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Unbiased proteomic analysis of plasma samples holds the
promise to reveal clinically invaluable disease biomark-
ers. However, the tremendous dynamic range of the
plasma proteome has so far hampered the identification
of such low abundant markers. To overcome this chal-
lenge we analyzed the plasma microparticle proteome,
and reached an unprecedented depth of over 3000 plasma
proteins in single runs. To add a quantitative dimension,
we developed PROMIS-Quan—PROteomics of MIcropar-
ticles with Super-Stable Isotope Labeling with Amino Ac-
ids in Cell Culture (SILAC) Quantification, a novel mass
spectrometry-based technology for plasma microparticle
proteome quantification. PROMIS-Quan enables a two-
step relative and absolute SILAC quantification. First,
plasma microparticle proteomes are quantified relative to
a super-SILAC mix composed of cell lines from distinct
origins. Next, the absolute amounts of selected proteins
of interest are quantified relative to the super-SILAC mix.
We applied PROMIS-Quan to prostate cancer and com-
pared plasma microparticle samples of healthy individuals
and prostate cancer patients. We identified in total 5374
plasma-microparticle proteins, and revealed a predictive
signature of three proteins that were elevated in the pa-
tient-derived plasma microparticles. Finally, PROMIS-
Quan enabled determination of the absolute quantitative
changes in prostate specific antigen (PSA) upon treat-
ment. We propose PROMIS-Quan as an innovative plat-
form for biomarker discovery, validation, and quantifica-
tion in both the biomedical research and in the clinical
worlds. Molecular & Cellular Proteomics 14: 10.1074/
mcp.M114.043364, 1127–1136, 2015.

Biomarker discovery in plasma is one of the holy grails of
the proteomic field toward the development of noninvasive
diagnostic/prognostic tests (1). To achieve this goal, proteomics
necessitates a comprehensive view of the plasma proteome,
accurate proteome quantification, combined with relatively
short analytical times to enable multiple sample comparisons.
However, MS-based biomarker discovery is limited by the vast
dynamic range of the plasma, over 11 orders of magnitude (2,
3), which leads to the masking of “tissue leakage” proteins that
comprise of potential biomarkers by the core plasma proteins.
Two main complementary strategies have been employed to
reach identification of low abundance proteins: (i) Targeted pro-
teomics, in which the MS identifies and quantifies only prede-
termined peptides, thereby circumventing the system’s inherent
tendency to preferentially detect abundant proteins. This ap-
proach is utilized for validation of preselected candidate mark-
ers (4–6). (ii) Plasma fractionation, which biochemically reduces
the complexity of the proteomes, and enables discovery of
novel biomarkers (7, 8).

Targeted MS analysis is dominated by the selected reaction
monitoring approach, often in combination with antibody-
based enrichment of proteins or peptides and stable isotope
labeled standards for quantification (9). This approach bene-
fits from the sensitivity and quantitative capabilities of the
triple-quadrupole instruments. Its major limitation is that it
relies on prior discovery of candidates within the plasma
samples using extensive tissue/cell-line-based analysis and
prediction of potential biomarkers. The fractionation strategy
reduces both the complexity and the dynamic range of the
plasma through depletion of the most abundant plasma pro-
teins, and/or through extensive biochemical separation of
proteins and peptides. Although these fractionation ap-
proaches enabled identification of thousands of plasma pro-
teins (7), they dramatically reduce the throughput of the
method, and thus, the applicability to clinical studies.

A distinct fractionation approach involves the isolation of
plasma microparticles and exosomes. Microparticles are
large vesicles (100 nm–1 �m), which protrude directly from
the plasma membrane, whereas exosomes are smaller (40–
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100 nm) and originate from endocytic compartments known
as the multivesicular endosomes. These microvesicles are
constitutively shed from all cell types into the blood, carrying
a proteomic signature of their cells of origin (10). Micropar-
ticles mediate local and systemic communication in various
conditions, in particularly in cancer, where they can promote
metastasis, immune evasion of cancer cells and angiogenesis
(10–13), but also in other conditions including autoimmune
diseases (14) and cardiovascular disorders (15). Therefore,
circulating plasma microparticle proteomics can reveal bio-
markers of various diseases as the basis for further diagnostic
test development.

