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Mitochondrial Protein Quality Control:
The Mechanisms Guarding Mitochondrial Health
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Abstract

Significance: Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health.
Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative
diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A
set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in
recognition and correction of the mitochondrial proteome. Recent Advances: Here, we review current
knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its
impact on health and aging. Critical Issues: While our knowledge about MQC is steadily growing, critical gaps
remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial
welfare, particularly in higher organisms. Future Directions: Delineating how coordinated action of the MQC
modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the
current picture of MQC’s role and function in health, cellular stress, and degenerative diseases. Antioxid. Redox
Signal. 22, 977–994.

Introduction

M itochondria are dynamic semiautonomous organ-
elles present in virtually all eukaryotic cells and play

fundamentally important roles in various aspects of cellular
physiology. The vital functions of mitochondria include
generation of ATP through respiration, integration of several
key metabolic and cofactor-generating pathways, and regu-
lation of ion homeostasis and apoptosis (141, 179). Pertur-
bations of mitochondrial homeostasis and integrity lead to
severe pathophysiological consequences and the onset of
disease. Numerous studies implicate mitochondrial dys-
function as an underlying factor of multiple pathologies in
humans, including cardiovascular disorders, myopathies,
certain cancers, type II diabetes, and neurological and neu-
rodegenerative diseases (23, 36, 50, 95, 104, 115, 130, 141,
149, 157, 179, 188). These maladies become particularly
prevalent as people age and have been linked with age-as-
sociated decline in mitochondrial health (18, 95, 115, 157).
Given the fundamental biological roles that mitochondria
play in cellular physiology, it is crucial to sustain their wel-

fare. To this end, several interdependent mechanisms exist,
from the molecular to the organellar level, to ensure mito-
chondrial homeostasis. These conserved mitochondrial
quality control (MQC) mechanisms maintain the mitochon-
drial proteome to promote the organelle’s normal function
and thus cellular survival (7, 18, 21, 95, 157, 175).

The endosymbiotic origin of mitochondria defines several
distinctive hallmarks of these organelles. Mitochondria,
whose proteome accounts for 900–1500 polypeptides (146,
165), retained two membranes, the outer mitochondrial
membrane (OM) and the inner mitochondrial membrane
(IM), respectively. These phospholipid bilayers segregate
two mitochondrial compartments—the matrix and the inter-
membrane space (IMS) (Fig. 1). The large matrix compart-
ment houses multiple metabolic enzymes and the
mitochondrion’s own small circular genome (mtDNA) and
the machineries necessary for its replication and expression.
A recent study showed that*500 proteins reside in the matrix
of mammalian mitochondrion (156). The IMS compartment
is smaller and contains fewer (*60) proteins (82, 183). The
large portion of mitochondrial proteins—including the
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electron transport chain and F1FO ATPase multiprotein
complexes (collectively known as the oxidative phosphory-
lation [OXPHOS] system)—localizes to the IM. The IM
proteome is particularly enriched in the specific invaginations
of the membrane termed cristae. The OM subproteome is
estimated to contain *100 polypeptides (198). Another

hallmark of the mitochondrial proteome is its bigenomic
nature. The vast majority of proteins comprising the mito-
chondrial proteome are encoded by nuclear genes, synthe-
sized in the cytosol, and subsequently imported into the
organelle, while only 13 of the*1500 mitochondrial proteins
are derived from mtDNA (18, 147, 179), These unique
properties of mitochondrial architecture impose several sig-
nificant challenges to mitochondrial functions and necessi-
tate constant monitoring by MQC (Fig. 2). One challenge
stems from the inherent generation of reactive oxygen spe-
cies (ROS) by the electron transport chain complexes of
OXPHOS (2, 9, 61) (Fig. 2A). During this process, some
electrons may leak from the electron transport chain and
rapidly react with molecular oxygen. Various reports esti-
mate that 0.3%–2% of the mitochondrial O2 consumption
may be diverted toward ROS formation (2, 9, 61). Incomplete
reduction of O2 by escaping electrons leads to the formation
of highly reactive superoxide anion, which can further pro-
mote formation of other ROS and reactive nitrogen species
(RNS) radicals (161). While free radical-scavenging mech-
anisms are in place (82), they are not always sufficient to
eliminate harmful ROS/RNS that are highly damaging to
nucleic acids, proteins, and lipids (61, 161). In addition, many
ROS are now recognized as important signaling molecules
essential for intracellular communication and stress response
(161). Therefore, as exemplified by a number of failed trials
aiming to correct mitochondrial damage by antioxidant
treatment (30, 29), massive neutralization of ROS may be
equally detrimental for cells.

FIG. 1. Distribution of mitochondrial proteome through-
out the organelle. The vast majority of mitochondrial pro-
teins reside in the matrix and inner mitochondrial
membrane (IM) subcompartments. The approximate
numbers of polypeptides in each subproteome are calcu-
lated based on available data (82, 146, 156, 165, 185, 198).
To see this illustration in color, the reader is referred to the
web version of this article at www.liebertpub.com/ars

FIG. 2. Biochemical stresses that challenge normal mitochondrial function. Mitochondrial respiration is inherently linked
to reactive oxygen species (ROS) production due to incomplete reduction of molecular oxygen by electron transport components
of the oxidative phosphorylation system (OXPHOS system) (A). Stalling the high-energy electrons at respiratory complexes I and
III leads to generation of superoxide anion which—either directly or via subsequent ROS radicals—can damage biological
molecules like mtDNA and propel additional damage. The biogenesis of OXPHOS complexes requires tight coordination
between synthesis and assembly of the mitochondrial- and nuclear-coded proteins (B). Polypeptides derived from the nuclear
genome are translated on cytosolic ribosomes and imported in an unfolded state into the mitochondrion via presequence
translocases of the outer (TOM) and inner (TIM) membranes. Imported polypeptides are inserted into the IM where they are
joined with mitochondria-synthesized subunits. Mismatches in subunit stoichiometry can lead to accumulation of unfolded or
unassembled proteins that can affect functional integrity of mitochondria. In addition, the electron transport chain units of
OXPHOS contain redox-active cofactors poised for rapid electron exchange reactions (C). When improperly assembled, these
prosthetic groups can act as pro-oxidants through their inherent ability to generate ROS via Fenton-like reactions (61, 161). To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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The other challenge arises from the dual genetic origin of
several OXPHOS complexes (complexes I, III, IV, and V)
(Fig. 2B). Biogenesis of these respiratory units requires
tightly coordinated expression, sorting and folding of both
mtDNA- and nuclear-coded polypeptides, and their subse-
quent assembly into stoichiometric complexes within the IM
(18, 128). If such coordination fails, unfolded or orphaned
subunits that are prone to misfolding and/or aggregation may
accumulate. Finally, the electron transport chain complexes
contain multiple redox cofactors, which when improperly
assembled or stalled in the assembly process, can act as pro-
oxidants and further contribute to the challenging biochem-
ical environment in the organelle (31, 99, 100, 132) (Fig. 2C).
If unopposed, these challenges can distort mitochondrial
protein homeostasis and propel progressive mitochondrial
failure. The acute failure at one of the aforementioned risk
sites may trigger a so-called vicious cycle—a series of del-
eterious events leading to the gradual increase of mitochon-
drial damage. For instance, accumulation of unassembled or
misfolded polypeptides can impede biogenesis and/or func-
tion of the OXPHOS, which in turn will produce excessive
ROS. These can further disrupt the mitochondrial proteome
through induction of mutations in mtDNA and additional
perturbation of protein folding, leading to more ROS and
ROS-induced damage and ultimately, to the demise of the
organelles (18, 57).

