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Abstract
Decline in cognitive performance in old age is linked to both suboptimal neural processing in

grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-

function-cognition associations remain poorly understood. Here we apply a novel measure of

GM processing–moment-to-moment variability in the blood oxygenation level-dependent sig-

nal (SDBOLD)—to study the associations between GM function during resting state, perfor-

mance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic

memory, vocabulary), andWMmicrostructural integrity in 91 healthy older adults (aged 60-80

years). Wemodeled the relations between whole-GMSDBOLD with cognitive performance

using multivariate partial least squares analysis. We found that greater SDBOLD was associat-

ed with better fluid abilities and memory. Most of regions showing behaviorally relevant

SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that con-

nect and integrate segregated functional domains in the brain. Our results suggest that opti-

mal dynamic range of neural processing in hub regions may support cognitive operations that

specifically rely on the most flexible neural processing and complex cross-talk between differ-

ent brain networks. Finally, we demonstrated that older adults with greater WM integrity in all

major WM tracts had also greater SDBOLD and better performance on tests of memory and

fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual

differences in cognition in healthy older adults and is supported by overall WM integrity.

Introduction
Cognitive performance, such memory, reasoning, perceptual speed, and maintenance of se-
mantic knowledge, relies on the neural processing in grey matter (GM) and the integrity of
white matter (WM). Many neuroimaging studies attempt to link age-related differences in cog-
nitive performance with either blood-oxygenation level dependent (BOLD) signal magnitude
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and localization [1,2] or WM integrity [3]. However, designs and results of the functional stud-
ies are region-, and cognitive task-specific, and therefore yield mixed results. As a consequence,
combining whole-brain GM function with WM structure in aging remains a challenge and has
been rarely attempted. Clearly, a more general functional measure would be useful in linking
GM processing with WM integrity and individual differences in cognition in aging.

Recently, measuring the variability in the BOLD signal (SDBOLD) has emerged as a novel
frontier in mapping human brain function in aging [4,5]. The brain–a dynamic system that un-
dergoes spontaneous or external stimuli-driven moment-to-moment reconfigurations [6–11] –
is inherently variable [12]. Older adults were shown to have reduced SDBOLD in many GM re-
gions compared to younger adults [13], and SDBOLD was associated with faster and more con-
sistent performance [14]. These positive associations between SDBOLD and cognition in aging,
however, are based only on performance on a perceptual matching task (instantaneous match-
to-sample, attentional cueing, and delayed match-to-sample [14]). Here we address the yet un-
explored questions: Can the link between higher SDBOLD and cognitive performance be extend-
ed to other cognitive abilities known to decline with age, such as reasoning, speed, and episodic
memory [15,16]? Is there a general pattern of higher SDBOLD that supports cognitive function-
ing across cognitive domains or are patterns of SDBOLD optimal for a specific cognitive func-
tion? Does WM integrity support behaviorally relevant SDBOLD in the aging brain?

We collected resting-state fMRI and diffusion images as well as well-normed laboratory
measures of fluid intelligence, perceptual speed, episodic memory, and vocabulary [17–20]
from 104 healthy participants (60–80 years). Previous research showed that resting-state and
task-related signal amplitude fluctuations are linearly related across subjects and voxels and
may be governed by same neuronal and physiological mechanism [21]. Therefore, our ap-
proach of using resting-state signal minimizes the effect of task on SDBOLD, allowing SDBOLD

to be related to a broad range of cognitive abilities. We predicted greater SDBOLD, especially in
hub regions highly connected within brain networks [22,23], to be related to better fluid abili-
ties and memory, as they require more moment-to-moment adaptability in brain network utili-
zation (e.g. association formation, mental rotation). We expected SDBOLD to have a weaker
relationship with vocabulary knowledge and perceptual speed, relying on rather stereotypical
responses and semantic retrieval. We modeled the relations between whole-GM SDBOLD with
cognitive performance using multivariate partial least squares analysis (PLS; [24]). Finally, as
greater WM integrity, measured as fractional anisotropy (FA), predicts higher cognitive perfor-
mance and GM processing efficiency in older adults [3,25–27], we proposed WM integrity as a
candidate structural correlate of the behaviorally relevant SDBOLD in the aging brain.

We found that greater SDBOLD was associated with better fluid abilities and memory, and
this behaviorally relevant SDBOLD was associated with WM integrity.