The profiling of plasma microparticle proteomes initiated by
Jin et al. in 2005, with the analysis of 16 samples using
two-dimensional (2D)-gels followed by matrix assisted laser
desorption ionization- time of flight (MALDI-TOF) MS analysis,
which resulted in the identification of 83 proteins (16). In the
following years, low resolution MS analysis of plasma micro-
particles reached up to 229 plasma microparticle proteins and
high resolution MS analysis reached 458 proteins (all without
false discovery rate (FDR)1 correction)(17,18). The latest and
most comprehensive study of plasma microparticles pro-
teome profiling was published in 2012 by Ostergaard et al.,
who analyzed 12 samples on the LTQ Orbitrap XL mass
spectrometer and identified 536 proteins in total, after 1%
FDR correction (19). Other studies have profiled the pro-
teomes of microparticles and exosomes derived from various
body fluids other than plasma, including urine (20), saliva (21),
cerebral spinal fluid (22), breast milk (23), amniotic fluid (24),
seminal fluid (25), and more. However, despite the dramatic
reduction of the dynamic range of the analytes, so far it has
not yet provided sufficient depth for biomarker discovery.
Nevertheless, it has a good prospective for discovering bio-
markers. For example, biochemical analysis of breast cancer
patient leukocytes-derived microparticles correlated between
increased tumor size and increased levels of carcinoembry-
onic antigen (CEA) and cancer antigen 15-3 (CA15-3), two
well-known prognostic markers for colon and breast cancer,
respectively (26).

Combining all of the plasma proteomics approaches men-
tioned above, several prominent surveys of the human plasma
proteome have been reported. The first large-scale collabor-
ative study was conducted by the Human Proteome Organi-
zation (HuPO) group, which collectively identified 3020 pro-
teins (7). These were later condensed to a list of 889
nonredundant proteins, after taking into account multiple hy-
potheses control with at least 95% confidence in protein

identification (27). The Peptide Atlas team initially combined
91 studies, including the one conducted by HuPO, and alto-
gether produced a list of 1929 proteins (28). Recently this
team has elaborated their survey by assembling 127 studies
(29) and reached the largest high-confidence list published so
far of overall 3677 plasma proteins.

In the current work we applied state of the art proteomics to
study the microparticle proteome and developed the PRO-
teomics of MIcroparticles with Super-SILAC Quantification
(PROMIS-Quan) method, which combines deep plasma mi-
croparticle coverage of more than 3200 proteins in a single
run, with dual-mode relative and absolute Stable Isotope La-
beling with Amino Acids in Cell Culture (SILAC) quantification.
We demonstrated its utilization on samples of prostate cancer
patients, and calculated the absolute amount of PSA, a well-
known prostate cancer biomarker.

EXPERIMENTAL PROCEDURES

Plasma Microparticles Extraction—Blood samples were collected
from healthy male donors and from prostate cancer patients that
started hormonal anti-androgenic (GnRH agonist) therapy two
months prior to radiotherapy treatments. The first blood sample for
each patient was taken before radiation therapy; the second blood
test was performed 24 h after the first radiation treatment; the third
test was performed 2 weeks after the first radiation treatment. In
parallel to the radiation therapy the patients resumed with the hor-
monal treatment. All samples were collected upon institutional ethical
approval.

Plasma was separated from the blood samples by centrifugation at
1500 � g for 10 min at 4 °C followed by a second centrifugation of the
supernatant and storage of the plasma supernatant at �80 °C. For
the isolation of microparticles, plasma samples were thawed on ice to
avoid lysis of the microparticles before their separation from the
plasma sample, and then centrifuged at 4000 rpm for 20 min at 4 °C.
Supernatants were diluted twofold in ice-cold PBS and centrifuged at
20,000 � g at 4 °C for 1 h. Pellets were washed with ice-cold PBS and
centrifuged again at 20,000 � g at 4 °C for 1 h. Solubilization of the
microparticle pellets was done in lysis buffer containing 6 M urea, 2 M

thiourea in 50 mM ammonium bicarbonate. Each microparticle sample
from the healthy donors was extracted from �3 ml of plasma. Micro-
particles from prostate cancer patients and the healthy controls of
that experiment were extracted from 0.5 ml of plasma.