In this review, we summarize the current knowledge about
the MQC mechanisms by which cells cope with biochemical
stresses arising from the unique functional and organizational
properties of mitochondria, and how these mechanisms sus-
tain normal mitochondrial function and integrity. We will
primarily focus on the proteolytic facet of MQC and outline
recent advances and current concepts in the field.

Overview of Mitochondrial Protein Quality Control

Because of inherent susceptibility of mitochondria to
biochemical stresses, elaborate multilayer quality control
mechanisms have evolved that survey, repair, or eliminate
damaged mitochondria. Depending on the extent of damage,
MQC mechanisms can engage at several levels (Fig. 3). The
molecular level of MQC (referred hereafter as protein MQC
[PMQC]) includes a network of evolutionary conserved mi-
tochondrial proteases and chaperones distributed across mi-
tochondrial compartments (Fig. 3A), as well as cytosolic
proteolytic systems like the ubiquitin–proteasome system
(UPS), which can associate with the OM (79, 96, 116, 175)
(Fig. 3B). Although the number of studies addressing PMQC
in mammalian cells is steadily growing, most of our current
knowledge stems from studies in bacteria and the yeast
model. The key molecules involved in PMQC are summa-
rized in Table 1. One layer of PMQC is represented by ATP-
dependent chaperones of mtHsp70 and Hsp60 heat-shock
protein families, responsible for the sorting, folding, and
disaggregation of proteins in the matrix compartment (136,
187). Similarly, the Hsp70-type and Hsp90-type chaperones
operate in the cytosol and prevent aggregation and facilitate
transport of unfolded newly synthesized or nascent poly-
peptides into mitochondria (60, 75, 197). The proteolytic
facet of PMQC includes multiple conserved proteases (7, 18,
21, 157). The proteases are distributed across mitochondrial
subcompartments and generally can be divided into two

groups: (i) ATP-dependent, also known as AAA + (ATPase
associated with diverse cellular activities) proteases and (ii)
ATP-independent proteolytic enzymes. The former group
includes ClpXP and Lon/Pim1 proteases that reside in the
matrix and degrade oxidatively damaged or aggregated
polypeptides in the compartment (24, 25, 26, 34, 94, 77, 171,
181). Another two AAA + proteases localize to the IM. The
m-AAA (matrix AAA) protease has its active site exposed to
the matrix side of the IM where it performs its quality control
functions (11). The active site of i-AAA (intermembrane
space AAA) peptidase faces the IMS (113, 190). These
proteases appear to be important for removal of dysfunctional
or orphaned proteins that are intrinsic to or associated with
the IM (11, 105, 112, 113, 190). The AAA + proteases typi-
cally exist as homo-oligomeric (Lon/Pim1, i-AAA) or het-
ero-oligomeric (m-AAA, ClpXP) complexes, and their
proteolytic activity is coupled to ATP hydrolysis (13, 22, 159,
181). Such molecular architecture also permits chaperone-
like functions of AAA + proteases and appears to confer the
ability to recognize misfolded or unassembled proteins and
refold, and/or extract these polypeptides from phospholipid
bilayers (159). The second group of proteases is more het-
erogeneous and includes the following: (i) processing pep-
tidases (MPP, Oct1, Icp55, Cym1, and IMP) involved in
sequential removal and/or degradation of mitochondrial tar-
geting sequences (MTS) and thus proper biogenesis, sorting,
and stabilization of matrix-and IM-targeted proteins (3, 73,
92, 131, 133, 176, 185); (ii) soluble peptidases (Prd1/Neu-
rolysin, Atp23, and Ynm3/Omi) that seemingly contribute to
MQC in the IMS (92, 143, 145, 180, 199); and (iii) IM-bound
proteases (Pcp1/PARL, Oma1) implicated in the quality
control of the IM proteome and regulation of mitochondrial
dynamics (8, 19, 54, 58, 78, 83, 97, 127).

Growing evidence indicates that the cytosolic UPS also
represents an important facet of PMQC. First, UPS has been
shown to participate in quality control and removal of several
mitochondria-targeted proteins before or during their import
into the organelle (7, 35, 116). Moreover, UPS can access the
OM subproteome and mediate retrotranslocation and degra-
dation of OM resident proteins—a process termed mito-
chondria-associated degradation (MAD) (79, 96, 116). MAD
apparently relies on p97/Cdc48 AAA + protein (79, 193),
which is also involved in a well-described extraction of
ubiquitylated proteins from the endoplasmic reticulum (ER)
(37, 88).

Several MQC mechanisms are available on the organellar
level (Fig. 3C–E). Fusion and fission events (Fig. 3C) me-
diate organellar dynamics and facilitate mitochondrial bio-
genesis, and even redistribution of mtDNA and proteome
throughout the mitochondrial network (39, 41, 64, 196). Such
redistribution due to fusion of several mitochondria permits
the dilution of damaged molecules and/or replenishment of
depleted components in malfunctioning organelles (41, 196).
A phenomenon known as stress-induced mitochondrial hy-
perfusion (164, 177) represents an example of coupling be-
tween mitochondrial fusion and cellular stress response and
highlights the significance of mitochondrial dynamics in
stress management. Upon homeostatic insults like oxidative
stress or starvation, mitochondria in the stressed cells form
highly interconnected networks thereby increasing content
mixing, ATP production, and protecting mitochondria from
autophagic removal (68, 138, 155, 164, 177). When transient
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stress protection via mitochondrial hyperfusion is not suffi-
cient, damaged organelles are removed from the network
through fragmentation (fission) events (178). Mitochondrial
fission serves to increase the number of mitochondria in the
cell before mitochondrial biogenesis or cellular division, as
well as to segregate dysfunctional or depolarized mitochon-
dria away from the healthy network (144, 178, 196). Once
malfunctioning (e.g., severely depolarized) mitochondria
have been segregated, the components of their OM sub-
proteome that are involved in establishing contact/tethering
sites with other mitochondria are ubiquitylated and proteo-
lyzed by UPS to prevent their rejoining with healthy mito-
chondria (56, 66, 172, 189). Then, damaged organelles are
removed via another facet of organellar MQC (Fig. 3E)—a
mitochondria-specific type of autophagy known as mito-
phagy (see Refs. 119, 195 for detailed review). An acute
overwhelming stress such as treatment with oxidants causes
massive fragmentation of the mitochondrial network fol-
lowed by initiation of apoptosis (194). Conversely, genetic
inhibition of mitochondrial fission increases apoptotic resis-
tance and cell survival (109, 154).

