rosetta uses an implicit solvation model that is pairwise additive 

and does not account for orientation effects, i.e. desolvating a polar atom “from the side” in 

a way that does not disturb its ability to H-bond with water may be more favorable than 

desolvating it in a way that blocks H-bonding with water. The scientific benchmarks and 

feature analysis that we have employed here should provide an excellent framework for 

evaluating future changes to the H-bond, electrostatics and solvation potentials.

4 METHODS

4.1 Features analysis

To compare the properties of H-bonds we use the Features Analysis Tool described in 

Leaver-Fay et al.,42 which takes in batches of structures, each representing either native or 

Rosetta predictions (produces using a specific protocol and energy function), generates a 

database of elementary features, and then applies R-based features analysis scripts that 

estimate and plot feature distributions. The technical workflow is detailed in S.1, and a 

compendium of the generated plots is available in S.2.

We used kernel density estimation (KDE) to estimate smooth density distributions from 

feature instances. When the features are derived from geometric transformations or change 

of variables, it is essential that the estimated density be normalized correctly. For instance, 

in figure 2, we normalize by weighting each point by  so that the if the acceptor 

atom (A) is fixed at the origin and the donor (H) atoms are distributed uniformly in space, 

the resulting feature distribution would be flat.
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A limitation of KDE is that domain boundaries require special consideration. For example, 

in estimating the density over the AHD angle feature, a standard Gaussian kernel for a bond 

whose atoms are nearly linear will have density that will substantially spill over the 0° 

boundary. Our approach for comparing distributions at boundaries and in general was to 

recognize that often no single plot will reveal all details of a feature and considering 

multiple visual summaries can be useful. So, for the AHD angle we estimated densities 

where the domain is reflected across the boundary, empirical cumulative distribution 

functions, and Lambert-azimuthal projections of the (AHχ, AHD) angles. The challenge of 

visualizing distributions at boundaries obscured a derivative discontinuity in HBv1 at AHD = 

0° that was corrected in HBv2. As another example, the BAχ torsion feature has a periodic 

boundary condition.

4.2 Polynomial fitting

We developed a small Python program using the Tkinter and numpy modules to manually fit 

polynomials. This program allows the user to lay down control points on the x/y plane with 

the mouse and then fit polynomials using least-squares regression with Lagrange multipliers 

to constrain our polynomials to pass through certain points with a derivative of 0.69 The 

program is available in version Rosetta3.5. in Rosetta/main/tests/features/scripts/

parameter_analysis-/hbonds/poly_fit.py.

4.3 Relax Native Recovery

The FastRelax protocol was performed with 6656 high-resolution crystal structures (Sec. 

2.1, S.5.3) and the all-atom RMSD between the resulting models and the native structure 

was calculated.

4.4 Monomer Sequence Recovery

The monomer sequence recovery benchmark tests an energy function’s ability to recover in 

a complete-protein redesign simulation the native amino acid identities for a protein given 

its (fixed) native backbone. The test set consisted of 38 large proteins.70 Sequence recovery 

was performed with the discrete, full-protein rotamer-and-sequence optimization protocol, 

PackRotamers (S.6.2). Before running PackRotamers for a given energy function, we refit 

structure-independent reference energies (conditional only on the residue type) using the 

OptE protocol42 and an independent set of protein structures, which maximized sequence 

recovery while favoring native-like amino acid composition.

4.5 Interface Sequence Recovery

We used the Rosetta protocol PackRotamers to redesign the interface residues of 96 

transient protein-protein heterodimeric complexes from crystal structures with resolution 

less than 2 Å no missing density for interface residues, and no small molecules at the 

interface. The sequence recovery rate was computed as the average recovery rate over ten 

independent runs.
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4.6 Rotamer Recovery

The rotamer recovery One benchmark optimizes residues one-at-a-time with the backbone 

and remaining sidechains fixed in their native conformation. To accurately model crystal 

contacts, we built in the symmetry mates. The benchmark runs on 9,452 non-alanine, non-

glycine residues from the Top8000 that have a B-factor < 30 Å2, and coming from structures 

where the total number of residues in the complex containing the symmetry mates is less 

than 5,000. To predict the side-chain conformation, we use the RTMin protocol,71 which 

optimizes each discrete rotamer in turn using quasi-Newton minimization, selecting the 

resulting conformation with the lowest energy. A rotamer is considered recovered if all side 

chain χ angles are within 20° of their native angle.

The rotamer recovery Cluster benchmark optimizes four residues at a time, where each pair 

of residues has at least one pair of atoms within 4.5 Å of each other. Residues within 8 Å of 

the cluster are optimized alongside the cluster residues; all the remaining residues are held 

fixed in their native conformation. This benchmark uses the PackRotamers protocol to 

optimize the sidechains. For the Cluster benchmark we considered 76,811 clusters from the 

Top8000 where each residue has B-factor < 30 Å2. A cluster is considered recovered if at 

least two of its residues have all of their χ angles within 10° of the their native angles.