Methods

Participants
A University of Illinois Institutional Review Board approved the study, and written informed
consent was obtained from all participants and the study was performed in accordance with
the 1964 Declaration of Helsinki. Participants received financial reimbursement. We collected
MRI and behavioral data from 111 community-dwelling healthy older adults (37 males). The
sample contained more females because fewer older males met the above inclusion criteria or
showed willingness to participate in the study. Eligible participants met the following criteria:
(1) were between the ages of 60 and 79 years old, (2) were free from psychiatric and neurologi-
cal illness and had no history of stroke or transient ischemic attack, (3) scored� 27 on the
Mini-Mental State Exam (MMSE) and>21 on a Telephone Interview of Cognitive Status
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(TICS-M) questionnaire, (4) scored< 10 on the geriatric depression scale (GDS-15), (5)
scored� 75% right-handedness on the Edinburgh Handedness Questionnaire, (6) demonstrat-
ed normal or corrected-to-normal vision of at least 20/40 and no color blindness, (7) were
cleared for suitability in the MRI environment, that is, no metallic implants that could interfere
with the magnetic field or cause injury, no claustrophobia, and no history of head trauma. The
participants were a pre-intervention cross-sectional subsample from an on-going randomized
controlled exercise trial (“Influence of Fitness on Brain and Cognition II” at ClinicalTrials.gov,
clinical study identifier NCT01472744), from whom good quality anatomical and resting state
functional MRI (see section 2.4 and 2.6) was available.

Cognitive assessment and analysis
We administered a cognitive battery as described in the Virginia Cognitive Aging Project
[17–20] to measure latent constructs of fluid intelligence, perceptual speed, episodic memory,
and vocabulary (for more details on each task see Table 1). The computer-based tasks were

Table 1. Cognitive battery and the result of dimensionality reduction with PCA.

Task Construct Description Administration Source Fluid
abilities

Perceptual
Speed

Memory Vocabulary

Matrix
reasoning

Fluid
intelligence

Select pattern that best completes the
missing cell in a matrix

Computer-based [77] .628 – – .418

Shipley
abstraction

Fluid
intelligence

Determine the letters, words, or numbers
that best complete a progressive
sequence

Paper-pencil [78] .525 – – .564

Letter sets Fluid
intelligence

Identify which of five groups of letters is
different from the others

Computer-based [79] .346 .410 – .575

Spatial
relations

Spatial
reasoning

Determine which three dimensional object
could be constructed by folding the two
dimensional object

Computer-based [80] .788 – – –

Paper folding Spatial
reasoning

Determine the pattern of holes that would
result from a sequence of folds and a
punch through folded paper

Computer-based [79] .856 – – –

Form boards Spatial
reasoning

Determine shapes needed to fill in a
space

Computer-based [79] .725 – – –

Digit symbol Perceptual
speed

Use a code table to write the correct
symbol below each digit

Paper-pencil [81] – .756 – –

Letter/pattern
comparison

Perceptual
speed

Same or different comparison of pairs of
letter strings/patterns

Paper-pencil [82] –/.346 .845/.797 – –

Logical memory Episodic
memory

Recall as many idea units as possible
from three stories

Computer-based/
paper-pencil

[83] – – .752 .319

Free recall Episodic
memory

Recall as many words as possible across
four word trial lists

Computer-based/
paper-pencil

[83] – – .789 –

Paired
associates

Episodic
memory

Recall the second words from word pairs Computer-based/
paper-pencil

[84] – – .787 –

WAIS vocab. Vocabulary Define words out loud Experimenter/
paper-pencil

[81] – – – .778

Picture vocab. Vocabulary Name the objects presented Experimenter/
paper-pencil

[85] .383 – – .720

Synonym/
antonym

Vocabulary Choose the word most similar/opposite in
meaning to the target

Computer-based [86] – – – .876/.857

Note. Columns 6–9: Standardized component loadings from a 4-factor PCA extraction. For clarity, only loadings above 0.30 are displayed. Rotation

method: varimax with Kaiser normalization. Rotation converged in 6 iterations. Pairwise exclusion was performed.

doi:10.1371/journal.pone.0120315.t001
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programmed in E-prime version 1.1 (Psychology Software Tools, Pittsburgh, PA) and adminis-
tered on computers with 17” cathode ray tube monitors.

To obtain components representing the four cognitive constructs and to confirm the validi-
ty of task structure as presented in [20], we performed principal component analysis (PCA)
with varimax rotation. Individual scores on each of the 16 tasks were first screened for outliers
and winsorized (maximum 3 cases out of 91 (<3%) were adjusted per variable). The resulting
constructs are presented in Table 1 and the component scores were saved as variables.