Finally, a novel MQC mechanism has recently been de-
scribed by the McBride laboratory (Fig. 3D). Mitochondria-
derived vesicles (MDVs), which carry selected oxidized
cargo and deliver this cargo to lysosomes, have been reported
to facilitate MQC (137, 170). The MDV route appears to
function at both normal and oxidative stress conditions and is
independent of mitochondrial dynamics and mitophagy (166,
170). Although the identity of the vesicle cargo has not been
fully characterized, this mechanism offers a potential strategy
to remove segments of mitochondrial membranes containing
damaged, hard to dissociate protein complexes and/or reac-
tive prosthetic groups such as heme, which cannot be ca-
tabolized within the mitochondrion.

Mitochondrial Subproteomes
and Their Regulation by PMQC

Matrix subproteome

Virtually all proteins of the dense matrix subproteome are
synthesized in the cytosol and imported into the compartment
as precursors in an unfolded state (136). Proper maturation
and folding of these proteins in the matrix are facilitated by

several PMQC factors (Fig. 4). First, mtHsp70 and its J-type
cochaperones participate in the import of precursor proteins
through the TIM23 IM translocase complex and later, in
conjunction with the Hsp60-Hsp10 chaperone system, they
promote folding of the imported polypeptides (136, 187).
Second, proteolytic removal of the N-terminal MTS is me-
diated through the action of the two-subunit MPP processing
metallopeptidase complex (73, 131, 176). Some proteins
undergo an additional processing by the mitochondrial in-
termediate peptidase (MIP/Oct1), which removes additional
residues following the MTS (131, 176). Recent studies
identified an additional intermediate cleaving aminopepti-
dase Icp55 that stabilizes multiple matrix proteins via the
removal of a single, potentially destabilizing N-terminal
amino acid residue following the MTS (131, 133, 185). In-
terestingly, Oct1 processing also appears to contribute to
such stabilization (184). This situation resembles the N-end
rule protein stabilization pathway described for the cyto-
plasm (173); however, the downstream protease(s) degrading
destabilized polypeptides remain(s) to be identified.

The mitochondrial presequence peptidase, Cym1/PreP,
also appears to contribute to the matrix MQC. Originally
misidentified as an IMS-localized enzyme, this conserved
metallopeptidase has been implicated in the clearance of free
targeting peptides generated by MPP and MIP, as well as
small (up to 65 amino acid residues), unstructured oligo-
peptides (92, 176), which upon accumulation may impair
mitochondrial integrity (85, 139). Also, studies on mamma-
lian PreP showed that the peptidase is required to prevent
mitochondrial accumulation of the amyloid-b (Ab) peptide,
which upon accumulation can cause mitochondrial dys-
function (59).

Finally, two conserved AAA + serine proteases, Lon/Pim1
and ClpXP, are found in the mitochondrial matrix (94, 181)
(Fig. 4). The Lon/Pim1 protease exists as a large homo-
oligomeric complex with each subunit containing both AT-
Pase and serine protease motifs (167, 181). It preferentially
targets heat-damaged or oxidatively damaged proteins (24,
25, 26, 34). While protein misfolding and/or loss of prosthetic
groups appear to contribute to substrate recognition by mi-
tochondrial Lon (72, 121, 186), the exact recognition deter-
minants remain to be identified. Studies in yeast indicate that
Lon/Pim1 cooperates with ClpB-type AAA + chaperone

FIG. 3. Branches of the mitochondrial quality control (MQC) system. Multiple interdependent mechanisms exist at
both molecular and organellar/cellular levels to sustain mitochondrial health. Conserved mitochondrial proteases and
chaperones distributed across mitochondrial compartments represent one layer of MQC (A). Removal of the proteins
localized to the outer mitochondrial membrane (OM) and potentially other mitochondrial subproteomes, termed mito-
chondria-associated degradation (MAD), is mediated by the cytosolic ubiquitin–proteasome system (UPS) and assisted by
several E3 ubiquitin ligases (B). At the organellar level, MQC is provided through mitochondrial fusion (left panel C) and
fission (right panel C) events, necessary for exchange and mixing of mitochondrial content and thus damage dilution, and
segregation of damaged mitochondria from the network, respectively. Mitochondrial fusion is mediated by conserved
GTPases in the OM (Mitofusins/Fzo1) and the IM (long and short isoforms of OPA1/Mgm1). Another OM-associated
GTPase–Dynamin-related protein/Dnm1 is a key mediator of mitochondrial fission. Mitochondria-derived vesicles
(MDVs), destined for lysosome, appear to represent yet another facet of organellar MQC (D). This mechanism allows
selective removal of fragments of mitochondria without affecting the entire organelle. Reportedly, the MDVs contain
oxidized cargo and lipids and their formation in mammalian cells depends on the function of PINK1 kinase and E3 ubiquitin
ligase Parkin (see text for details). When mitochondrial damage overwhelms the aforementioned mechanisms, failing
organelles are segregated and targeted to autophagosomes, and subsequently to lysosomes where their content is degraded.
The PINK1-Parkin functional tandem and UPS play important roles in the initiation of this process known as mitophagy (E).
To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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Hsp78 (24, 186) and mtHsp70 (160) to accelerate disaggre-
gation/degradation of aggregated protein. The significance of
this cooperation in higher eukaryotes remains unclear, as
metazoans lack an apparent Hsp78 ortholog. In addition, Lon
plays an important role in regulation of stability and ex-

pression of mtDNA via proteolytic control of the abundance
of mitochondrial transcription factor TFAM (117, 124).

Unlike Lon, the ClpXP protease is a hetero-oligomeric
complex consisting of two stacked ClpP serine protease
heptamers topped with two hexameric rings formed by

MITOCHONDRIAL PROTEIN QUALITY CONTROL 981



T
a

b
l
e

1
.