Preparation of Super-SILAC Mix—SILAC labeling was performed
by culturing MDA-MB-231, HeLa, HepG2, RKO, and U2OS cells in
SILAC-DMEM, namely DMEM devoid of the natural lysine and argi-
nine and supplemented with 13C6

15N2-lysine, 13C6
15N4-arginine, and

with dialyzed FBS and antibiotics. LNCaP and Jurkat cells were
labeled in SILAC-RPMI with the same supplements. Labeled amino
acids were purchased from Cambridge Isotope Laboratories. Cells
were cultured for more than 10 doublings in the SILAC medium to
attain complete labeling, and the incorporation was examined by
separate LC MS/MS analyses. Lysate super-SILAC mix was obtained
by lysing cell pellets in 6 M urea, 2 M thiourea in 50 mM ammonium
bicarbonate. For both secretome and CLMP extraction, cells were
cultured in SILAC serum-free medium for 48 h, followed by centrifu-
gation at 4000 rpm for 20 min at room temperature. The supernatants
for secretome samples were diluted 1:1 in 8 M urea prior to trypsin
digestion. For CLMP extraction, medium was diluted twofold in ice-
cold PBS followed by high-speed centrifugation (1h at 20,000 � g at
room temperature). Microparticle pellets were then solubilized in 6 M

urea, 2 M thiourea in 50 mM ammonium bicarbonate. Bradford protein

1 The abbreviations used are: FDR, false discovery rate; PROMIS-
Quan, PROteomics of MIcroparticles with Super-SILAC Quantifica-
tion; SILAC, stable isotope labeling with amino acids in cell culture;
CLMP, cell line microparticles; PSA, prostate specific antigen; DMEM,
Dulbecco’s Modified Eagle Medium; RPMI, Roswell Park Memorial
Institute; FBS, fetal bovine serum; UHPLC, ultra high performance
liquid chromatography; FWHM, full width at half-maximum.
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determination was used in preliminary experiments, and showed that
1 ml of plasma results in �10 �g of microparticle proteins. Combi-
nation of the super-SILAC and the microparticle proteins (1:1 ratio)
was based on this calculation.

Trypsin Digestion and LC-MS/MS Analysis—All samples (micropar-
ticle proteins with or without the super-SILAC standards, PSA cali-
bration curve samples) were reduced with 1 mM DTT, followed by
alkylation with 5 mM iodoacetamide and subsequent 3h digestion with
endoproteinase Lys-C (Wako Chemicals, Osaka, Japan; 1:100 en-
zyme to protein ratio). Lysates were diluted fourfold in 50 mM ammo-
nium bicarbonate and digested overnight with sequencing grade
modified trypsin (Promega, Madison, WI; 1:50 enzyme to protein
ratio). The resulting peptides were acidified with TFA and subse-
quently purified on C-18 stageTips (30).

LC-MS/MS analysis was performed on the EASY-nLC1000 UHPLC
system (Thermo Scientific) coupled to the Q-Exactive or Q-Exactive
Plus mass spectrometers (Thermo Scientific) (31) via the EASY-Spray
ionization source. Peptides were loaded onto 75 �m i.d. � 50 cm long
EASY-spray PepMap columns (Thermo Scientific) packed with 2 �m
C18 particles 100 Å pore size, using 4 h gradients at a flow rate of 300
nl/min with buffer A (0.1% formic acid) and separated using a 7–28%
buffer B (80% acetonitrile, 0.1% formic acid). MS data were acquired
in a data-dependent mode, using a top-10 method. MS spectra were
acquired at 70,000 resolution, m/z range of 300–1700 Th, a target
value of 3E�06 ions, and a maximal injection time of 20 ms. MS/MS
spectra were acquired after HCD fragmentation, with normalized
collision energy (NCE) of 25 at 17,500 resolution a target value of
1E�05 ions and maximal injection time of 100 ms. Comparison of
super-SILAC types was performed with 5E�05 ions and maximal
injection time of 60 ms. Dynamic exclusion was set to 20 or 30 s. All
MS measurements were done in the positive ion mode. Single-pep-
tide-based protein identification are listed in supplemental Table S1.
MSMS spectra of these peptides are uploaded to Pride (link below).