Some participants did not complete all tasks in the cognitive battery, which resulted in a
final sample of 91 participants (29 males, age range 60–78, Mage = 65 ± 4 years, years of educa-
tion 12–26, Medu = 17 ± 4 years).

MRI acquisition
We acquired all images during a single session on a 3T Siemens Trio Tim system with 45 mT/
m gradients and 200 T/m/sec slew rates (Siemens, Erlangen, Germany). T2�-weighted resting
state images were acquired with fast echo-planar imaging (EPI) sequence with Blood Oxygen-
ation Level Dependent (BOLD) contrast (6min, TR = 2s, TE = 25ms, flip angle = 80 degrees,
3.4 x3.4 mm2 in-plane resolution, 35 4mm-thick slices acquired in ascending order, Grappa ac-
celeration factor = 2, 64 × 64 matrix). The participants were instructed to lay still with eyes
closed. Additionally, gradient field maps were acquired to account for geometric distortions
caused by magnetic field inhomogeneity [28]. The gradient field map was collected as 35,
4mm-thick slices, 3.4 x 3.4 mm2 in-plane resolution, TR = 700ms, TE = 10ms, and flip
angle = 35 degrees.

High-resolution structural MR scans were acquired using a 3DMPRAGE T1-weighted se-
quence (TR = 1900 ms; TE = 2.32 ms; TI: 900 ms; flip angle = 9°; matrix = 256 × 256;
FOV = 230mm; 192 slices; resolution = 0.9 × 0.9 × 0.9 mm; GRAPPA acceleration factor 2)
and used as an intermediate step in registration of functional images to standard MNI space.

DTI images were acquired with a twice-refocused spin echo single-shot Echo Planar Imag-
ing sequence [29] to minimize eddy current-induced image distortions. The protocol consisted
of a set of 30 non-collinear diffusion-weighted acquisitions with b-value = 1000s/mm2 and two
T2-weighted b-value = 0 s/mm2 acquisitions, repeated two times (TR/TE = 5500/98 ms, 128 x
128 matrix, 1.7x1.7 mm2 in-plane resolution, FA = 90, GRAPPA acceleration factor 2, and
bandwidth of 1698 Hz/Px, comprising 40 3-mm-thick slices). Resting state and DTI images
were obtained parallel to the anterior-posterior commissure plane with no interslice gap.

BOLD variability (SDBOLD) calculation
Data preprocessing was carried out using FSL v5.0.1 (FMRIB's Software Library, http://www.
fmrib.ox.ac.uk/fsl; [30]). The preprocessing included high pass filtering (> 0.008Hz), slice tim-
ing correction, rigid body motion correction using MCFLRT [31], and removal of non-brain
tissue with the Brain Extraction Tool [32]. Data from all subjects was screened for motion and
all participants moved within a voxel dimension (< 4mm). Functional images of each partici-
pant were aligned to the standard stereotaxic space of the MNI 152 T1 2mm3 template supplied
in FSL in a three-step procedure. To improve the registration between the participant’s func-
tional and anatomical images we utilized the gradient field map data. First, the gradient field
map was unwrapped via PRELUDE [33], then geometric distortions in the EPI-related images
due to local magnetic inhomogeneity differences were compensated for with the use of gradient
field map data via FUGUE within FSL [33]. Eleven out of 91 participants had missing field
map images. Second, each participant’s low-resolution functional images were aligned with
their high-resolution T1-weighted anatomical images using the Boundary-Based Registration
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in FSL [34]. Third, the anatomical images were aligned to MNI 152T1 2mm3 template using 12
degrees of freedom affine linear registration [31].