P
r
o

t
e
i
n

s
I
n

v
o

l
v

e
d

i
n

P
r
o

t
e
i
n

M
i
t
o

c
h

o
n

d
r
i
a

l
Q

u
a

l
i
t
y

C
o

n
t
r
o

l

P
ro

te
in

o
r

co
m

p
o
n
en

t
R

o
le

L
o
ca

li
za

ti
o
n

Y
ea

st
M

a
m

m
a
ls

C
lp

X
A

T
P

-d
ep

en
d
en

t
sp

ec
ifi

ci
ty

co
m

p
o
n
en

t
o
f

C
lp

X
P

co
m

p
le

x
M

at
ri

x
M

cx
1

C
L

P
X

C
lp

P
A

T
P

-d
ep

en
d
en

t
p
ro

te
as

e
co

m
p
o
n
en

t
o
f

C
lp

X
P

co
m

p
le

x
M

at
ri

x
—

C
L

P
P

L
o
n

A
T

P
-d

ep
en

d
en

t
A

A
A

+
se

ri
n
e

p
ro

te
as

e
M

at
ri

x
P

im
1

L
O

N
P

1
M

P
P

M
it

o
ch

o
n
d
ri

al
p
ro

ce
ss

in
g

p
ep

ti
d
as

e
M

at
ri

x
M

as
1
;

M
as

2
b

M
P

P
;
aM

P
P

M
IP

M
it

o
ch

o
n
d
ri

al
in

te
rm

ed
ia

te
p
ep

ti
d
as

e
M

at
ri

x
O

ct
1

M
IP

E
P

Ic
p
5
5

In
te

rm
ed

ia
te

cl
ea

v
in

g
p
ep

ti
d
as

e
M

at
ri

x
Ic

p
5
5

X
P

N
P

E
P

3
P

re
P

P
re

se
q
u
en

ce
m

et
al

lo
p
ep

ti
d
as

e
M

at
ri

x
C

y
m

1
(M

o
p
1
1
2
)

P
re

P
m

tH
sp

7
0

M
it

o
ch

o
n
d
ri

al
h
ea

t
sh

o
ck

7
0

k
D

a
p
ro

te
in

;
m

o
le

cu
la

r
ch

ap
er

o
n
e

M
at

ri
x

S
sc

1
H

S
P

A
9

(G
rp

7
5
)

H
sp

7
8

H
ea

t
sh

o
ck

7
8

k
D

a
p
ro

te
in

;
C

lp
B

-t
y
p
e

A
A

A
+

ch
ap

er
o
n
e

M
at

ri
x

H
sp

7
8

—
H

sp
6
0

H
ea

t
sh

o
ck

6
0

k
D

a
p
ro

te
in

;
A

T
P

-d
ep

en
d
en

t
ch

ap
er

o
n
in

M
at

ri
x

H
sp

6
0

(M
n
a2

)
H

S
P

D
1

H
sp

1
0

H
ea

t
sh

o
ck

1
0

k
D

a
p
ro

te
in

;
H

sp
6
0

co
ch

ap
er

o
n
in

M
at

ri
x

H
sp

1
0

(C
p
n
2
)

H
S

P
E

1
A

fg
1

A
T

P
as

e
fa

m
il

y
g
en

e
1
;

A
A

A
+

p
ro

te
in

M
at

ri
x

A
fg

1
L

A
C

E
1

m
-A

A
A

M
at

ri
x
-f

ac
in

g
A

T
P

-d
ep

en
d
en

t
A

A
A

+
m

et
al

lo
p
ro

te
as

e
IM

Y
ta

1
0

(A
fg

3
);

Y
ta

1
2

(R
ca

1
)

A
F

G
3
L

2
;

A
F

G
3
L

1
;

S
P

G
7
/P

ar
ap

le
g
in

i-
A

A
A

IM
S

-f
ac

in
g

A
T

P
-d

ep
en

d
en

t
A

A
A

+
m

et
al

lo
p
ro

te
as

e
IM

Y
m

e1
(O

sd
1
)

Y
M

E
1
L

IM
P

In
te

rm
ed

ia
te

m
it

o
ch

o
n
d
ri

al
p
ro

te
as

e
IM

Im
p
1
;

Im
p
2

IM
M

P
1
L

;
IM

M
P

2
L

P
A

R
L

P
re

se
n
il

in
-a

ss
o
ci

at
ed

rh
o
m

b
o
id

-l
ik

e
se

ri
n
e

p
ro

te
as

e
IM

P
cp

1
(R

b
d
1
)

P
A

R
L

O
m

a1
O

v
er

la
p
p
in

g
w

it
h

m
-A

A
A

1
;

A
T

P
-i

n
d
ep

en
d
en

t
m

et
al

lo
p
ro

te
as

e
IM

O
m

a1
O

M
A

1
M

g
r1

M
it

o
ch

o
n
d
ri

al
g
en

o
m

e
re

q
u
ir

ed
1
;

li
k
el

y
ad

ap
to

r
fo

r
i-

A
A

A
p
ro

te
as

e
IM

M
g
r1

—
M

g
r3

M
it

o
ch

o
n
d
ri

al
g
en

o
m

e
re

q
u
ir

ed
3
;

li
k
el

y
ad

ap
to

r
fo

r
i-

A
A

A
p
ro

te
as

e
IM

M
g
r3

C
1
0
o
rf

1
1
8

O
P

A
1

O
p
ti

c
at

ro
p
h
y

1
;

d
y
n
am

in
-r

el
at

ed
G

T
P

as
e

IM
M

g
m

1
O

P
A

1
P

rd
1

P
ro

te
in

as
e

y
sc

D
1
;

zi
n
c

m
et

al
lo

p
ep

ti
d
as

e
IM

S
P

rd
1

N
eu

ro
ly

si
n

A
tp

2
3

A
T

P
sy

n
th

as
e

2
3
;

A
T

P
-i

n
d
ep

en
d
en

t
m

et
al

lo
p
ro

te
as

e
IM

S
A

tp
2
3

X
R

C
C

6
B

P
1

H
tr

A
2

H
ig

h
-t

em
p
er

at
u
re

re
q
u
ir

ed
A

2
;

se
ri

n
e

p
ro

te
as

e
IM

S
Y

n
m

3
H

tr
A

2
(O

m
i)

P
IN

K
1

P
h
o
sp

h
at

e
an

d
te

n
si

n
h
o
m

o
lo

g
-i

n
d
u
ce

d
p
u
ta

ti
v
e

k
in

as
e

1
IM

/O
M

—
P

IN
K

1
M

sp
1

M
it

o
ch

o
n
d
ri

al
so

rt
in

g
o
f

p
ro

te
in

s
1
;

A
A

A
+

p
ro

te
in

O
M

M
sp

1
A

T
A

D
1

M
F

N
M

it
o
fu

si
n
;

tr
an

sm
em

b
ra

n
e

G
T

P
as

e
O

M
F

zo
1

M
fn

1
;

M
fn

2
M

d
m

3
0

M
it

o
ch

o
n
d
ri

al
d
is

tr
ib

u
ti

o
n

an
d

m
o
rp

h
o
lo

g
y

3
0
;

u
b
iq

u
it

in
li

g
as

e
O

M
M

d
m

3
0

—
M

A
R

C
H

-V
M

em
b
ra

n
e-

as
so

ci
at

ed
ri

n
g

fi
n
g
er

(C
3
H

C
4
)