Computational Analysis—Raw MS files were analyzed with
MaxQuant (32) (versions 1.5.0.36 and 1.4.3.2) and the Andromeda
search engine (33) integrated into the same versions. MS/MS spectra
were searched against the UniprotKB database version Nov2014
including 140,992 entries, a decoy database in which all sequences
were reversed and each lysine and arginine were swapped with their
preceding amino acid, and a list of common contaminants (247
entries). Search included tryptic peptides with the variable modifica-
tions N-terminal acetylation (�42.0106 Da) and methionine oxidation
(�15.99491 Da) and the fixed modification of carbamidomethyl cys-
teine (�57.02146 Da). Maximal number of miscleavages was set to
two and maximal number of modifications was set to five. MaxQuant
analysis included two search engine steps. The first was used for
mass recalibration, and was initiated with a peptide mass tolerance of
20 ppm. The main database search peptide initial mass tolerance was
set to 4.5 ppm, and mass tolerance for the fragment ions was set to
20 ppm. Database results were filtered to have a maximal FDR of 0.01
on both the peptide and the protein levels. The minimal peptide length
was seven amino acids and a minimum number of peptides per
protein was set to one. The “second peptide search” option was
enabled to allow identification of two cofragmented peptides. For
protein assembly, all proteins that cannot be distinguished based on
their identified peptides were assembled into a single protein group.
Analysis of SILAC experiments included Lys-8 and Arg-10 as the
heavy labels, and enabled the requantify option. For SILAC ratios
determination a minimum of two ratio counts between SILAC peptide
pairs was required. The “match between runs” option was enabled
only in the prostate cancer analysis and PSA calibration curve, for
transfer of identification between separate LC-MS/MS runs based on
their accurate mass and retention time, with a 1 min match window
after retention time alignment. Data analysis was performed on the

proteinGroups.txt file after filtration of the proteins that were identified
in the reverse database, proteins that were identified only based on
their variable modifications and potential contaminants (without ex-
cluding potential plasma proteins, such as albumin, hepatocyte
growth factor activator, keratins, and thrombospondin).

All bioinformatic analyses were performed on either log2 or log10
scales. Quantification of nonlabeled samples was performed using
the intensity values. SILAC-labeled samples were analyzed based on
the normalized ratio light to heavy (L/H) after normalization by sub-
traction of the median value in each sample (to ensure overall com-
parable protein distribution of samples). Statistical tests and calcula-
tions were done using the Perseus program and Matlab. Machine
learning algorithms were used to obtain a predictive signature that
can distinguish between samples from healthy donors and samples
derived from prostate cancer patients. Data were filtered to retain only
proteins with numerical values in at least 19 of 28 samples. Ratio
values toward the super-SILAC mix were then imputed by replacing
missing values with random values that create a normal distribution
with a downshift of 1.0 standard deviation and a width of 0.3 of the
original distribution. Support vector machine algorithm was used for
classification with linear Kernel and ANOVA-based feature ranking.
For cross validation the random sampling algorithm was used with
15% of the samples utilized as the test case, and repeating the
calculation 250 times. The number of features was chosen based on
the lowest error percentage. Classification using the same parame-
ters with the top three ranked features was performed to calculate
true positive, true negative, false positive, and false negative rates.
Welch’s t test was performed with permutation-based FDR 0.05 and
S0 � 0.5 (34). Hierarchical clustering was done after z-score normal-
ization of the proteins, and was based on Euclidean distances be-
tween averages. Coefficient of variation was determined by compar-
ing protein ratios in three replicates.

PSA Concentration Assays—For MS-based microparticle PSA
quantification, equal amounts of super-SILAC mix were combined
with final concentrations of 0.5, 2, 10, 50, and 200 ng/ml purified PSA
(Prostate specific antigen; Merck Millipore). Calculation of PSA con-
centration was done by extrapolation from the calibration curve in
log2 scale. PSA ELISA kit (R&D Systems, Minneapolis, MN) was
utilized according to manufacturer’s instructions to determine plasma
PSA concentrations.