Next, as recommended by [13], we used Multivariate Exploratory Linear Optimized De-
composition into Independent Components (MELODIC v3.10) tool in FSL [35] to decompose
the 4D fMRI time series into spatial and temporal components. AZB together with Chanheng
He and CNW identified artifact components for each subject using the criteria outlined in [36]
based on the spatial pattern, time course, and power spectrum properties that were characteris-
tic of physiological noise, motion, and scanner-related artifacts. The artifactual components
were regressed out from the time series yielding the post-ICA ‘cleaned’ data. This post-ICA
functional data as well as the six motion parameters outputted earlier by motion correction
were bandpass filtered to restrict the frequencies in our data to. 008< f<. 1 Hz [37]. Next, we
extracted mean time series from two nuisance regions of interest (deep temporal white matter,
bilateral lateral ventricles) in the post-ICA filtered data. The goal of including these two nui-
sance regressors is to remove residual cardiorespiratory physiological noise that would be cap-
tured by signal changes in the white matter and ventricles [38–41] and was not removed by the
ICA cleanup. The two nuisance regressors (timeseries from white matter and ventricles) were
regressed out using the general linear model with FEAT 6.00 (FMRI Expert Analysis Tool;
http://www.fmrib.ox.ac.uk/analysis/research/feat/). Finally, we calculated the standard devia-
tion (SDBOLD) across the whole timeseries for each voxel and smoothed the images with a
6mm Gaussian kernel. The resulting SDBOLD maps were upsampled to MNI space using the
registration steps described above. To restrict all multivariate analyses to the GM, we masked
the SDBOLD maps with the grey matter tissue prior provided in FSL, thresholded at
probability> 0.37. The intermediate outcomes of all the above procedures were carefully in-
spected by AZB and CNW.

PLSmultivariate analysis of relations among SDBOLD, cognitive
performance and fitness
First, we made sure that all behavioral variables were normally distributed and any outliers
(> 2.5 SD) were accounted for by winsorizing, where not more than 2 cases were corrected per
variable (2%).

The behavioral PLS analysis [42,43] begins with a correlation matrix (CORR) between our
variables of interest (four cognitive constructs) and each voxel’s signal (SDBOLD); correlations
are calculated across subjects. Then, this CORR matrix is decomposed via singular value de-
composition (SVD): SVDCORR = USV’. This decomposition produces a left singular vector of
behavioral weights (U), a right singular vector of SDBOLD weights (V), and a diagonal matrix of
singular values (S). In other words, this analysis produces orthogonal latent variables (LVs)
that optimally represent relations between behavior and SDBOLD in grey matter voxels. Each
LV contains a spatial pattern depicting the brain regions where the SDBOLD shows the strongest
relation to behavior. Each brain weight (in V) is proportional to the correlation between behav-
ior and SDBOLD in all of the tracts. To obtain a summary measure of each participant’s expres-
sion of a particular LV pattern, we calculated within-person “brain scores” by multiplying each
voxel (i)’s weight (V) from each LV (j) produced from the SVD in equation (1) by the SDBOLD

value in that voxel for person (k), and summing over all (n) brain voxels:
Pn

i ¼ 1

VijSD ik. Thus,

in a single measure, a brain score indicates the degree to which a subject expresses the multivar-
iate spatial pattern captured by a given behavior-driven latent variable. Significance of detected
relations between multivariate spatial patterns and cognitive performance was assessed using
1000 permutation tests of the singular value corresponding to each LV. A subsequent
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bootstrapping procedure revealed the robustness of voxel saliences across 1000 bootstrapped
resamples of our data [44]. By dividing each voxel’s mean salience by its bootstrapped standard
error, we obtained “bootstrap ratios” as normalized estimates of robustness. We thresholded
bootstrap ratios at a value of� 3.00, which approximates a 99% confidence interval and corre-
sponds to p-value of<.001.

DTI analysis
DTI allows inferences about WMmicrostructure in vivo by quantifying the magnitude and di-
rectionality of diffusion of water within a tissue [45]. Visual checks were performed on every
volume of the raw data of every participant by AZB. Sixty-six participants had good quality
DTI data. In one dataset, one volume with the corresponding b-vectors and b-values was delet-
ed from the dataset before processing due to artifact. Next, DTI data were processed using the
FSL Diffusion Toolbox v.3.0 (FDT: http://www.fmrib.ox.ac.uk/fsl) in a standard multistep pro-
cedure, including: (a) motion and eddy current correction of the images and corresponding b-
vectors, (b) removal of the skull and non-brain tissue using the Brain Extraction Tool [32], and
(c) voxel-by-voxel calculation of the diffusion tensors. Using the diffusion tensor information,
FA maps were computed using DTIFit within the FDT. All motion- and eddy-current outputs,
as well as FA images were visually inspected.

We used TBSS [46,47], a toolbox within FSL v5.0.1, to create a representation of main WM
tracts common to all subjects (WM “skeleton”). This included: (a) nonlinear alignment of each
participant’s FA volume to the 1 x 1 x 1 mm3 standard Montreal Neurological Institute
(MNI152) space via the FMRIB58_FA template using the FMRIB’s Nonlinear Registration
Tool (FNIRT, [48]; http://www.doc.ic.ac.uk/~dr/software), (b) calculation of the mean of all
aligned FA images, (c) creation of the WM “skeleton” by perpendicular non-maximum-sup-
pression of the mean FA image and setting the FA threshold to 0.25, and (d) perpendicular
projection of the highest FA value (local center of the tract) onto the skeleton, separately for
each subject. The outputs of all the above processing steps were carefully inspected by AZB.
Given that SDBOLD is a relatively new way to asses brain function and its structural brain corre-
lates are not yet understood, we did not make any regional predictions and used a global FA
measure, obtained by averaging FA over the whole skeleton for each participant.