The rotamer recovery All benchmark optimizes all residues at once, with the backbone 

conformation fixed. We considered 466,797 positions in the Top8000 set with B-factor < 30 

Å2. To predict the conformations, we used the MinPack protocol, which is an extension of 

the PackRotamers protocol. At each rotamer substitution, the MinPack protocol runs a short 

minimization on the rotamer’s χ dihedrals before deciding whether to accept or reject the 

substitution. Recovery is measured on a per residue basis, where a rotamer is recovered if all 

of its χ angles are within 20° of their native angles.

4.7 Loop Benchmark

The loop-prediction benchmark tests de novo protein loop prediction using the loop-

prediction benchmark established in Leaver-Fay.42 Briefly, the benchmark considers 45 12-

residue loops and uses 8,000 kinematic closure trajectories for each target.72 Accuracy is 

measured by the minimum Cα-RMSD over the five lowest scoring conformations.

4.8 ab initio Conformation Recovery

This benchmark measures a score function’s ability to discriminate low-scoring, high-

RMSD decoys from near-native conformations. It relies upon a set of 87 small (between 57 

and 260 residues) mostly monomeric (3 are homodimers, 1 is a heterodimer), ligand free 

proteins (Tbl. 1). The benchmark uses Cartesian minimization, so the energy functions 

tested by this benchmark were first altered to turn on the bond-angle and bond-length term 

(cart_bonded) and, to avoid double counting, to turn off the proline ring closure term 

(pro_close).63

The benchmark takes as input 1,000 low-energy conformations for each protein that were 

selected from a large pool of structures generated by the Score12 energy function using 

Rosetta’s AbRelax protocol followed by loophash diversification.73 The lowest energy 
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structures for each in a range of RMSD bins were selected and serve as the starting 

conformations for this benchmark. To assess the discrimination ability of the candidate score 

function, the benchmark optimizes each of the 1,000 starting conformations 5 times using 

the FastRelax protocol, for a total of 425k optimization trajectories, and records the resulting 

energy and RMSD to the native. This process requires 30k − 140k cpu hours depending on 

the size of the protein and the computational complexity of the score function.

The resulting energies for each sequence are normalized by mapping the energies of the 

inner 90% quantile to the range [0, 100]. The discrimination score is computed as the 

average normalized energy gap between the lowest-energy structure under 1 Å RMSD from 

the native, and the lowest-energy structure over 1 Å and less range of upper bound RMSD 

values. In analyzing the results, five proteins were found to be particularly noisy and were 

excluded (Tbl. 1).
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Figure 1. 
H-bond degrees of freedom in HBv2 are defined on the Acceptor BBase, Base, and Acceptor 

atoms and the Donor Hydrogen and Donor atoms, depending on the chemical types (S.4.1).

O’Meara et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 

The  functional form for sp2 acceptors avoids a numeric instability in BAχ at BAH 

angle 180°, by smoothly interpolating between in-plane (A) and out-of-plane (B) BAH 

potentials as a function of BAχ (C): . The Lambert-azimuthal projection of 

(from HBv1) (D),  (from HBv2) (E) and 3d rendering of EHBv2 (F) with a linear 

AHD and contoured at [−1.2,−1.0, and − .78] shows that HBv2 describes two symmetric 

lobes corresponding to the ideal sp2 orbitals, while HBv1 does not.
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Figure 3. 
H-bond geometries for Asp and Glu acceptors paired with charged donors from native 

protein structures and models created with different energy functions: Elec, HBv1, HBv2 and 

ElecHBv2. For each cell, the Lambert-azimuthal projection of the conditional (BAH, BAχ) 

feature density is estimated and scaled to the range [0,1].
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Figure 4. 
Geometries of backbone-backbone H-bonds. Lambert azimuthal projection of BAH, BAχ 

feature density for α-helices, residue pairs with sequence separation greater than 5 

(LongRange), anti-parallel and parallel β-sheets by sample source (columns). The Native-

LongRange interactions show a distinctive “beetle” shape that we sought to recapitulate with 

HBv2.
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Figure 5. 
Serine hydrogen bonds. (A) Schematic of a serine hydroxyl group accepting an H-bond. 

Choices of the Base atom define the BAH angle; HBv2 uses Cβ (1), HBv1 uses H (2), and the 

visualization use V (3). (B) Lambert azimuthal projection of (BAH, BAχ) feature density for 

H-bonds with serine Acceptors, with SeqSep > 5.
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Figure 6. 
H-bond distances (sequence separation greater than 5) as a function of donor type from 

native protein structures and models created with different energy functions.
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Figure 7. 
AHdis vs AHD scatter plot for Native hydroxyl-donor to backbone-acceptor polar contacts. 

The thin blue lines contour a kernel density estimation (KDE) of the points to show density 

otherwise obscured by overplotting. Note, due to boundary effects, the KDE underestimates 

the density at − cos(AHD) = 1.0. The dimensions are scaled so randomly placed contacts 

will have a uniform distribution.
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Figure 8. 
Scientific benchmarks as a function of H-bond weight. Lower values indicate improved 

performance for the decoy discrimination test, while higher values indicate improved 

performance for the sequence recovery and rotamer recovery tests. Grey regions indicate 

90% confidence interval for locally-weighted, degree-2 polynomial regression (loess).68 

Based on these results ElecHBv2 with a weight of 0.8 was chosen as the preferred energy 

function.
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