RESULTS

Deep Coverage of Plasma Microparticle Proteome—Unbi-
ased biomarker discovery in plasma samples requires suffi-
cient depth to achieve “tissue leakage” protein identification,
high reproducibility, and short analytical duration. We there-
fore avoided protein and peptide fractionation, and rather
examined the plasma microparticle proteome coverage using
single LC-MS/MS runs. Moreover, we optimized the analytical
procedure to minimize sample loss and minimize contamina-
tions of core plasma proteins, which are expected to reduce
the observable dynamic range. Microparticle isolation was
performed by high-speed plasma centrifugation (20,000 � g),
which precipitates the microparticles (100 nm–1 �m), but not
the exosomes (40–100 nm). To eliminate large quantities of
core plasma proteins that may attach to the vesicles, we
added a subsequent PBS wash of the pellet followed by an
additional centrifugation step. For protein digestion, we se-
lected the in-solution procedure, which ensures minimal sam-
ple loss. Microparticle solubilization was performed in urea-
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based buffer and was followed by an over-night trypsin
digestion. Single 4 h LC-MS/MS runs on the Q-Exactive mass
spectrometer identified on average 3294 proteins per repli-
cate (peptide and protein FDR � 0.01). Triplicate single-shot
analysis identified 28,409 peptides and 3689 proteins (Fig. 1A;
supplemental Table S2A; Supplemental Table S3A). In com-
parison, similar analysis of unfractionated plasma identified
only 451 proteins (Fig. 1B; supplemental Table S2A; supple-
mental Table S3A). Remarkably, the Peptide Atlas database,
which is comprised of 127 studies (29), includes a similar
number of proteins. Furthermore, these experiments add
2074 plasma-derived proteins to the annotated ones (Fig. 1C).

The dynamic range of the plasma microparticle proteome
spanned from albumin and hemoglobin, which are among the
most abundant plasma proteins, to cytokines and other se-
creted factors, such as CCL5 (chemokine ligand 5), MANF
(mesencephalic astrocyte-derived neurotrophic factor), GMFG
(glia maturation factor, gamma), PDGFA (platelet-derived
growth factor A), IGF2 (insulin-like growth factor 2) and MIF
(macrophage migration inhibitory factor), among the lowest
ones (Fig. 1A). Examination of the plasma concentration of
these proteins, as reported in the Plasma Proteome Database
(PPD) (35) showed that the microparticle analysis reaches
proteins with plasma concentrations of 11 pg/ml (IMPDH2,
average PPD concentrations, three peptides), 2.9 ng/ml
(Grb2, average PPD concentration, 15 peptides), and addi-
tional growth factors/cytokines, which could not be identified
in the unfractionated plasma sample (supplemental Fig. S1;
selected examples are given in supplemental Table S4). The
microparticle proteome identified 276 proteins that were re-
ported to have a concentration lower than 10 ng/ml, whereas
the unfractionated plasma, on the other hand, identified only
14 proteins within this range (Fig. 2A). Interestingly, we found

low correlation between the intensities of the proteins from
the microparticles and the concentrations of the soluble pro-
teins, which shows that the fractionation isolated a distinct
sub-proteome of plasma proteins. The ability to reach these
low abundance proteins was achieved because of the dra-
matic reduction in the fraction of abundant proteins. In the
unfractionated plasma, 43% of the overall intensity corre-
sponded to albumin, whereas in the microparticle proteome
albumin accounted for only 5% of the total intensity. Similarly,
36% of the total intensity originated from the top 10 micro-
particle proteins, whereas the same number of proteins was
responsible for 76% of the intensity of the plasma proteome
(Fig. 2B).

Among the identified proteins the microparticle proteome
provided a rich source of potential biomarkers, as defined by
Huttenhain et al. (36). The intensities of these were reproduc-
ible and did not concentrate within the lower range of inten-
sities, but rather showed a wide range (Fig. 3A). Furthermore,
technical triplicates involving separate microparticle isolation
and LC-MS/MS analysis showed an average correlation of
0.93 and 91% overlap between replicates (Fig. 3B), demon-
strating the high technical reproducibility of the method. Over-
all, these results show the potential of microparticle analysis
as a platform for unbiased biomarker discovery.