Post hoc statistical analyses
All statistical analyses were performed using SPSS (v.16, SPSS Inc., Chicago, IL, USA). We used
multiple step-wise linear regressions (with chronological age and gender) to investigate the re-
lationships between brains scores from SDBOLD-cognition and global FA. Two participants
brain scores had outlier values> 2.5 SD and their values were winsorized, which did not
change the results and was used for display purposes.

The demographic data, FA values, behavioral scores, and brain scores are available in S1
Dataset.

Results

Correlations between cognitive performance and SDBOLD

To investigate the relationships between SDBOLD and performance on four main cognitive do-
mains, we first performed principal component analysis (PCA) on 16 tasks from Table 1 to re-
duce their dimensionality. We replicated the findings of the Salthouse studies [17–20] by
obtaining the four expected components of fluid intelligence, perceptual speed, episodic mem-
ory, and vocabulary (Table 1). Only speed (r = -.33 p = .002) and memory (r = -31, p = .003)
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components were negatively related to age, whereas fluid abilities (r = -.18 p = .098) and vocab-
ulary (r = .11 p = .320) were not.

Next, to identify multivariate across-subject patterns of relations between SDBOLD at rest in
the entire GM and the scores from the four cognitive components we performed behavioral
PLS analysis. Importantly, previous studies related SDBOLD within spliced fixation periods in
blocked fMRI series to performance on task [13,14], while the current study is the first applica-
tion of resting state data in investigating behaviorally relevant SDBOLD. The behavioral PLS
analysis begins with the correlation matrix between the individual scores on the four cognitive
components and each voxel’s SDBOLD; correlations are calculated across subjects. Then, this
matrix is decomposed via singular value decomposition. This decomposition produces orthog-
onal latent variables (LVs) that optimally represent relations between SDBOLD in GM voxels
and cognitive performance. Each LV contains a spatial pattern depicting the brain regions
where the activity shows the strongest relation to performance. In this analysis, because we ex-
amined the association with four cognitive components, four outcome latent variables (LV)
were possible. We predicted that if there are domain-specific patterns of optimal SDBOLD, then
multiple LVs may be significant, each representing an association between a different cognitive
construct and BOLD variability. Alternatively, if SDBOLD is a more general feature common to
different cognitive functions, there should be one LV representing the brain-
performance relationship.

Our results supported the latter hypothesis: the PLS multivariate analysis yielded one signif-
icant latent variable (permuted p = 0.023, 59.46% cross-block covariance explained by this LV),
suggesting that, overall, higher SDBOLD was related to better performance on fluid and memory
constructs and lower performance on vocabulary. This relationship was reversed in only two
small clusters (Fig. 1A). The same analysis with additional controlling for the global signal (i.e.
centering the mean across the volumes) yielded the same spatial pattern, where higher SDBOLD

was related to better performance on fluid and memory constructs (permuted p = 0.007,
60.41% cross-block covariance explained by this LV).

If the PLS model was run with vocabulary only (1 LV possible), only the clusters in temporal
fusiform and cerebellum were above p<. 001 threshold, but the overall model was not signifi-
cant. This suggests that the red-yellow cluster shown in Fig. 1A is attributable to the relation-
ship with vocabulary. Similarly, a model with 4 cognitive constructs and additionally
chronological age (5 LVs possible) explained only ca. 3% more of cross-block covariance than
the four construct model from Fig. 1, and showed the same spatial pattern. This suggests that
age is not driving the function-performance result from Fig. 1A. In this model age was positive-
ly related to vocabulary performance, but inversely to memory and fluid abilities, and SDBOLD.

Perceptual speed did not significantly contribute to the observed performance–SDBOLD cor-
relation pattern, although there was a trend towards greater perceptual speed being related to
lesser SDBOLD. Peak voxels’ location and bootstrap ratios are reported in Table 2.