5
;

u
b
iq

u
it

in
li

g
as

e
O

M
—

M
A

R
C

H
5

(M
IT

O
L

)
P

ar
k
in

A
u
to

so
m

al
re

ce
ss

iv
e

P
ar

k
in

so
n
’s

d
is

ea
se

2
;

u
b
iq

u
it

in
li

g
as

e
C

y
to

./
O

M
—

P
ar

k
in

(P
A

R
K

2
)

M
U

L
A

N
M

it
o
ch

o
n
d
ri

al
u
b
iq

u
it

in
li

g
as

e
ac

ti
v
at

o
r

o
f

N
F

K
B

1
;

u
b
iq

u
it

in
li

g
as

e
C

y
to

./
O

M
—

M
U

L
1

V
m

s1
V

C
P

/C
d
c4

8
-a

ss
o
ci

at
ed

m
it

o
ch

o
n
d
ri

al
st

re
ss

re
sp

o
n
si

v
e

1
M

u
lt

.
V

m
s1

V
M

S
1

V
C

P
V

al
o
si

n
-c

o
n
ta

in
in

g
p
ep

ti
d
e;

A
A

A
+

p
ro

te
in

M
u
lt

.
C

d
c4

8
V

C
P

(p
9
7
)

U
b
iq

u
it

in
S

m
al

l
m

o
d
if

y
in

g
p
ro

te
in

;
co

m
p
o
n
en

t
o
f

u
b
iq

u
it

in
–
p
ro

te
as

o
m

e
sy

st
em

M
u
lt

.
U

b
i4

U
B

C
;

U
B

D
D

R
P

D
y
n
am

in
-r

el
at

ed
p
ro

te
in

;
G

T
P

as
e

M
u
lt

.
D

n
m

1
D

R
P

1
H

sp
7
0

H
ea

t
sh

o
ck

7
0

k
D

a
p
ro

te
in

;
m

o
le

cu
la

r
ch

ap
er

o
n
e

C
y
to

.
S

sb
1
;

S
sb

2
H

S
P

A
1
A

H
sp

9
0

H
ea

t
sh

o
ck

9
0

k
D

a
p
ro

te
in

;
m

o
le

cu
la

r
ch

ap
er

o
n
e

C
y
to

.
H

sc
8
2
;

H
sp

8
2

H
S

P
9
0
A

A
1
;

A
B

1

P
ro

te
in

n
am

es
in

b
ra

ck
et

s
in

d
ic

at
e

al
ia

se
s.

‘‘
/’

’
d
en

o
te

s
al

te
rn

at
iv

e
su

b
ce

ll
u
la

r
lo

ca
li

za
ti

o
n
.

C
y
to

.,
cy

to
so

l;
IM

,
in

n
er

m
it

o
ch

o
n
d
ri

al
m

em
b
ra

n
e;

IM
S

,
in

te
rm

em
b
ra

n
e

sp
ac

e;
O

M
,

o
u
te

r
m

it
o
ch

o
n
d
ri

al
m

em
b
ra

n
e;

M
u
lt

.,
m

u
lt

ip
le

ce
ll

u
la

r
lo

ca
ti

o
n
s.

982



AAA + ClpX subunits (22, 94). Reportedly, the ClpX com-
ponent participates in recognition of misfolded polypeptides
and channels them into a proteolytic chamber formed by the
ClpP subunits (12, 22). Although multiple studies implicate
bacterial ClpXP as a protein quality control protease (22), its
exact role within the mitochondrion remains elusive. Of
particular interest is the recently postulated function of
ClpXP in the mitochondrial unfolded protein response
(UPRmt) in nematodes (76, 77). Peptides generated via
ClpXP-mediated proteolysis of unfolded proteins in the
matrix are extruded from mitochondria into the cytosol,
whereby they trigger a specific transcriptional response that
promotes expression and synthesis of nuclear-borne mito-
chondrial chaperones and proteases to restore mitochondrial
proteostasis (76). This mechanism serves to sense and correct
imbalances between the proteins of nuclear and mitochon-
drial origin, particularly subunits of the OXPHOS com-
plexes. Recently, a Lon-regulated facet of UPRmt was
reported in a roundworm model. The bZip transcriptional
factor ATFS-1 required for UPRmt signaling is destined to
the mitochondrial matrix where Lon degrades it; however,
under stress conditions, ATFS-1 is stabilized and trafficked to
the nucleus where it initiates the transcriptional response (76,
135). Although UPRmt is conserved among worms, mice,
and humans (191), it remains to be determined if stress-
sensing and signaling mechanisms in mammals are identical
to the ones described for nematodes.

Inner membrane subproteome

The mitochondrial IM is among the most proteinaceous
biological membranes and houses a significant portion of
mitochondrial proteome, including the OXPHOS complexes.
Assembly and function of the reactive respiratory complexes
create major challenges for mitochondrial protein homeo-
stasis (Fig. 2). Several mechanisms are in place to assure
normal biogenesis and maintenance of the proteins residing
in the IM. First, a large number of dedicated chaperones and
chaperone-like assembly factors assist and regulate biogen-
esis and maintenance of the respiratory complexes (63, 125,
128). The second set of mechanisms controlling IM pro-
teostasis involves proteolytic enzymes (Fig. 5). The two-
subunit, IM-bound IMP proteolytic complex—similar to
Oct1 and Icp55 peptidases—was shown to stabilize its sub-
strate proteins (131). For instance, processing of the Mgr2
subunit of TIM23 translocase by IMP stabilizes Mgr2 and
promotes TIM23 assembly (86).

The membrane-bound m-AAA and i-AAA metallopro-
tease complexes—surveying the matrix and the IMS sides of
IM, respectively—are two major factors that provide quality
control of the IM subproteome (7, 18, 21, 112, 113). The
importance of coordinated actions between the IM AAA
proteases is highlighted by the observation that simultaneous
loss of these molecules in yeast is lethal (111, 112). The m-
AAA protease is a large hetero-hexameric complex typically