SILAC-based Relative Quantification Using PROMIS-Quan—
Clinical assessment of biomarkers requires their accurate
quantification and determination of their absolute amounts.
Combination of the microparticle proteins with known amounts
of heavy standards can enable quantitative measurement of
these specific proteins, but would require remeasurement of
the clinical sample for each biomarker of interest. To gain a
more comprehensive quantification potential, we estab-
lished PROMIS-Quan as a two-step approach: First, micro-
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particle proteomes are quantified against a super-SILAC mix
that serves as an internal standard (37). Next, the super-
SILAC mix is quantified relative to purified proteins of interest,
with known absolute amounts (Fig. 4). This dual-mode SILAC
quantification approach provides relative quantification of
large proportions of the microparticle proteome, and absolute

quantification can be determined retrospectively only relative
to the super-SILAC standard.

For the development of a SILAC internal standard, we as-
sembled a panel of seven cancer cell lines, which represents
various tissues and cancer types to serve as the quantitative
reference. As opposed to the previously established super-
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SILAC mix, which is used for tissue quantification (37, 38), the
current super-SILAC is aimed to represent secreted micro-
particle proteomes. We therefore examined three types of
super-SILAC mixes: (1) Cell lysates. (2) Cell culture medium
(secretome). (3) Cell line microparticles (CLMPs), namely mi-
croparticles isolated from cell culture medium. We combined
each of these standards with the plasma microparticles and
analyzed them as described above. Single LC-MS/MS runs
led to the quantification of 2473, 1992, and 910 proteins for
lysate, CLMPs and secretome, respectively (Supplemental
Tables S2B and S3B). The fraction of quantified proteins of
the total identified proteins was �70% for the lysates and
CLMPs and �60% for the secretome. In the next steps we
concentrated on the two finest methodologies, namely
CLMPs and lysate standards. Their comparison showed a
similar overall distribution, which included a main distribution
with the same width for lysate and CLMP standards (FWHM �

2.8). An additional small distribution was highly enriched with
core plasma proteins (FDR � 10�30 and 10�6 for lysate and
CLMPs, respectively), which are not represented in our stan-
dard, yet they are less likely to include candidate biomarkers
(Fig. 5; supplemental Fig. S2; supplemental Table S3A; core
plasma protein list was taken from Fig. 1B). We further deter-
mined the reproducibility of the ratio measurements, and
found a median coefficient of variation of 0.25 and 0.26 for the
lysates and the CLMP standard, respectively (supplemental
Fig. S3; supplemental Tables S2C and S3C). Based on the
high similarity of these two standard types, and given the

marked difference in protein amounts that are extracted from
lysates versus CLMPs, we proceeded using the lysate-based
super-SILAC mix.

Absolute Quantification of Selected Proteins—The relative
quantification enables a direct comparison between any num-
ber of samples. Such a comparison can give rise to various
potential biomarkers, yet their absolute levels have to be
determined for further clinical evaluation. The dual-mode
SILAC approach requires determination of the absolute pro-
tein amounts only in the super-SILAC standard, and the
amounts in each one of the samples can be extrapolated
retrospectively. We examined the applicability of PROMIS-
Quan for cancer biomarker quantification in plasma samples
from prostate cancer patients. As a proof of concept, we
quantified the prostate cancer marker Prostate Specific Anti-
gen (PSA/KLK3) (39, 40), and compared microparticles before
and after treatment. LC-MS/MS analysis of patient-derived
microparticles combined with the super-SILAC lysate enabled
quantification of 3076 proteins and specifically identified PSA
with two peptides and a 0.24- and 0.17-fold ratio toward the
standard before and after treatment, respectively. To deter-
mine the absolute amount of PSA in the super-SILAC mix we
created a dilution series of unlabeled purified PSA com-
bined with the super-SILAC mix (Fig. 6A). Extrapolation from
the calibration curve showed that microparticle PSA levels
reduced from 2.3 ng/ml to 1.5 ng/ml upon treatment (Fig.
6B). To validate the MS results, we examined the absolute
PSA amounts in the plasma of the same patients using an
ELISA assay. Despite differences between the absolute PSA
levels in the soluble plasma and the microparticles (as ex-
pected from Fig. 2A), we found an identical reduction of
35% upon treatment (Fig. 6B).
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Biomarker Discovery Using PROMIS-Quan—We examined
whether PROMIS-Quan can reveal novel biomarkers in pa-
tient-derived microparticles. To that end we compared the
plasma microparticle proteome of 12 healthy donors and 16
samples derived from seven prostate cancer patients during
the first 2 weeks of radiotherapy treatment (supplemental
Tables S2D and S3D). Altogether 5374 different protein
groups were identified, 3231 proteins were identified on av-
erage in each sample, and 2167 of those were quantified with
the super-SILAC mix. We performed a Welch’s t test to iden-
tify the significantly changing proteins between the healthy
and prostate cancer samples. We extracted a signature of 132
proteins that were significantly higher in the prostate cancer
patients microparticles and 46 proteins that were higher in
healthy donors samples (FDR � 0.05, S0�0.5; supplemental
Fig. S4; supplemental Table S5). To further evaluate the pre-
dictive value of these proteins, we used support vector ma-
chine classification algorithm, ANOVA feature ranking method
and random sampling for cross validation, and obtained a

