
Simbody: multibody dynamics for biomedical research

Michael A. Shermana,*, Ajay Setha, and Scott L. Delpa,b

aBioengineering, Stanford University, Stanford, CA, USA

bMechanical Engineering, Stanford University, Stanford, CA, USA

Abstract

Multibody software designed for mechanical engineering has been successfully employed in

biomedical research for many years. For real time operation some biomedical researchers have

also adapted game physics engines. However, these tools were built for other purposes and do not

fully address the needs of biomedical researchers using them to analyze the dynamics of biological

structures and make clinically meaningful recommendations. We are addressing this problem

through the development of an open source, extensible, high performance toolkit including a

multibody mechanics library aimed at the needs of biomedical researchers. The resulting code,

Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and

biomolecular simulation, and related research such as biologically-inspired design and control of

humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used

biomechanics simulation application. This article reviews issues that arise uniquely in biomedical

research, and reports on the architecture, theory, and computational methods Simbody uses to

address them. By addressing these needs explicitly Simbody provides a better match to the needs

of researchers than can be obtained by adaptation of mechanical engineering or gaming codes.

Simbody is a community resource, free for any purpose. We encourage wide adoption and invite

contributions to the code base at https://simtk.org/home/simbody.

Keywords

biomedical simulation; biological joints; minimal coordinates; coupled motion; compliant contact;
real time simulation; neuromuscular simulation; biomolecular simulation; open source

1. Introduction

Multibody dynamics methods and software were developed in a mechanical and aerospace

engineering context and have become indispensable in these application areas [1–5]. When

studying the mechanical aspects of biological systems it is natural to employ the same tools,

and much has been learned as a result (e.g., [6–11]). However, the analogy between

engineered mechanical systems and evolved biomechanical systems is imprecise, and

multibody mechanics tools designed for engineered systems can be difficult to apply to

study the dynamics of complex biological structures. For example, biomechanical joints

© 2011 Published by Elsevier Ltd.
*Corresponding author. Tel.: +1-650-721-2091, msherman@stanford.edu.

HHS Public Access
Author manuscript
Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

Published in final edited form as:
Procedia IUTAM. 2011 ; 2: 241–261.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://simtk.org/home/simbody

typically do not perform simple rotations about fixed axes and may comprise several moving

parts; contact between soft biomaterials may involve significant deformation; redundant

actuation of joints is common; data needed for parameterization are not directly measurable;

and available measurements tend to contain large errors and inconsistencies. In the context

of whole-body musculoskeletal mechanics, segment mass properties and muscle path

geometry, for example, are hard to measure, while body segment kinematics (i.e., joint

angles) estimated from surface markers are inconsistent with accelerations determined from

external force measurements (i.e., ground reaction forces). As a result of issues like these,

concepts that are simple to apply to engineered systems, such as “generalized coordinate” or

“moment arm”, become difficult to define precisely in a biomechanical context. A further

difficulty is that while the culture and economics of mechanical engineering make the use of

commercial multibody codes practical and cost effective, in research or teaching the costs

and lack of transparency of commercial codes can be problematic.

Game physics engines like ODE [12] have been developed for gaming and virtual worlds

with an emphasis on real time performance and efficient handling of contact. Although

biomechanical researchers have used game engines in their work [13], these codes were not

designed for predictive simulation and attain performance by using simplified theory that

may not converge to correct results. Developers of game engines understand that; for

example the ODE manual [12], states in section 3.3 “ODE should not be used for

quantitative engineering.” Real time performance can be important in quantitative research,

but it is necessary to have a way to quantify the tradeoff between accuracy and performance.

Methods built on sound theory that provide selectable accuracy can provide high speed, and

can also be made to converge to high fidelity when necessary.

These and similar issues across many aspects of biomedical computation led the NIH to

include in its Roadmap for Medical Research support for several national centers for

building reusable biomedical computational infrastructure. Simbios is the national center for

physics-based simulation of biological structures at Stanford University [14]. Simbios is

charged with defining and developing an open source biosimulation toolkit, called SimTK,

which provides computational libraries that enable development and sharing of a wide

variety of domain-specific biomedical simulation software built on a common core. A major

component of SimTK is the multibody dynamics code Simbody, which is the topic of this

report.

In this paper we will discuss how Simbody addresses the biosimulation issues listed above.

We introduce some of Simbody’s novel architectural features in section 2, and then present

the methods Simbody uses to advance time in a dynamic simulation in section 3. Section 4

details Simbody’s formulation of multibody systems, and section 5 and an appendix cover

methods to simulate collisions and contact. We will conclude with a discussion of

Simbody’s current state, the next steps in its development, and an invitation for community

participation.

Sherman et al. Page 2

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Simbody overview

Simbody is an Application Programming Interface (API). The Simbody programming

library is intended as a community resource that can be used to incorporate robust, high

performance, minimal-coordinate O(n) multibody dynamics into a broad range of domain-

specific end-user applications. Applications using Simbody have been implemented in areas

of biomedical research across a wide range of scales and purposes. These range from

studying the motion of biomolecular machines built from amino and nucleic acid

components [15], to studying pathological gait in musculoskeletal models of humans [16], to

design of biologically inspired robots and avatars [17]. Desired accuracy is user-controllable

to cover needs from interactive real time simulation to detailed, high fidelity simulation.

Simbody is a tool for programmers, but these programmers do not need to be expert

dynamicists. Rather, they are expected to be application developers who have expertise in

the needs of biomedical researchers in particular areas of study, such as causes of

pathological gait or structural basis of RNA function. Although Simbody contains some

novel developments, it is conceived primarily as a reliable tool for use in biomedical

research, rather than as a vehicle for multibody dynamics research. Consequently Simbody’s

development is managed by professional software engineering staff at Simbios, with

emphasis placed on testing, documentation, packaging, distribution, and support. Simbody is

written in C++ and presents an object-oriented API to the application programmer. It is

distributed in binary form for multiple platforms, or can be built easily from source. Details

provided below apply to the Simbody 2.2 release [18]. Simbody is licensed under permissive

open source terms [19] for any academic, commercial, government, or personal use to

encourage wide adoption and broad community support that will maximize its ongoing

impact on biomedical research and ultimately patient care.

2.1. Simbody scope

Simbody provides the biomedical application programmer with a diverse set of tools to

handle the modeling and computational aspects of multibody dynamics, to ensure correct

and efficient deployment without requiring specialized knowledge of multibody dynamics.

In practice that means we must address more than just the formulation of multibody

equations of motion. Thus, Simbody also includes contact modeling, numerical integration

and differentiation, constraint stabilization and redundancy handling, assembly analysis,

optimization and root finding, vector and matrix manipulation, numerical linear algebra,

event isolation and event handling, accuracy control, threading, debugging, visualization,

and real time interaction. Customizable user-written extensions are supported for force and

constraint elements, as well as for novel internal coordinate joints [20] whose kinematics

can be based on empirical measurements.

For scientific and engineering use, it is critical to allow user-specifiable accuracy in

simulations. To do this efficiently requires variable-step integration methods that estimate

errors and can adapt to the changing computational demands needed to maintain accuracy

and stability during a simulation. In turn that means trial evaluations are performed,

requiring strict management of the system state to avoid referencing out-of-date

computations after step rejection. Out-of-date computations are qualitatively similar to the

Sherman et al. Page 3

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

correct values, so they can easily remain unnoticed, especially by users who are not expert

dynamicists. Simbody’s architecture prevents these errors.