FIG. 4. PMQC in the matrix. Multiple proteases and molecular chaperones regulate the matrix subproteome. The
regulation involves control of protein maturation and accumulation and degradation of poly- and oligopeptides. Proper
maturation of the precursor proteins transported via the TIM23 translocase complex requires removal of mitochondrial
targeting sequence by MPP processing metallopeptidase complex and, in certain cases, additional stabilizing processing by
intermediate peptidases MIP/Oct1 and Icp55. Resulting free targeting peptides, as well as other small oligopeptides, are
removed by mitochondrial presequence peptidase Cym1/PreP. Subsequent protein folding is facilitated by Hsp family
chaperones. Stress-damaged, misfolded, and/or aggregated proteins are recognized and cleaved by AAA + proteases Lon/
Pim1 and ClpXP. Peptides produced by these proteolytic events are either subjected to additional processing by oligo-
peptidases or extruded through ATP-binding cassette (ABC)-type transporters into the cytosol where they activate mito-
chondrial unfolded protein response (UPRmt). To see this illustration in color, the reader is referred to the web version of
this article at www.liebertpub.com/ars
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formed by Yta10/AFG3L2 and Yta12/SPG7/Paraplegin
subunits in yeast and humans (11, 103). An additional rodent-
specific subunit AFG3L1 that can substitute for AFG3L2 has
been described (107). Also, studies on mammalian m-AAAs
showed that other forms of the enzyme consisting of AFG3L2
subunits only (in humans) or AFGL32 and AFG3L1 (in ro-
dents) do exist (103). The cryo-EM reconstruction of the
yeast m-AAA revealed that the protease complex is ring
shaped and contains a central pore, which may be restricted to
unfolded polypeptide segments (108). This finding provides
insights into the substrate recognition by mitochondrial AAA
metallopeptidases, however, the detailed mechanism is yet to
be determined. The molecular architecture of the i-AAA
protease is similar to one of the m-AAA complex, except that
the former proteolytic machine is always a homo-oligomer
formed by six copies of the Yme1/YME1L peptidase (69,
70). Known substrates of the AAA metalloproteases include
surplus, misassembled, and/or damaged subunits of the
OXPHOS complexes that are intrinsic or peripheral to the IM
(10, 45, 84, 105, 112, 113, 134, 148, 168, 190). In addition,
via its involvement in maturation of the nuclear-borne con-
stituent of the large mitoribosomal subunit MrpL32, the m-
AAA is critical for synthesis of mtDNA-coded polypeptides
(33, 140). The i-AAA complex is an important regulator of
the IM’s functional integrity and dynamics via several pro-
teolytic events. One such event is constituent regulatory
proteolysis of the PRELI protein family members Ups1 and
Ups2 involved in transport, synthesis, and accumulation of
mitochondrial phospholipids (46, 152). Second, the i-AAA is
involved in biogenesis of the short isoform of the optic at-
rophy 1 (OPA1) dynamin-related GTPase, which is central to
mitochondrial dynamics and mtDNA maintenance (8, 71).

The versatility of the IM AAA proteases is impressive and
remains to be understood. A possible explanation is provided
by cooperation of these proteolytic machines with other
proteases and adaptor-like proteins. For instance, the con-
served IM-associated peptidase Atp23 involved in matura-
tion of the respiratory complex V (143, 199) reportedly
cooperates with the Yme1 proteolytic complex to degrade
Ups1 (152). Likewise, two adaptor-like proteins Mgr1 and
Mgr3 have been shown to facilitate degradation of model
substrates by the i-AAA in yeast (51, 52). The evolutionary
conservation of Mgr3 suggests that the YME1L complex may
also operate in a similar manner. Similarly, overexpression of
the matrix AAA + protein Afg1/LACE1 (1, 110) has been
shown to facilitate degradation of several m-AAA protease
substrates in a series of respiratory-deficient yeast mutants
(99). However, it remains to be determined if Afg1 is a bona
fide adaptor/cooperating partner of the m-AAA complex. In
addition, the m-AAA protease exerts overlapping activity with
the ATP-independent membrane-bound metallopeptidase
Oma1 complex (97, 100). Studies by our group established that
Oma1 per se is also an important stress-activated protease
required for cell survival (32). In mammalian cells, Oma1
mediates rapid proteolytic processing of the long membrane-
anchored form of OPA1 (L-OPA1), thereby promoting IM
fragmentation and subsequent cellular MQC actions in re-
sponse to homeostatic insults (8, 19, 200). Conversely, the
mitochondrial network remains intact or even hyperfused in
stressed Oma1-deficient mouse embryonic fibroblasts (19,
152). While the exact mechanism of stress sensing by Oma1
only begins to emerge (19, 32, 120, 200), it is clear that Oma1
activation is central to the regulation of IM proteostasis and
dynamics upon various stresses and/or pathological states.

FIG. 5. PMQC in the IM and intermembrane space (IMS). Complexity of mitochondrial IM anticipates vastly efficient
systems to maintain protein homeostasis. These include two tightly coordinated proteases matrix-facing AAA metallo-
protease (m-AAA) and intermembrane space-facing AAA metalloprotease (i-AAA), which along with other regulatory
functions recognize excessive, misassembled, and damaged subunits of OXPHOS complexes associated with the IM.
Another IM protease complex Oma1, with m-AAA-overlapping functions, is also proposed to play a major role in mito-
chondrial dynamics and homeostasis upon stress conditions. Rhomboid-like Pcp1/PARL protease is implicated in the
intramembrane proteolysis of several IM proteins in yeast, whereas in mammalian cells, it also contributes to regulation of
mitochondrial turnover. The IMS PMQC is less studied. In addition to the i-AAA, which exerts both proteolytic and
chaperone functions toward IMS-localized proteins, the IMS subproteome appears to be regulated by oligopeptidase Prd1/
Neurolysin and serine protease Ymn3/HtrA2. To see this illustration in color, the reader is referred to the web version of this
article at www.liebertpub.com/ars
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Pcp1/PARL is yet another proteolytic module intrinsic to
the IM. It belongs to the rhomboid family of serine proteases
and mediates intramembrane cleavage of several IM poly-
peptides in yeast, including cytochrome c peroxidase Ccp1
(processed in conjunction with m-AAA protease) (174) and
yeast OPA1 ortholog Mgm1 (81). Interestingly, the latter
polypeptide does not appear to be an Oma1 substrate either
under normal or under stress conditions (53, 114), thereby
suggesting partial evolutionary repurposing of Oma1 func-
tion. Reciprocally, PARL does not seem to cleave OPA1
in vivo (53). Instead, recent studies have implicated mam-
malian PARL in constituent proteolytic removal of the phos-
phate and tensin homolog-induced putative kinase 1 (PINK1)
—a crucial regulator of mitophagic (whole mitochondria) and
nonmitophagic (respiratory chain complexes) mitochondrial
turnover (48, 89, 182, 189). PINK1 is translated in the cytosol
and imported into the mitochondria. Under normal conditions,
the protein is sorted to the IM where it is degraded in a PARL-
dependent manner (48). This pathway is blocked in severely
depolarized or ATP-depleted mitochondria, whereby PINK1
is stabilized and accumulates on the OM subsequently re-
cruiting and activating E3 ubiquitin ligase Parkin/PARK2,
which in turn triggers segregation and mitophagic removal of
malfunctioning mitochondria (87, 93, 106, 119, 195). Inter-
estingly, a recent study demonstrated the important role of the
PINK1-Parkin pathway in the formation of MDVs under
mitochondrial stress conditions (126).