signature that includes three proteins that can distinguish
between patient- and healthy-derived samples, as shown in
the principal component analysis (PCA; Fig. 7A). A receiver
operating characteristics analysis resulted in area under the
curve of 0.84 (Fig. 7B). The predictive signature included
PTPN1, SFXN3, and LPP (p values of 1.36E�05, 3.12E�06,
and 7.1E�06, respectively; Fig. 7C). PTPN1 (protein tyrosine
phosphatase nonreceptor type 1) was previously found to be
correlated with prostate cancer progression (41); LPP (LIM
protein) is involved in cell adhesion; SFXN3 (sideroflexin-3)
was previously suggested as a serum tumor marker for oral
squamous cell carcinoma (42). Altogether, using PROMIS-
Quan we were able to capture significant differences between
healthy and prostate cancer plasma microparticle proteins
and identified candidate markers of the disease.

DISCUSSION

Biopharmaceuticals analyses of biological specimens
mostly rely on ligand binding assays (LBAs) as the standard
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analytical technique. LBAs utilize antibodies raised against
the protein of interest and offer very sensitive and selective
results (43). Though LBAs require lower investment in analyt-
ical equipment and have straightforward/high-throughput
protocols (44), in recent years more and more LC-MS(/MS)
techniques, mostly targeted-based methods, began to re-
place the conventional LBA methods. These MS-based tech-
niques have improved selectivity and linear dynamic range
than antibody-based methods, and the use of internal stan-
dards can correct for different sources of analytical variability.
In the current work we present a novel high-throughput, un-
biased, simple, and cost-effective biomarker discovery and
quantification platform. In contrast to most alternative tech-
niques, PROMIS-Quan enables biomarker discovery in the
plasma samples themselves, and does not rely on mere pre-
diction based on cell line or tissue analyses. For comparison,
the well-established SISCAPA technique, which provides
absolute measures of candidate peptides that are immuno-
precipitated from the plasma, requires multiple method de-
velopment steps for each protein. These include candidate
selection based on extensive tissue analysis and computation
predictions, development of peptide-specific antibodies, syn-
thesis of heavy peptide standards and the development of
targeted MS-methods (9). Thus, massive investment is re-
quired prior to the identification of the protein as a bona fide
biomarker. PROMIS-Quan provides an exceptional coverage
of the plasma subproteome, and thus enables comprehensive
profiling of tissue leakage proteins in the blood. The high
coverage reached in single runs provides the throughput nec-
essary for the analysis of large patient cohorts. This high
coverage can be further elevated by peptide/protein fraction-
ation in the future.