2.2. Top-level architecture

The three primary objects in the Simbody architecture are the System, State, and Study (Fig.

1). A System object encapsulates the components of a model (e.g. bodies, joints, force

elements) and the code necessary to perform computations with that model. A System

defines a model’s parameterization, but is itself stateless and remains unchanged during a

study. A complete set of values for each of the System’s parameters is called a “state” for

that System, and such sets are maintained in separate State objects constructed to be

compatible with that System. (Here uppercase “State” refers specifically to the software

object of that name in the Simbody API; lowercase “state” refers to a set of numerical

values.) The response of a System is completely determined by the state values presented to

it. A Study couples a System and one or more States, and represents a computational

experiment intended to reveal something about the System. By design, the results of any

Study can be expressed as a state or series of states that satisfies some pre-specified criteria,

along with results that the System can calculate from those values. Such a series of states is

called a trajectory.

Simbody’s notion of “state” is more general than the common use of the term. By state, we

mean everything variable about a System. That includes not only the traditional continuous

time, position and velocity variables, but also discrete variables, memory of past events,

modeling choices, and a wide variety of parameters that we call instance variables (e.g.

masses and lengths). A System’s compatible State objects have entries for the values of each

of these variables.

This design allows the conceptually simple model depicted in Fig. 1 to express every kind of

investigation one may wish to perform. Here are some examples. A simple evaluation Study

merely asks the System to evaluate specific quantities, such as the position of an end

effector or the reaction force in a joint, using values taken from a particular State (which

remains unchanged). An assembly Study returns a new state whose generalized coordinate

values satisfy a set of position constraints, such as loop closures or couplers. An inverse

kinematic Study returns a series of states whose generalized coordinates generate virtual

marker positions that best match a series of marker observations. A dynamic Study produces

a series of time, position, and velocity values that satisfy Newton’s laws of motion. An

energy minimization is a Study that seeks values for the State’s position coordinates at

which an energy calculation yields its minimum value. A Monte Carlo simulation is a Study

yielding a trajectory that satisfies an appropriate probability distribution, such as a

Boltzmann distribution. Design studies, also used for parameter fitting, find values for

instance variables such as lengths, masses, attachment points, material properties, or

coefficients which meet specified criteria. Modeling Studies select among models or

algorithmic choices to improve defined measures of behavior, such as accuracy, stability, or

execution speed. Since by definition all System variability is contained in the State, we can

guarantee that any desired results regarding the System can be expressed in terms of State

values, provided that a corresponding System is available to interpret them.

Sherman et al. Page 4

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

There are other significant advantages to having separate State objects. Trajectories may be

saved and restored simply by copying State objects, with no danger that “hidden” states may

be missed. Examples include enable/disable flags for model components, “previous

solution” values for continuity and acceleration of nonlinear model calculations such as

wrapping geometry, and controller or muscle dynamics states. Trial states may be generated

and discarded easily, and states may be sampled or compared with no overhead associated

with switching from one state to the next.

2.3. Handling of state

Careful handling of state is required for correctness and efficiency of a simulation. Given

values for state variables, there are many useful quantities that can be calculated (reaction

forces, say). These calculations can be very expensive so we only want to calculate them

once for a given state and save the result. But, if the state changes these must be recalculated

so we do not accidentally reference “stale” (out-of-date) computations. This must be dealt

with automatically to prevent mistakes, which can be very difficult to detect. Simbody

addresses this by including carefully-managed storage for state-dependent computations

within the State object. This storage space is called the realization cache, and the process of

calculating the values stored in it is known as realizing the state. By realizing we mean

presenting a State to a System and asking the System object to compute the physical

consequences of the values in that State. As a concrete example, a finger tip location is a

consequence of the state’s generalized coordinate values.

In practice, evaluation of a multibody system proceeds in distinctly ordered steps. Positions

must be known before velocities can be calculated. Velocities must be known before forces

can be calculated. Applied force calculations must precede accelerations. At the same time,

for a given state variable we can say which of those steps are invalidated by changes to that

variable’s value. For example, a generalized speed (velocity variable) invalidates velocity,

force, and acceleration calculations but has no effect on already-calculated positions.

Simbody’s State architecture exploits this structure by dividing the state variables and the

realization cache into stages as shown in Fig. 2.

Although cached results are stored in the State object, those results are not logically part of

the system state. They are simply intermediate calculations that have been derived from the

state, and can easily be discarded and re-created when necessary. They are needed only for

efficient computation using the System-State-Study architecture. Further, we can

automatically invalidate cache entries whenever a state variable at that stage or earlier is

changed. Any attempt to access an invalid value will either initiate recomputation or raise an

error message as appropriate. Simulation programmers will recognize this as an architectural

substitute for error-prone ad hoc “isValid” flags that otherwise proliferate to avoid

expensive recalculation.

To summarize briefly: a System by itself is stateless once constructed. The values of state

variables stored in a particular State object completely determine the response of the

System. That response is produced by realizing the State, which is done in sequential stages.

The results of realization are stored in a hidden cache that is physically contained in the

State object, but is not logically part of the state in the sense that, except for computation

Sherman et al. Page 5

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

speed, cache values do not alter the behavior of the System. Cache values are automatically

invalidated when state variables they depend on are changed, and access to invalid values is

detected and prevented.

3. Time stepping

Simbody-based simulations are classified as hybrid simulations [21], meaning they consist

of both continuous evolution in time and discrete events. Advancing such a system through

time is handled by an algorithm called a time stepper, consisting of a numerical integrator

for advancing through smooth parts of the simulation and detecting pending events, and an

event handler for dealing with those events.

3.1. Formulation of dynamic equations as seen by the time stepper

A time stepper does not need to know much about the internal workings of the model it is

advancing through time. Consequently the formulation that Simbody presents to the time

stepper is simpler than the multibody formulation we will describe subsequently.

Fundamentally, these are the equations as seen by the time stepper:

(1)

(2)

(3)

Here t is the independent variable (time), y is a vector of continuous state variables, and d is

an arbitrary set of discrete state variables. The first equation is a set of ordinary differential

equations (ODE) in y. The second is a set of algebraic equations (constraints), such as loop

closure conditions, coordinate couplers, prescribed motion, or contact conditions. Together,

equations (1) and (2) constitute the continuous portion of the system as a set of differential-

algebraic equations (DAE) [22] that can be used to advance states y through time smoothly

while d remains fixed. Equation (3) represents a set of event trigger functions that are

constructed to change sign (pass through zero) when an event occurs, for example a signed

distance between objects or the difference between a reaction force and a maximum limit at

which a model change is required.

More precisely, our continuous system (1), (2) is formulated as a differential equation on a

manifold (DEM) [23–25]. Such a system additionally guarantees that when constraint

equations (2) are satisfied their time derivatives are satisfied automatically. Therefore, the

differential equations (1) must be formulated to satisfy the constraint derivatives. That is, we

require that

(4)

Sherman et al. Page 6

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Simbody produces differential equations that assure condition (4) is met, as discussed in

section 4. A DEM is considerably easier to solve than a general DAE and permits us to use

conventional numerical integration methods designed for ODEs, augmented as described

below.