IMS subproteome

Relatively little is known about the IMS MQC (Fig. 5).
Recent studies identified the i-AAA protease as an important
regulator of the IMS subproteome through its involvement in
the folding and degradation of unassembled and/or misfolded
small TIM proteins (20, 162). Of note, small TIM proteins
themselves have been postulated to chaperone several folding
reactions in the IMS (82). Similarly to Cym1/PreP, the IMS-
localized oligopeptidase Prd1/Neurolysin appears to degrade
cleaved presequences and small oligopeptides (92, 131, 176),
thereby preventing their accumulation in the IMS. The high-
temperature requirement A2 (HtrA2/Omi/Ynm3) serine

protease is a highly conserved enzyme, whose functions and
mechanism of action are understood primarily via studies on
its bacterial orthologs—stress-inducible quality control
peptidases DegP and DegS (44). HtrA2/Omi is a homotrimer
and appears to be the only mitochondrial protease containing
a PDZ-domain required for recognition of exposed hydro-
phobic stretches of misfolded proteins. The postulated
modulation of Htr2A via PARL-assisted processing (40) and
PINK1-mediated phosphorylation suggests its involvement
in regulation of mitophagy (151). However, while studies in
yeast and mammalian models indicated the role of Htr2A in
thermotolerance (145), prevention of accumulation of aber-
rant respiratory chain subunits (123, 129), and even identified
several substrates of the protease (91), its precise role in the
IMS MQC awaits clarification.

Outer membrane subproteome

Recent findings provide several important insights into the
PMQC mechanisms controlling OM proteostasis (Fig. 6). In
addition to the aforementioned cytosolic Hsp70 and Hsp90
chaperones assuring proper delivery and likely the removal of
nascent and/or newly synthesized unfolded polypeptides to
be inserted into the OM (60, 122, 197), additional MQC
modules have been characterized recently. The role of UPS in
OM proteostasis becomes increasingly evident. Although it
has been initially thought that the UPS may only intercept
misfolded or damaged proteins en route to the mitochondrion
(7, 35), numerous studies have suggested that mitochondria-
localized polypeptides can be ubiquitylated and subsequently
removed by the UPS in the process known as MAD (96, 116,
175). Consistently, several E3 ubiquitin ligases such as
Mdm30, MITOL/MARCH-V, and MULAN (56) were found
to associate with the cytosolic side of the OM. Likewise, the
ubiquitin ligase Parkin is recruited to depolarized mito-
chondria (56, 66, 119, 172, 189, 195). Additional mito-
chondria-associated modifiers like SUMO ligases have also
been described (56). Subsequently, multiple OM proteins
have been identified as targets of these ligases and/or UPS
(56, 66, 158). The discovery of VCP/p97/Cdc48-associated
mitochondria stress responsive 1 (Vms1) protein in yeast that

FIG. 6. PMQC in the OM. In addition to
interception of mitochondria-destined pro-
teins en route, the UPS provides an addi-
tional level of OM PMQC. It removes
misfolded, damaged, or surplus proteins in
the OM via the MAD process. MAD in-
volves ubiquitylation by E3 ubiquitin ligases
that tag proteins to be degraded and extrac-
tion of the peptides by the AAA + protein
VCP/Cdc48/p97 complex, which is, in turn,
recruited to the OM through several mech-
anisms, including targeting by stress-
responsive factor Vms1 or PINK1-Parkin
functional tandem. Several reports (80, 123,
158) suggest that some IM proteins might
also be subject of MAD. Another AAA +

protein Msp1/ATAD1 targets and removes
tail-anchored proteins mislocalized to the
OM. To see this illustration in color, the
reader is referred to the web version of this
article at www.liebertpub.com/ars
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translocates from the cytosol to the mitochondrial OM upon
stress and recruits the Cdc48-Npl4 complex, provided further
mechanistic understanding of MAD (79, 80). The AAA +

protein VCP/p97/Cdc48 complex is involved in multiple
cellular processes but plays a key role in the extraction of
ubiquitylated ER- and OM-anchored proteins for proteaso-
mal degradation (37, 88, 193). Reciprocally, loss of Vms1
results in accumulation of ubiquitylated OM proteins and
mitochondrial damage (79). Vms1 apparently is not the only
VCP/p97/Cdc48-Npl4 recruiting factor, as a fraction of the
complex can still associate with dysfunctional mitochondria
in the absence of Vms1 (55, 79). Therefore, additional UPS
recruitment factors are likely to exist and remain to be
identified. Another intriguing line of findings suggests the
involvement of MAD in retrotranslocation and removal of
several IM- and matrix-localized proteins (14, 15, 122).
However, more work is needed to corroborate this postulate.

Recent studies identified yet another OM-associated
AAA + protein Msp1/ATAD1 required to prevent accumu-
lation of mislocalized ER-destined tail-anchored proteins in
the OM, thereby maintaining proper mitochondrial function
and morphology (43, 142). It has been proposed that Msp1
represents a novel PMQC component involved in the ex-
traction of mistargeted tail-anchored polypeptides. It remains
to be determined if Msp1 constitutes an additional branch of
MAD or is an independent facet of the OM MQC.

PMQC in Disease and Aging

Over time, a combination of increasing oxidative damage,
failing protein homeostasis, and mitochondrial and orga-
nellar QC capacity can contribute to cellular aging and in-
stability of mtDNA and mitochondrial proteome (27, 41).
The resulting decline in mitochondrial health can primarily
affect organs and tissues with high energetic demands and
contribute to the onset of cardiovascular, neurodegenerative,
and complex metabolic diseases like cancer.

Reduced activity/abundance of Lon/Pim1 and ClpP pro-
teases has been demonstrated in cells from a patient with late-
onset autosomal dominant hereditary spastic paraplegia (type
SPG13) and aged rat hepatocytes (17, 74). In line with these
findings, overexpression of Lon in the Podospora anserina
fungal model of aging significantly extended the lifespan of
the organism (118). Interestingly, the same effect is achieved
through the depletion of P. anserina ClpP (62). The pro-
spective role of Lon in cancer stems from its regulation by
hypoxia-inducible factor HIF1a and Lon’s role in hypoxia-
induced remodeling of the respiratory chain (65, 153). In-
deed, a recent study identified Lon as a prospective anticancer
target (28).

The ability of the oligopeptidase PreP to prevent accu-
mulation of mitochondria-targeted Ab peptides (59) indicates
its protective role against Alzheimer’s disease (AD). Con-
sistently, the activity but not abundance of PreP is attenuated
in AD patients’ brain mitochondria and in AD transgenic
mouse models (4). The exact role of PreP in the onset of AD
is yet to be determined.

Mutations in genes encoding the subunits of m-AAA
protease are known with both familial and sporadic forms of
autosomal recessive hereditary spastic paraplegia (Para-
plegin) (38, 140), spinocerebellar ataxia type 28 (AFG3L2)
(49), and spastic ataxia-neuropathy syndrome (150) in hu-

mans. Studies in mice also indicate that the AFG3L2 subunit
of m-AAA is important for the survival of Purkinje cells (5)
and anterograde mitochondrial transport in murine cortical
neurons (102), thereby highlighting the role of failing m-
AAA function in late-onset neurodegeneration. In addition, a
recent report identified a variant of Paraplegin, which is
linked to enhanced ROS generation and several clinical
phenotypes, including type 2 diabetes mellitus and coronary
artery disease (6).