The current work identified sixfold more proteins than the
largest study reported so far, in only single LC-MS/MS runs,
and 10-fold more proteins in one entire dataset (5374 pro-
teins; prostate cancer patients). This dramatic improvement
lies in the optimization of several analytical steps: (1) Plasma
separation involved two 10 min centrifugation steps at 1500 �

g at 4 °C. Higher speed (over 2000 � g), which is often used
in various studies, was shown to result in a considerable loss
of microparticles (45). (2) Efficient microparticle isolation from
the plasma was achieved using longer high-speed centrifu-
gation (1h versus 20–30 min). (3) An additional PBS wash of
the microparticle pellet reduced the levels of highly abundant
plasma proteins that mask the low abundance proteins. In
agreement with this, Ostergaard et al. showed that multiple
washes of the microparticle pellet reduces the signals of
albumin thus affect microparticle protein yield (19). (4) The use
of LoBind eppendorf tubes for microparticle extraction pro-
vided higher yield per starting volume compared with large-
volume, round bottom tubes (supplemental Table S6). (5)
In-solution protein digestion dramatically reduced sample
loss. Alternative microvesicle extraction protocols include su-
crose gradients or filtration steps for cells removal, which may

cause large microvesicle loss. Additionally, most previous
studies processed the microparticle proteomes using in-gel
digestion, which further reduces the yield compared with the
in-solution procedure used here. 6) Combination of high res-
olution MS and high resolution chromatography dramatically
increased the number of identified proteins.

Another factor that might influence the number of identified
proteins is microvesicles subdivision. Here we chose to use
microparticles rather than exosomes because: (1) Micropar-
ticle proteins are not limited to the secretory pathway as they
originate from the cytoplasm, and thus, better reflect the
variety of proteins of the cell of origin. (2) Experimentally,
microparticles extraction is simpler than exosomes, as it re-
quires high speed centrifugation rather than ultracentrifuga-
tion. Additionally, some of the studies divided the plasma
microvesicles population into specific origins (platelets, red
blood cells, leukocytes, etc.). For example, a recent study
focused on a subset of plasma microparticles, the platelet-
derived microparticles. They used in-solution digestion pro-
tocol followed by analysis in hybrid LTQ orbitrap XL and
identified 603 proteins in nine samples (46). Thus, orienting
the analysis toward a subset of the microvesicles leads to less
identified proteins.

As a proof of concept, we examined our ability to success-
fully capture potential biomarkers when analyzing plasma mi-
croparticle proteomic profiles. To that end we tested PROMIS-
Quan on prostate cancer samples and compared those to
healthy donors. We identified a predictive signature that in-
cludes three proteins, all of which were higher in patients
samples compared with healthy samples. Interestingly, one of
the proteins, PTPN1, is a tyrosine phosphatase and a direct
target of androgen receptor. PTPN1 is frequently amplified in
metastatic tumors and high risk primary tumors (47). Down-
regulation of PTPN1 correlates with better prognosis by de-
laying tumor occurrence, decreasing tumor growth rates and
inhibiting cell migration (41). The predictive signature included
two other proteins, LPP and SFXN3, which to our knowledge
were not previously associated with prostate cancer. Future
research can examine the broad applicability of these poten-
tial biomarkers for prostate cancer diagnosis.

The unique advantage of PROMIS-Quan is the usage of a
dual-mode super-SILAC standard, which provides both rela-
tive and absolute quantification. As opposed to quantification
using selected candidates with heavy labeled standards, the
super-SILAC quantifies thousands of proteins in each sample,
and thus enables extraction of a combination of proteins as
biomarker signatures. Absolute quantification is achieved in
the second step of quantification of super-SILAC proteins
using unlabeled standards. The main benefits of this ap-
proach are that absolute quantification is performed relative
to the standard, therefore it does not require remeasurement
of the clinical sample for each biomarker, but can be done
retrospectively once the candidate is established as a valu-
able biomarker. Furthermore, absolute quantification does not
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involve the synthesis of heavy standards, but rather utilizes
nonlabeled purified proteins. The use of super-SILAC mix as
an internal standard provides higher accuracy and stability
than either label-free quantification or chemical labeling ap-
proaches, and thus the same standard can be used in multiple
studies, laboratories and clinics, and can serve as the basis
for large biomarker meta-analyses. Finally, because micropar-
ticles are shed from all cells and tissues, PROMIS-Quan can
be applied to a large variety of disease states. We envision
that this technology will be utilized in routine blood tests, and
will reveal multiple biomarkers in single tests.

The mass spectrometry proteomics data have been depos-
ited to the ProteomeXchange Consortium via the PRIDE part-
ner repository with the data set identifier PXD001194.

To access the data please visit: http://tinyurl.com/mv35xpk.
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