3.2. Advancing the continuous system

Simbody offers a variety of numerical integrators with differing properties. These consist of

conventional error controlled, variable step integrators suitable for advancing ODE Eqn. (1)

through time with a specified accuracy and include a variety of explicit Runge-Kutta

methods well-suited for biomechanical and real time applications [26], a velocity Verlet

method for biomolecular systems [27], and, for stiff systems [28], a unique variable-order

backwards difference formula (BDF) implicit integrator CPODES developed in

collaboration with Lawrence Livermore National Laboratory’s Center for Applied Scientific

Computing. CPODES is a modification of CVODE [29] to add coordinate projection in the

manner described by Dehombreaux et al. [30] and justified theoretically in [31].

All Simbody integrators are capable of continuous (dense) output [26, 32], meaning that

they can efficiently and accurately interpolate state values at any time within a step. This

important capability allows step size choice to be decoupled from the desired reporting

interval. Thus a Simbody step can be much larger than a reporting interval yet deliver

accurate results for each report. In addition all Simbody integrators are capable of

monitoring Eqn. (3) for sign transitions and using their interpolation capability to efficiently

isolate the time at which a transition occurs, to facilitate event handling by the time stepper.

Note that, because of the DEM condition in Eqn. (4), if given initial conditions that are on

the manifold of Eqn. (2) then perfect integration of Eqn. (1) would result in a trajectory that

remained on the manifold. However, truncation error inherent in methods for approximate

numerical integration allows the solution to drift away from the manifold. Eqn. (2) can be

used directly to eliminate this drift, and improve the solution overall, using the method of

coordinate projection [31, 33–34]. Coordinate projection is superior to the more commonly-

used Baumgarte stabilization method [35] for several significant reasons. See Ascher et al.

[34] for a detailed discussion. Briefly, Baumgarte stabilization requires a difficult choice of

feedback gains: too small and the constraints drift unacceptably; too large and the problem

becomes numerically stiff. The optimal gains depend on both the step size and integration

method in use. Coordinate projection has no constants to choose and guarantees that the

solution lies on the manifold at every step. Taking an ODE step and then removing

constraint errors with coordinate projection also improves the ODE solution [25, 31],

provided the projection is normal to the constraint manifold in a suitable norm [36],

reducing the error estimate and permitting larger time steps.

Coordinate projection is particularly attractive computationally when there are few

constraint equations, yielding small projection matrices. Simbody’s biological internal

coordinate joints eliminate most constraints otherwise needed for biomechanics [20]. Details

of Simbody’s implementation of coordinate projection and event isolation can be found in

the Simbody documentation [37].

Sherman et al. Page 7

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.3. Controlling accuracy

Simbody is intended to be useful to people who are not expert in numerical simulation. The

collection of accuracy controls offered by some numerical methods can be bewildering. Our

goal is to offer instead a single scalar accuracy parameter α, which corresponds roughly to

the “% relative error” or “number of significant digits” desired in the results. This is

necessarily a qualitative description but in our experience it comes closest to what

biomedical researchers (and most other scientists and engineers) mean when they discuss

“accuracy.” A fully quantitative understanding of error in variable step, variable order,

event-isolating numerical methods applied to the propagation of a chaotic hybrid DAE

system requires specialized training in numerical analysis that is rare even among numerical

simulation experts. Instead we ask our users to provide only information they understand

such as how many digits they want, or even just “more accuracy” or “less accuracy.” We use

that information as follows to influence our quantitative numerical treatment to attempt to

satisfy the user’s qualitative request.

Accuracy request α is related to the desired number of digits n as follows:

(5)

Thus four digits of accuracy is requested by setting α=0.0001, roughly corresponding to a

“relative error” of 0.01%. Real time simulation with Simbody generally involves accuracy

requests of 1–10%. Accuracy α is thus similar to the “relative tolerance” (rtol) parameter

provided by most numerical integrator implementations [38]. However, there is no

equivalent to the common “absolute tolerance” (atol) parameter. Instead, Simbody combines

α with internally-calculated scaling factors for estimated state variable errors and actual

constraint violations to define two equations that must be satisfied before an integration step

can be accepted:

(6)

(7)

where εy is a vector of the integrator-provided estimates of absolute error in each element of

y, and c is the constraint error function from Eqn. (2) returning a vector of absolute errors. εy

and c contain a mix of potentially incompatible error units such as lengths, angles, and

velocities. Diagonal weighting matrices W and T map each error to a “unit” error in the

represented quantity, and then finally we interpret α as the acceptable fraction of unit error

in the chosen norm, typically root mean square. Simbody can estimate values for W and T
using knowledge of coordinate types, an overall length and time scale, and other internally-

available information. Expert users may alter these calculations.

In practice this procedure results in rational control over accuracy for non-expert users via a

single “knob” that can be turned to increase or decrease the level of accuracy with

predictable results. It is our assessment that few users are better served by exposing more

Sherman et al. Page 8

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

knobs. Fig. 3 shows one numerical example. More information about accuracy in Simbody

can be found in [37].

3.4. Real time interaction

A simulation suitable for real time interaction with a human must match simulated time to

clock time, deliver simulation frames for screen update at a steady pace, and be responsive

to user input. Typically this is achieved by using a fixed-step numerical integrator so that

every unit of simulated time has the same computational cost. But for most dynamic

systems, step size requirements to achieve accuracy and stability vary substantially during a

simulation. For a fixed-step simulation, the step size must be chosen to achieve adequate

performance during the worst-case interval (e.g., ground impact during running), which may

be only a very small fraction of the total time. This causes many unnecessary steps to be

taken during the easier parts of the simulation, increasing the total amount of computation

required for the full simulation. That limits the maximum complexity of systems that can run

in real time to those that can achieve real time rates even during their most computationally

demanding intervals. Using variable step sizes, substantially more complex systems could

achieve real time performance on average but might have intervals where they fall behind.

For “hard” real time systems (e.g. controllers for antilock brakes or spacecraft attitude),

where a missed frame can be literally fatal, it is difficult to exploit this fact. However, for

the “soft” real time requirement of interacting with humans it is practical to exploit variable

step integration to permit more complex models to run in real time while maintaining

stability and accuracy.

For soft real time applications, Simbody includes support for a method adapted from the

“local lag” approach [39] used to manage network latency for networked games and

distributed virtual environments. The idea is to exploit slow human reaction time to smooth

out simulation variability. Delays of up to 100ms are typically imperceptible [40–42] and

longer delays can be nearly unnoticeable and tolerable in many applications. A first-in-first-

out delay buffer of selectable length tdelay is used to collect frames that are regularly-spaced

in simulated time but arrive at a variable rate in real time. At the other end of the buffer,

frames are extracted at a fixed real time rate, but delayed slightly behind real time. For

example, if the frame rate is 50/s (20ms/frame) and tdelay=120ms, then there is room for six

frames in the buffer. In this case frames are removed regularly from the buffer every 20ms

but their times lag real time by 120ms.

This approach is able to eliminate variability produced by occasional difficult intervals

during a simulation and by discrete event handling, provided that the resulting delays do not

exceed tdelay and that the average performance is real time or faster. The use of variable-step

methods with interpolation capability substantially improves average speed since steps of

length up to tdelay can be taken while delivering regularly-spaced frames at the required rate.

Each step, regardless of length, has the same computational cost; interpolated frames usually

have negligible cost. The architectural separation of System from State (see section 2.2)

facilitates the real time implementation since it is only necessary to copy whole State objects

into the delay buffer and retrieve them later.