Depletion of OMA1 in the mouse model reduces energy
expenditure and specifically leads to obesity, hepatic stea-
tosis, and altered thermogenesis/cold stress resistance (154).
These phenotypes are likely due to defective L-OPA1 pro-
cessing and inability to initiate fragmentation of the mito-
chondrial networks in response to metabolic and/or oxidative
insults (154, 192). Also, a recent high-throughput sequencing
study of patients with familial and sporadic forms of amyo-
trophic lateral sclerosis (ALS) identified several mutations in
the conserved residues of OMA1, thus implicating OMA1 as
a prospective ALS-causing gene (47).

The IMS protease HtrA2/Omi plays an important role in
protecting neurons from degeneration (90, 91, 123) and has
been associated with Parkinson’s disease (PD) (98, 169).
Likewise, a PD-associated mutation in PARL has been re-
cently identified (163). Although in vitro studies highlight the
importance of MAD for prevention of neurodegenerative
pathologies such as PD, its physiological role in human
health awaits further investigation. Two lines of evidence
implicate MAD in mitochondrial disease. First, a murine
knockin model of p97 mutations (associated with inclusion
body myopathy and Paget’s bone disease) presents with mi-
tochondriopathy-like phenotypes (16). Second, the PINK1-
Parkin system, which likely represents a facet of the MAD
that links molecular and organellar MQC—is clearly asso-
ciated with neurodegenerative processes. Loss-of-function
mutations in Parkin have been described in juvenile PD
patients and account for *50% of the familial cases of
PD (101).

Concluding Remarks and Perspectives

The role of functionally intertwined multilayer MQC
mechanisms in assuring mitochondrial health becomes in-
creasingly evident. It is important to note that humans sustain
mitochondrial damage not only from age-related decline in
mitochondrial function but also from causes that can affect
younger populations. For instance, aggressive anticancer or
antiviral therapies may enhance the formation of mal-
functioning mitochondria in nontarget cells in patients un-
dergoing such treatments (42). Modulation of the activity of
certain MQC components can therefore be a promising ap-
proach to enhance cellular health and lifespan (62, 118).
Reciprocally, proteases like Lon can be prospective targets in
anticancer therapies to promote the death of drug-treated
malignant cells (28, 67).

A number of important unresolved questions regarding
MQC persist. For instance, the mechanisms by which MQC
components promptly recognize mitochondrial stress signals
remain obscure. Likewise, it remains to be determined how
MQC modules in different mitochondrial subcompartments
coordinate their actions in response to homeostatic insults.
The regulation of nuclear output and physiological responses
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via function/dysfunction of MQC modules is another exciting
question. Answering these questions is likely to yield new
insights into MQC in health and disease and may lead to
novel or supplementary therapeutic and preventive ap-
proaches against mitochondria-related maladies.
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Abbreviations Used

AAA+¼ATPase associated with diverse cellular
activities

ABC¼ATP-binding cassette
AD¼Alzheimer’s disease

AFG¼ATPase family gene
ALS¼ amyotrophic lateral sclerosis

ATAD1¼ATPase family AAA domain containing 1
ATFS-1¼ activating transcription factor associated

with stress 1
ATPase¼ adenosine triphosphate hydrolyzing enzyme

Ab¼ amyloid-b peptide
bZip¼ basic leucine zipper domain

Cdc48¼ cell division cycle 48, AAA ATPase
cryo-EM¼ cryoelectron microscopy

Cym1¼ cytosolic metalloprotease, metallopeptidase
of the intermembrane space

Cyto.¼ cytosol
ER¼ endoplasmic reticulum

GTPase¼ guanosine triphosphate hydrolyzing enzyme
Hsp¼ heat shock protein

HtrA2¼ high-temperature required A2 (also known
as Omi)

i-AAA¼ intermembrane space-facing AAA
metalloprotease

Icp55¼ intermediate cleaving peptidase 55
IM¼ inner mitochondrial membrane

IMP¼ intermediate mitochondrial protease
IMS¼ intermembrane space

LACE1¼ lactation elevated 1, AAA ATPase
Lon¼ long filaments forming, AAA protease

m-AAA¼matrix-facing AAA metalloprotease
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Abbreviations Used (Cont.)

MAD¼mitochondria-associated degradation
MARCH-V¼membrane-associated ring finger (C3HC4) 5

ubiquitin ligase
Mdm30¼mitochondrial distribution and

morphology 30
MDVs¼mitochondria-derived vesicles
Mgm1¼mitochondrial genome maintenance 1, yeast

homolog of OPA1
Mgr¼mitochondrial genome required
MIP¼mitochondrial intermediate peptidase

MITOL¼mitochondrial ubiquitin ligase
MPP¼mitochondrial processing peptidase

MQC¼mitochondrial quality control
Msp1¼mitochondrial sorting of proteins 1

mtDNA¼mitochondrial DNA
mtHsp¼mitochondrial heat shock protein

MTS¼mitochondrial targeting sequence
MULAN¼mitochondrial ubiquitin ligase activator of

NFKB1
Mult.¼multiple cellular locations
Npl4¼ nuclear protein localization 4, substrate-

recruiting cofactor of Cdc48 complex
Oct1¼ octapeptidyl aminopeptidase 1
OM¼ outer mitochondrial membrane

Oma1¼ overlapping with m-AAA 1
OPA1¼ optic atrophy 1

OXPHOS¼ oxidative phosphorylation system
PARL¼ presenilin-associated rhomboid-like

Pcp1¼ processing of cytochrome c peroxidase 1
PD¼ Parkinson’s disease

PDZ¼ postsynaptic density protein domain

Pim1¼ proteolysis in mitochondria 1, yeast homolog
of Lon

PINK1¼ phosphate and tensin homolog-induced
putative kinase 1

PMQC¼ protein mitochondrial quality control

Prd1¼ proteinase yscD homolog 1

PRELI¼ protein of relevant evolutionary and
lymphoid interest

PreP¼ presequence peptidase

RNS¼ reactive nitrogen species

ROS¼ reactive oxygen species

SPG¼ spastic paraplegia

SUMO¼ small ubiquitin-like modifier

TFAM¼mitochondrial transcription factor A

TIM¼ translocase of the inner membrane

TOM¼ translocase of the outer membrane

UPRmt¼mitochondrial unfolded protein response

UPS¼ ubiquitin–proteasome system

Ups¼ unprocessed, mitochondrial phosphatidic
acid transport protein

VCP¼ valosin-containing protein (or p97),
mammalian homolog of Cdc48

Vms1¼VCP/Cdc48-associated mitochondrial stress
responsive 1

Yme1¼ yeast mitochondrial escape 1
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