Sherman et al. Page 9

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. Formulation of the multibody system

Simbody uses a generalized coordinate formulation with the goal of having the fewest

possible coordinates to represent the pose and motion of a multibody system. However, it

does not attempt to reduce the system to an ODE; instead we choose coordinates to form a

basis in which to express the motion and then require that motion be restricted to a

constraint manifold. This formulation provides a compact representation of motion with a

small number of coordinates and small number of constraints, and allows for robust

treatment of important numerical issues such as constraint stabilization, poor conditioning,

and redundant constraints.

The solution method for the unconstrained system is a recursive O(n) method following the

spatial operator approach of Rodriguez and Jain [3, 43–45] and extending the templatized C

++ implementation of Schwieters [46]. The m constraint equations are adjoined in the

manner described below. As discussed in ref. [47], this introduces an O(m3) term in the

computational complexity. However, because Simbody supports biologically-realistic

internal coordinate joints capturing coupled rotation and translation [20], the need for most

constraints is eliminated and we typically have n≫m. Further, only blocks of coupled

constraints need be solved simultaneously, so the cubic term applies only to the maximum

number of coupled constraints which is typically much lower than the total number of

constraints, and in many systems can be viewed as a constant since the amount of coupling

does not necessarily grow with problem size. In practice we have not yet found constraint

coupling to be a bottleneck and Simbody does not currently exploit decoupling. Jain [48]

presents a method for efficiently eliminating locally-coupled constraints in the spatial

algebra framework that we intend to incorporate in a future release.

4.1. Equations of motion

A Simbody multibody system is constructed via the API as a tree-structured system of

“mobilized bodies” each consisting of a body and its unique inboard internal coordinate joint

(hinge) which we call a mobilizer. This avoids confusion with the biologically-meaningful

term “joint” which may be modeled as a mobilizer, or with constraints, or with force

elements, or some combination. Simbody mobilizers and their capabilities are discussed

extensively in Seth et al. [20]. To the tree of mobilized bodies is added a set of holonomic

(position) and nonholonomic (velocity) constraints restricting the motion of bodies or

directly affecting generalized coordinates.

Mobilizers are not constraints. Instead, the ith mobilizer provides its body with 0 ≤ ni ≤ 6

degrees of freedom with respect to its parent body. These are parameterized with ni

generalized speeds ui which collectively form the basis for our equations of motion. The

mobilizer also introduces a set of nqi ≥ ni generalized coordinates qi to represent the pose

(relative position and orientation) of the body with respect to its parent. The time derivatives

of generalized coordinates are related to the generalized speeds by the kinematic differential

equation:

(8)

Sherman et al. Page 10

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where Ni is an nqi × ni invertible matrix. When nqi > ni there are nqi − ni local constraints

that the qi must satisfy; in practice these are almost always quaternion normalization

constraints. These constraints are introduced only for numerical stability and have no

physical significance; they do not produce forces, have little computational cost and will not

be discussed further here. u = {ui} and q = {qi} are the generalized speeds and coordinates

for the system as a whole, giving

(9)

where N is block diagonal.

Simbody constraints may be specified in terms of geometry (e.g. distance between points,

non-penetration, non-slip) as well as directly on generalized speeds or coordinates (e.g.

prescribed motion, couplers), and linear acceleration-only constraints may also be specified.

However, Simbody automatically reduces these to algebraic relationships among the

coordinates and speeds which is how we will present them here. The first set of equations

arises from constraints that are explicitly specified during modeling:

(10)

(11)

(12)

Here t is time, q and u are defined above. In addition to the above equations, the time

derivatives of the holonomic and nonholonomic constraints must also be satisfied, adding

three more equations:

(13)

(14)

(15)

From differentiation of Eqns. (10) and (11) it can be seen that P = (∂p/∂q)N and V = ∂v/∂u.

bp and bv collect terms that do not depend on u̇. Eqn. (10) defines the position constraint

manifold that restricts q, Eqns. (11) and (13) together define the velocity constraint manifold

that restricts u, and Eqns. (12), (14) and (15) generate unknown constraint forces λ that

appear in the equations of motion and affect u̇. For exposition of the equations of motion,

the acceleration constraints are assembled together:

(16)

Sherman et al. Page 11

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where and . Matrix G(q) is the

acceleration constraint Jacobian which in general is poorly conditioned or singular due to

redundant constraints; b(t,q,u) is the acceleration constraint residual. The remaining

dynamic equations are:

(17)

(18)

where z is a set of auxiliary continuous variables defined by first order differential equations

(e.g. for muscle dynamics or controllers), λ is the vector of m Lagrange multipliers

representing the constraint forces, and M(q) is the n×n symmetric, positive definite internal

coordinate mass matrix. finertial(q,u) are the velocity-dependent Coriolis and gyroscopic

forces, converted to generalized forces. fapplied(t,q,u,z) collects all explicitly applied body

forces and torques including gravitational forces (converted to generalized forces), plus any

directly applied generalized forces (e.g. motor torques).

Equations (9) through (18) are propagated through time by Simbody’s numerical integrators

during continuous intervals, giving trajectories q(t), u(t), and z(t). For comparison with

section 3 note that y = {q,u, z} and function c comprises functions p, ṗ, and v.

4.2. Solving for accelerations

For forward dynamics, Eqns. (16) and (17) are solved simultaneously for the unknowns u̇

and λ. When G has full row rank (i.e., rank(G)=m), the solution is unique. In general

rank(G)<m due to redundant constraints, leaving λ underdetermined although u̇ is still

unique. Commonly, multibody codes that are able to handle this situation (e.g. SD/FAST

[49]) do so by dropping some of the constraints, so that only a subset of constraints

generates forces. This can lead to absurd results that we consider unacceptable since they

can undermine a non-expert user’s confidence in the tool. While the “right” answer can only

be obtained by replacing redundant constraints with more detailed compliant elements, one

can do much better than delete constraints altogether. Simbody instead determines a least-

squares solution for underdetermined λ which in many cases returns the limiting value of

compliant elements as their stiffness goes to infinity; in any case we produce a plausible

solution in which redundant constraints each carry part of the load rather than having any of

them zero.

Recall that Simbody is a recursive O(n) multibody code. Despite the form of the equations

written above, Simbody does not normally calculate the n×n mass matrix, since that would

be O(n2) and inverting it would be O(n3). (M and other system matrices can be obtained

when needed.) Here we will show what is being calculated and comment on the

computational complexity; space does not permit showing how this is performed using

recursive spatial operators. The interested reader may consult refs. [43, 46, 50] for details.

Using the fact that M is invertible, Eqns. (16) and (17) can be combined to eliminate u̇:

Sherman et al. Page 12

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(19)

where u̇0 = M−1(fapplied − finertial) is the generalized acceleration vector of the unconstrained

system, and the right hand side is g0 = g (t, q, u;u̇0) in Eqn. (16), that is, the acceleration

constraint errors that result from the unconstrained accelerations. The operator M−1v for any

column vector v is available in O(n) time, so u̇0 is calculated in O(n). g() is the vector of

acceleration errors for each of m constraint equations, given the generalized accelerations;

each error is available in constant time from the definition of its constraint element, so g() is

O(m). Thus the right hand side of (19) is available in O(n+m) time.

Let Ym×m = GM−1GT. This matrix is formed as follows: a (generalized force-like) column

of GT is formed explicitly in O(n) time from the constraint element definition. The O(n)

M−1v operator is applied. The resulting acceleration is supplied to g() in Eqn. (16), yielding

a column of Y in O(n+m) time. This is done for m columns, so the total cost of forming Y is

O(mn+m2). We can now rewrite Eqn. (19) as:

(20)

If Y has full rank m this equation may be solved by any suitable method such as LU with

pivoting. If it is acceptable simply to drop some of the equations in the singular case, we

may obtain the non-zero subset of λ using a QR method. For a least squares solution, we

would like the solution

(21)

where Y+ is the pseudoinverse of Y. Pseudoinverse is commonly calculated with an SVD

decomposition, but Simbody uses the complete orthogonal factorization (QTZ) instead,

which is approximately 5X faster than SVD. See ref. [51] for information on any of these

methods; Simbody uses the implementation provided by LAPACK [52]. All of these

factorizations have complexity O(m3) so the total cost of determining λ is O(m3+mn+m2).

As discussed above, we expect m to be very small due to our extensive use of internal

coordinate joints [20]. And if the problem were to be solved in uncoupled blocks (not yet

done), m and n represent only those constraints and generalized coordinates that are coupled.

Once we have obtained the multipliers λ, we calculate fconstraint = GT λ in a single O(n)

evaluation, then Eqn. (17) gives us u̇ = M−1(fapplied − finertial − fconstraint) which is a final

O(n) application of the M−1v operator.

5. Contact modeling

Biomechanical models often involve contact among components of the model. In many

cases the contacts can be idealized into joints or constraints. However, real contact forces

arise from deformations of the compliant materials from which biological systems are

composed. Simbody provides two compliant contact models that take deformations into

account to generate contact forces. One is based on Hertz contact theory [53–54] which

Sherman et al. Page 13

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

analytically generates accurate forces and deformations based on linear elasticity theory, but

limited to simple geometric objects. The second is the Elastic Foundation Model [54–55],

which uses meshes to represent arbitrarily complicated geometric surfaces in contact, but

calculates deformations and forces using a simplified elastic model. These models are

augmented with a dissipation model described by Hunt and Crossley [56] and a model of

Stribek friction [57]. For each contact element, we produce a force composed of three

effects: stiffness, dissipation, and friction:

(22)

Calculation of fstiffness differs between the two compliant contact models but we use the

same method for the dissipation and friction terms once the stiffness force has been

determined.

5.1. Hertz stiffness, Hunt and Crossley dissipation, Stribek friction

To apply Hertz theory rigorously, we need two linearly elastic materials in non-conforming

contact, where the dimensions of the contact patch are small compared to the curvatures, and

small compared to the overall dimensions of the object [54]. Contact must initiate at a

common point at which the two surface normals are opposed. Each of the contacting

surfaces must be well-approximated by a paraboloid at the contact point. Brought into a

common frame, these may be added together to characterize the separation between the two

surfaces. That sum will also be a paraboloid, so it can be expressed using just two principal

curvatures to represent the relative contact curvatures. See ref. [54], section 4.1 for a

discussion. Thus the undeformed geometry of contact can be represented by a contact point

and normal, and the two principal curvatures of the separation paraboloid. Any sufficiently

smooth nonconforming surfaces can be described this way [58], and Hertz theory can also

be applied to cylindrical contact that initiates in a line rather than a point. Currently

Simbody provides Hertz contact for planes, spheres, and ellipsoids. Fig. 4 illustrates the

geometry of contact for the case of two spheres.

Deformation is characterized by a scalar displacement x that is the total deformation of the

two surfaces along the contact normal, with x>0 when the surfaces are contacting.

Displacement x may also be viewed as the minimum distance by which one of the surfaces

would have to be translated along the contact normal so that no deformation of either surface

would be required to prevent overlap.

Under the above restrictions, Hertz theory assumes that the deformation of the two surfaces

produces an elliptical contact patch, in a contact plane perpendicular to the contact normal.

The resulting normal force, contact patch dimensions, and pressure distribution can then be

determined just from material properties, undeformed contact geometry, and deformation x.

The force magnitude is

(23)

Sherman et al. Page 14

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Here R is a composite relative radius of curvature, E* is a composite elastic modulus, and

σ≥1 is an eccentricity factor with σ=1 for circular contact, slowly growing as a function of

elliptic integrals of the ratio of the two relative curvatures [54]. R and σ depend only on the

curvatures of the separation paraboloid, so the parenthesized quantity above is independent

of x. Note that although the materials are assumed linear elastic, the force-displacement

relationship is nonlinear because of the changing geometry during contact. Appendix A

gives details for calculating R, σ and E* from undeformed contact geometry and material

properties.

To apply this force, Simbody calculates an instantaneous contact point P, located along the

line separating the initiation points on each surface, with the exact location dependent on the

relative stiffnesses of the two contacting materials. If the materials are the same, P will be

located midway between the two surfaces. If one surface is much stiffer than the other then

P will be located much closer to the undeformed surface of the stiff (non-deforming) body

than to the undeformed surface of the soft body. P determines the height of the contact patch

ellipse along the contact normal and is the center point of the contact patch ellipse. The

contact force is applied to each body at P along the contact normal in opposite directions,

such that the force is always pushing on each surface, never pulling.

For Hunt and Crossley dissipation to apply rigorously, the impact velocities should be small

enough not to cause permanent yielding of the materials [56, 59]. Once the magnitude of the

stiffness force has been determined as above, the Hunt and Crossley dissipation force may

be calculated as

(24)

where c* is an effective dissipation coefficient combining the individual dissipation

properties of the two contacting materials. The material property c may be determined from

impact experiments as the negated slope of the coefficient of restitution vs. impact velocity

curve at low velocities, using the relationship e = 1−cv where e is the measured coefficient

of restitution and v is the impact speed [60]. (Coefficient of restitution is not a material

property.) See Appendix A for details on computing c* from individual material properties.

Note that fHC is a signed quantity; this creates an empirically observed hysteresis. Hunt and

Crossley [56] show that the total force fHz + fHC ≥ 0 under typical conditions; negative total

forces are due to unmodeled losses (such as “ringing”) so we do not allow the total to

become negative:

(25)

This accounts for all contact forces in the normal direction, that is

(26)

Sherman et al. Page 15

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finally, the friction force is calculated as follows. Find the body stations (points) coincident

with the contact point P and calculate their relative velocity v in the contact plane. With slip

rate v = |v| we calculate the magnitude of the friction force as follows

(27)

The function μ calculates an effective coefficient of friction that is dependent only on the

slip velocity, but is parameterized by given surface properties of the materials in contact:

static, dynamic, and viscous coefficients of friction, and a transition speed at which static

friction reaches its peak value. Fig. 5 shows the shape of this curve in the absence of viscous

friction. With viscous friction the final segment would have a positive slope rather than zero.

Simbody implements this function using a three-segment spline with the first two segments

quintic polynomials to ensure C2-smooth transitions between static friction, the Stribeck

transition region, and the final sliding region. The transition velocity is set to a tiny value

that is negligible for the problem at hand. One may also use intermittent no-slip constraints

to enforce stiction with exactly zero slip, but in practice the above continuous method

produces robust behavior without detecting and handling stiction transition events explicitly.

A drawback of this method is that the system may become stiff in the stiction region if

transition velocity is set very small, reducing the efficiency of explicit integration [28].

Some choices of material and properties can also make the problem stiff. However, as

discussed in section 3.2, Simbody provides an implicit integrator CPODES that performs

well on stiff problems, provided they are not too large. The size limitation is due to the

necessity for CPODES to periodically calculate numerically, and factor, the matrix of partial

derivatives of Eqn. (1). Whether the much-increased step size compensates for the additional

costs is highly problem dependent, and we have not yet adequately characterized the

tradeoffs. We have seen a number of human-sized models for which CPODES has been

highly effective, and it is easy to try a variety of integration methods in the Simbody

framework.

5.2. Elastic foundation model

The Elastic Foundation Model (EFM) [54–55] assumes that contacting solids may be

considered rigid bodies but for a thin layer of elastic material of thickness h at the surfaces.

Linear elastic properties are determined for the material properties in contact and combined

into a composite stiffness modulus E* as for Hertz contact, though with a different

combining formula; see Appendix A. The geometry of each surface, which can be arbitrarily

complicated, is approximated with a triangular mesh of suitable density. At the centroid of

each triangle on each surface is placed a spring whose stiffness k can be determined from the

area of its triangle, the composite material property E* and thickness h. This forms a “bed of

springs” on the surface of each body that can be used to generate forces during contact.

At run time when an EFM body A contacts another body B, Simbody determines all the

triangles of A whose centroids are inside body B, considering only undeformed geometry.

For each of these triangles, the point S on body B’s surface closest to the centroid is

determined. A displacement x is determined as the distance from the centroid to S. Then a

Sherman et al. Page 16

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

force kx is applied to both bodies using a contact point P along the line segment between the

centroid and S. P’s placement accounts for the relative stiffness of the two bodies as

described for Hertz contact above. A Hunt and Crossley-like dissipation term kx(c* ẋ) is

added to complete the normal force, and relative velocities are calculated at P and used to

generate friction forces in the plane of the triangle using Eqn. (27). This is repeated

independently for each overlapping triangle. If B is also an EFM body, then the same

calculation is performed for each of B’s triangles whose centroids are inside A. All force

contributions from each triangle are summed up and used to calculate the net force and

moment applied to the two rigid bodies. The distribution of normal forces is also used to

calculate the center of pressure for the irregular contact patch.

EFM produces results that are inferior to the finite element method (FEM) but take much

less time to compute. In contrast to Hertz and FEM, EFM does not account for coupling

between elements and hence does not converge to the result predicted by linear elastic

material theory even at very fine mesh resolutions. As shown in Fig. 6, EFM can be viewed

as a discretization of a Winkler foundation [61], commonly used to represent particulate

materials like soil.

Despite this limitation, EFM can give very good agreement with FEM for total force even

though patch geometry may not agree as well [62]. Simbody does not provide a built-in

FEM contact method although one could be supplied as a user force element. For most uses

of Simbody FEM would be prohibitively expensive; EFM can be a useful alternative but

should be used cautiously.

5.3. Rigid contact

An alternative approach to collision and contact problems is to treat the contact objects as

rigid and to use unilateral constraints to prevent interpenetration and sliding [63–64].

Collisions are handled impulsively with a coefficient of restitution supplied to emulate

dissipative collisions. These are essentially non-physical assumptions but can be useful in

practice and have been used successfully for some biomechanical research, e.g. [65].

Simbody’s constraints, operators, and event handling mechanism can be employed currently

to use this contact method, and automated support is planned in a near future Simbody

release.

Temporary replacement of compliant elements with rigid ones is especially useful in

biomechanics for muscle induced acceleration analysis [66–67], since reaction forces are

generated instantaneously with constraints. In this case compliant element deformations and

patch calculations can be used to guide placement of the rigid constraints. Hamner, et al.

[68] uses Simbody constraints to implement induced acceleration analysis in OpenSim [16].

6. Future directions

Simbody is used heavily in biomechanics through the OpenSim application and in other

research areas, where it has proven fast and reliable. (See companion paper [69] in this

volume for more information about OpenSim.) However, we hope to improve it in a number

of ways over the next few years. In particular, we plan to add to our collision/contact system

Sherman et al. Page 17

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

an option for treating some or all contacts using rigid contacts and impulsive collisions as

discussed above, with automated handling of unilateral constraints. We also plan to extend

the set of analytical surfaces that can be used with the Hertz compliant contact method. Jain

and Rodriguez [44] provide a method for significant speed improvements for systems with

prescribed motion that we intend to incorporate. Jain [48] describes a promising method for

eliminating locally-coupled constraints which we will also explore.

We also hope to grow our library of predefined forces, constraints, and mobilizers and invite

community contributions. We are continuously improving our documentation and encourage

contributions of examples, and to the Simbody Wiki. Feature requests and bug reports are

tracked and support forums available. All source code is available and submissions of

patches, enhancements, and new features are welcome. For more information about

obtaining and/or contributing to Simbody, visit the Simbody home page https://simtk.org/

home/simbody.

Acknowledgments

The authors thank the many contributors to Simbody’s development, including Peter Eastman, Radu Serban, Paul
Mitiguy, Jack Middleton, Christopher Bruns, and Charles Schwieters. Samuel Hamner provided many helpful
comments on an earlier draft of this paper. This work was supported by the National Institutes of Health through
grants U54 GM072970 and R24 HD065690.

References

1. Hooker WW, Margulies G. The dynamical attitude equations for an n-body satellite. J Astronautical
Sciences. 1965; 12:123–128.

2. Featherstone, R. Robot dynamics algorithms. Boston: Kluwer; 1987.

3. Rodriguez G, Jain A, Kreutz-Delgado K. A spatial operator algebra for manipulator modeling and
control. The International Journal of Robotics Research. Aug 1; 1991 10(4):371–381.

4. Rosenthal DE, Sherman MA. High performance multibody simulations via symbolic equation
manipulation and Kane’s method. J Astronautical Sciences. 1986; 34:223–239.

5. Ryan, RR. ADAMS multibody systems analysis software. In: Schielen, W., editor. Multibody
Systems Handbook. New York: Springer-Verlag; 1990. p. 361-402.

6. Zajac FE, Neptune RR, Kautz SA. Biomechanics and muscle coordination of human walking: Part I:
Introduction to concepts, power transfer, dynamics and simulations. Gait & Posture. 2002; 16(3):
215–232. [PubMed: 12443946]

7. Piazza SJ. Muscle-driven forward dynamic simulations for the study of normal and pathological
gait. Journal of NeuroEngineering and Rehabilitation. 2006; 3(5)

8. Delp SL, Loan JP. A computational framework for simulating and analyzing human and animal
movement. Computing in Science & Engineering. 2000; 2(5):46–55.

9. Pandy MG. Computer modeling and simulation of human movement. Annual Review of Biomedical
Engineering. 2001; 3(1):245–273.

10. de Jongh CU, Basson AH, Scheffer C. Predictive modelling of cervical disc implant wear. Journal
of Biomechanics. 2008; 41(15):3177–3183. [PubMed: 18947829]

11. Riley PO, Croce UD, Casey Kerrigan D. Propulsive adaptation to changing gait speed. Journal of
Biomechanics. 2001; 34(2):197–202. [PubMed: 11165283]

12. Smith, RL. Open Dynamics Engine (ODE) Manual. 2004. http://opende.sourceforge.net/wiki/
index.php/Manual_(All

13. Sellers WI. GaitSym. Mar 20.2011 2011 http://www.animalsimulation.org.

14. Schmidt JP, Delp SL, Sherman MA, et al. The Simbios National Center: Systems biology in
motion. Proceedings of the Ieee. Aug; 2008 96(8):1266–1280. [PubMed: 20107615]

Sherman et al. Page 18

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://simtk.org/home/simbody
https://simtk.org/home/simbody
http://opende.sourceforge.net/wiki/index.php/Manual_(All
http://opende.sourceforge.net/wiki/index.php/Manual_(All
http://www.animalsimulation.org

15. Flores SC. Fast flexible modeling of RNA structure using internal coordinates. IEEE/ACM
Transactions on Computational Biology and Bioinformatics. 2010; 99 no. PrePrints.

16. Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze
dynamic simulations of movement. Biomedical Engineering, IEEE Transactions on. 2007; 54(11):
1940–1950.

17. Pronost N, Sandholm A, Thalmann D. Correlative joint definition for motion analysis and
animation. Computer Animation and Virtual Worlds. 2010; 21(3–4):183–192.

18. Sherman, MA. Simbody home page. 2011. https://simtk.org/home/simbody

19. X. Consortium. The MIT License. 2011. http://opensource.org/licenses/mit-license

20. Seth A, Sherman M, Eastman P, et al. Minimal formulation of joint motion for biomechanisms.
Nonlinear Dynamics. 2010; 62(1):291–303. [PubMed: 21170173]

21. Zeigler, BP.; Praehofer, H.; Kim, TG. Theory of Modeling and Simulation. 2. Academic Press;
2000.

22. Brenan, KE.; Campbell, SL.; Petzold, LR. Numerical solution of initial-value problems in
differential-algebraic equations. New York: North-Holland; 1989.

23. Ascher U. Stabilization of invariants of discretized differential systems. Numerical Algorithms.
1997; 14(1):1–24.

24. Hairer, E.; Lubich, C.; Wanner, G. Geometric numerical integration : structure-preserving
algorithms for ordinary differential equations. 2. Berlin; New York: Springer; 2006.

25. Shampine LF. Conservation laws and the numerical solution of ODEs. Computers & Mathematics
with Applications. 12(5–6 Part 2):1287–1296.

26. Hairer, E.; Nørsett, SP.; Wanner, G. Solving ordinary differential equations I: nonstiff problems. 2.
Berlin; New York: Springer-Verlag; 1993. rev. ed

27. Verlet L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-
Jones molecules. Physical Review. 1967; 159(1):98–103.

28. Hairer, E.; Wanner, G. Solving ordinary differential equations II: stiff and differential-algebraic
problems. 2. Berlin; New York: Springer-Verlag; 1993. rev. ed

29. Cohen SD, Hindmarsh AC. CVODE, a stiff/nostiff ODE solver in C. Computers in Physics. 1996;
10(2):138–143.

30. Dehombreux P, Verlinden O, Conti C. An Implicit Multistage Integration Method Including
Projection for the Numerical Simulation of Constrained Multibody Systems. Multibody System
Dynamics. 1997; 1(4):405–424.

31. Eich E. Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems
with Algebraic Constraints. Siam Journal on Numerical Analysis. Oct; 1993 30(5):1467–1482.

32. Hairer E, Ostermann A. Dense output for extrapolation methods. Numerische Mathematik. 1990;
58(1):419–439.

33. Vlasenko D, Kasper R. A New Software Approach for the Simulation of Multibody Dynamics.
Journal of Computational and Nonlinear Dynamics. 2007; 2(3):274–278.

34. Ascher UM, Chin H, Petzold LR, et al. Stabilization of Constrained Mechanical Systems with
DAEs and Invariant Manifolds. Mechanics of Structures and Machines. 1995; 23(2):135–157.

35. Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems. Computer
Methods In Applied Mechanics And Engineering. 1972; 1:1–16.

36. von Schwerin, R. Multibody system simulation : numerical methods, algorithms, and software.
Berlin; New York: Springer-Verlag; 1999.

37. Sherman, M. Simbody Theory Manual. Simbios Center at Stanford University; 2011. https://
simtk.org/docman/view.php/47/231/SimbodyTheoryManual.pdf

38. W. H. Press. Numerical recipes in C++ : the art of scientific computing. 2. Cambridge, UK; New
York: Cambridge University Press; 2002.

39. Mauve M, Vogel J, Hilt V, et al. Local-lag and timewarp: providing consistency for replicated
continuous applications. Multimedia, IEEE Transactions on. 2004; 6(1):47–57.

40. Teal, SL.; Rudnicky, AI. A performance model of system delay and user strategy selection.
Proceedings of the SIGCHI conference on Human factors in computing systems; Monterey,
California, United States. 1992. p. 295-305.

Sherman et al. Page 19

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://simtk.org/home/simbody
http://opensource.org/licenses/mit-license
https://simtk.org/docman/view.php/47/231/SimbodyTheoryManual.pdf
https://simtk.org/docman/view.php/47/231/SimbodyTheoryManual.pdf

41. Shneiderman B. Response time and display rate in human performance with computers. ACM
Comput Surv. 1984; 16(3):265–285.

42. Card, SK.; Moran, TP.; Newell, A. The psychology of human-computer interaction. Hillsdale, N.J:
L. Erlbaum Associates; 1983.

43. Rodriguez G, Jain A, Kreutz-Delgado K. Spatial operator algebra for multibody system dynamics.
J Astronautical Sciences. 1992; 40(1):27–50.

44. Jain A, Rodriguez G. Recursive dynamics algorithm for multibody systems with prescribed
motion. Journal of Guidance, Control, and Dynamics. 1993; 16(5):830–837.

45. Jain A, Vaidehi N, Rodriguez G. A fast recursive algorithm for molecular dynamics simulation.
Journal of Computational Physics. 1993; 106(2):258–268.

46. Schwieters CD, Clore GM. Internal coordinates for molecular dynamics and minimization in
structure determination and refinement. Journal of Magnetic Resonance. Oct; 2001 152(2):288–
302. [PubMed: 11567582]

47. Anderson KS, Critchley JH. Improved ‘Order-N’ Performance Algorithm for the Simulation of
Constrained Multi-Rigid-Body Dynamic Systems. Multibody System Dynamics. 2003; 9(2):185–
212.

48. Jain A. Recursive algorithms using local constraint embedding for multibody system dynamics.
ASME Conference Proceedings. 2009; 2009(49019):139–147.

49. Hollars, MG.; Rosenthal, DE.; Sherman, MA. SD/FAST User’s Guide B.2. Symbolic Dynamics,
Inc; 1994.

50. Featherstone, R. Rigid body dynamics algorithms. 1. New York, NY: Springer; 2007.

51. Golub, GH.; Van Loan, CF. Matrix computations. 3. Baltimore: Johns Hopkins University Press;
1996.

52. Anderson, E. LAPACK users’ guide. 3. Philadelphia: Society for Industrial and Applied
Mathematics; 1999.

53. Hertz H. On the contact of elastic solids. J Reine Angew Math. 1882; 92:156–171.

54. Johnson, KL. Contact mechanics. Cambridge Cambridgeshire; New York: Cambridge University
Press; 1985.

55. Blankevoort L, Kuiper JH, Huiskes R, et al. Articular contact in a three-dimensional model of the
knee. Journal of Biomechanics. 1991; 24(11):1019–1031. [PubMed: 1761580]

56. Hunt KH, Crossley FRE. Coefficient of restitution interpreted as damping in vibroimpact. ASME
Journal of Applied Mechanics. 1975; 42:440–445.

57. Armstrong-Hélouvry, B. Control of machines with friction. Boston: Kluwer Academic Publishers;
1991.

58. Struik, DJ. Lectures on classical differential geometry. 2. New York: Dover Publications; 1988.

59. Marhefka, DW.; Orin, DE. Simulation of contact using a nonlinear damping model. International
Conference on Robotics and Automation; Minneapolis, Minnesota, USA. 1996. p. 1662-1668.

60. Goldsmith, W. Impact : the theory and physical behaviour of colliding solids. Mineola, N.Y: Dover
Publications; 2002.

61. Winkler, E. Theory of elasticity and strength. Czechoslovakia: Dominicus Prague; 1867.

62. Pérez-González A, Fenollosa-Esteve C, Sancho-Bru JL, et al. A modified elastic foundation
contact model for application in 3D models of the prosthetic knee. Medical Engineering &
Physics. 2008; 30(3):387–398. [PubMed: 17513163]

63. Pfeiffer, F.; Glocker, C. Multibody dynamics with unilateral contacts. New York: Wiley; 1996.

64. Baraff, D. Fast contact force computation for nonpenetrating rigid bodies. Proceedings of the 21st
annual conference on Computer graphics and interactive techniques; 1994. p. 23-34.

65. Piazza SJ, Delp SL. Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion
During a Step-Up Task. Journal of Biomechanical Engineering. 2001; 123(6):599–606. [PubMed:
11783731]

66. Zajac FE, Gordon ME. Determining muscle’s force and action in multi-articular movement.
Exercise and Sport Sciences Reviews. 1989; 17(1):187–230. [PubMed: 2676547]

67. Riley PO, Kerrigan DC. Kinetics of stiff-legged gait: induced acceleration analysis. Rehabilitation
Engineering, IEEE Transactions on. 1999; 7(4):420–426.

Sherman et al. Page 20

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

68. Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running.
Journal of Biomechanics. 2010; 43(14):2709–2716. [PubMed: 20691972]

69. Seth, A.; Sherman, MA.; Reinbolt, JA., et al. OpenSim: A musculoskeletal modeling and
simulation framework for in silico investigations and exchange. IUTAM Symposium on Human
Body Dynamics; Waterloo, Canada. 2011.

70. Antoine J-F, Visa C, Sauvey C, et al. Approximate Analytical Model for Hertzian Elliptical
Contact Problems. Journal of Tribology. 2006; 128(3):660–664.

71. Dyson A, Evans HP, Snidle RW. A simple, accurate method for calculation of stresses and
deformations in elliptical hertzian contacts. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science 1989–1996 (vols 203–210). 1992;
206(23):139–141.

Appendix A. Contact model details

This appendix gives details of the calculation of terms that appear in section 5.

A.1. Material properties combining rules; location of contact point

We are given Young’s modulus Ei and Poisson’s ratio νi, i=1,2 for a pair of contacting

objects. These are first combined into the plane strain modulus for each material:

. To use Hertz theory, we need a single equivalent modulus combining both

materials. The literature (e.g. [54]) seems to suggest but this would be

inconsistent with the nonlinear Hertz relationship, by the following reasoning. First, the

relative curvature is a geometric property and is straightforward to calculate: R = R1 R2 (R1

+ R2). Looking at Fig. 4, note that the contact situation depicted should be indistinguishable

from one in which B1 (the top, red body) had met an infinitely rigid halfspace, with a

displacement of x1 instead of x, provided that B1’s radius were R instead of R1. The effective

modulus would be just of B1. Hertz theory would then give . By the

same reasoning, we can view B1 as a rigid half space and see that the force on B2 (with

radius changed to R) would be unchanged at . But the forces must be the

same on both bodies and the same as . Recalling that x = x1 + x2, we now

have enough information to write E* in terms of and :

This combining formula is similar, but not identical, to . We can now

rearrange this to determine how x is split into x1 and x2 given the stiffnesses of the materials,

the result we need to determine the contact point location P:

Sherman et al. Page 21

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

By inspection, the time derivatives ẋ1 and ẋ2 are split in the same ratios, which gives us a

way to define an equivalent dissipation coefficient for ẋ: c* = c1s1+c2(1−s1), where

. To summarize, here are the combining rules we use for Hertz:

Note that the EFM method uses linear elements, and thus the standard combining rule

 is the correct one to use for calculating E* and s1, s2.

A.2. Elliptical contact

We presented the Hertz contact force calculation in Eqn. (23) with a correction factor σ to

deal with the eccentricity of the contact ellipse. The correction factor is

(28)

where k = a/b, m = 1−(1/k)2, E and K are complete elliptic integrals of the first and second

kinds, resp., a, b the semi-major and semi-minor axes of the contact ellipse, resp. so k ≥ 1.

The ratio a/b of the contact ellipse dimensions in turn depends only on the principal semi-

curvatures A, B, B ≥ A of the (undeformed) separation paraboloid that describes the relative

contact geometry:

(29)

The above expressions may be derived from references [54] and [70–71]. Eqn.(29) can be

solved numerically to machine precision for k, or by approximation. Simbody uses the

approximations from [70] which provide smooth, high-accuracy approximations for k and

the elliptic integrals, giving σ accurate to five decimal places. Ref. [71] provides a method

for calculating this to machine precision, which Simbody includes for testing purposes but

does not use during simulation.

Sherman et al. Page 22

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Top-level Simbody architecture. A read-only System object contains the model components

and defines the parameterization. Values of those parameters are stored separately in State

objects. A Study generates a series of states (State values) representing a desired solution

such as a physical time history.

Sherman et al. Page 23

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Organization of the state variables and realization cache into ordered stages. A change to a

state variable at stage s invalidates all cache entries at levels s and above. Construction of

the System may be viewed as the first stage of computation (topology).

Sherman et al. Page 24

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
CPU time vs. accuracy example. We ran six identical 20s simulations at accuracies α=10−2

to 10−7, recording the amount of CPU time required. The system comprised 11 20-body

chains using randomly oriented revolute joints, attached to a common oscillating base, with

gravity and light damping. All dofs had random initial velocities assigned, with speeds low

enough to avoid chaotic motion so that all simulations approximated identical trajectories.

The number of steps (and thus CPU time) required by a 4th-order integrator should be

proportional to α−1/4. The plotted red line is 0.118 α−1/4. Note that absolute CPU times can

vary substantially for similar-sized systems with different characteristics; this is intended

only as an example of relative performance vs. accuracy.

Sherman et al. Page 25

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Contact geometry for the Hertz/Hunt and Crossley model.

Sherman et al. Page 26

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Stribeck friction curve showing effective coefficient of friction as a function of slip velocity.

Transition velocity vt is set to a negligible value.

Sherman et al. Page 27

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Continuum bases for contact models. EFM discretizes a Winkler foundation, while Hertz

and FEM are based on linear theory of elasticity.

Sherman et al. Page 28

Procedia IUTAM. Author manuscript; available in PMC 2015 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