WM integrity predicts function-cognition relations independent of age
Next, we investigated whether the observed associations between memory and fluid perfor-
mance and SDBOLD are related to the integrity of structural connections in the brain. To exam-
ine this hypothesis, we first obtained a summary measure of each participant’s expression of
the significant LV pattern by calculating “brain scores”. This involved multiplying each voxel’s
weights from the significant LV by the SDBOLD in that voxel for each person, and summing it
over all brain voxels. Thus, in a single measure, a brain score indicates the degree to which a
subject expresses the multivariate spatial pattern of performance–SDBOLD associations re-
ported in the LV depicted in Fig. 1 (see Methods for more details on brains score calculation).
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Specifically, a person with a higher brain score showed better performance on memory and
fluid abilities and greater SDBOLD in the voxels depicted in Fig. 1A.

Finally, we performed a multiple regression analysis with the brain scores as a dependent
variable, age as the first independent variable and global FA (mean FA across the main WM
tracts) as the second independent variable. Note that DTI data was available from only 66 out
of 91. We included age in the model as both global FA (r = -.38 p = .002 n = 66) and brain
scores (r = .21 p = .048, n = 91) were negatively related to age. In addition, memory was nega-
tively related to age (see previous section). Therefore, it was important to test whether the
SDBOLD–performance association is related to WMmicrostructure beyond the effects of chro-
nological age. Indeed, we found that higher FA accounted for a significant amount of variance
in brain scores, in addition to variance related to age (R2 Δ age = 0.041, F c Δ age = 2.77, df = 64/
1, p-value = .101; R2 Δ globalFA = 0.12. F Δ globalFA = 8.7, df = 63/1, p-value = .004). We also note
that global FA was not related to perceptual speed, memory and vocabulary components (p>.
50) and was related to fluid abilities only at a trend level (r = .23 p = .068, n = 66). Together,
our results suggest that global WM integrity is associated with behaviorally relevant variability
in the BOLD signal, beyond the effects of age.

We run an additional PLS model including age, four behavioral scores, and global FA
(n = 66). It yielded one LV (p = .005, cross block covariance explained of 63%), where greater

Fig 1. Multivariate relationships between cognitive performance and SDBOLD. A: PLS spatial pattern. Blue regions indicate greater and yellow/red
regions indicate lesser SDBOLD with better performance on fluid and memory, and worse performance on vocabulary. Significant regions: bootstrap ratio>
±3. M1: primary motor, PMC: premotor cortex, MFG: middle frontal gyrus, SFG: superior frontal gyrus, SMA: supplementary motor area, PCC: posterior
cingulate gyrus, PCUN: precuneus, ACC: anterior cingulate cortex, PCC: posterior parietal cortex, SMG: supramarginal gyrus, INS: insula, OCCIP: occipital
cortex, STG: superior temporal gyrus, TP: temporal pole, MTG: middle temporal gyrus, MTL: medial temporal lobe, IFG: interior temporal gyrus, TF: temporal
fusiform, CEREB: cerebellum, TH: thalamus,B: Correlation magnitudes (Pearson r) between 4 cognitive constructs and SDBOLD during rest (permuted
p< 0.001, error bars represent bootstrapped 95% confidence intervals). The speed construct did not contribute to the LV as its error bars cross the zero. C:
Scatterplot showing the relationship between global FA (WM integrity) and cognition–SDBOLD relationship.

doi:10.1371/journal.pone.0120315.g001
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Table 2. Significant clusters representing SDBOLD and cognitive performance relationship.

Region MNI coordinates (x, y, z) BSR p-value Cluster size (voxels)

Fusiform/Visual 26, -76, -16 -6.12 0.0000 4313

Posterior parietal 36, -60, 42 -5.80 0.0000 1255

Inferior parietal lobule/SMG -48, -42, 38 -5.63 0.0000 479

Precuneus 6, -60, 44 -5.09 0.0000 842

Lingual/V2 -10, -50, -2 -4.57 0.0000 492

MFG -30, 16, 62 -4.53 0.0000 122

STG -52, -26, -2 -4.46 0.0000 516

Occipital cortex 10, -86, 42 -3.89 0.0001 51

Cingulate (ant/post) 2, -16, 34 -3.86 0.0001 291

Lateral occipital (V4) -46, -80, -18 -3.86 0.0001 20

Superior Thalamus/fornix 4, -16, 18 -3.85 0.0001 46

SFG/SMA 4, 20, 52 -3.83 0.0001 76

Temporal fusiform -20, -56, -12 -3.82 0.0001 59

M1/premotor 14, -26, 70 -3.75 0.0002 46

Lingual/cerebellum -10, -74, -20 -3.73 0.0002 79

SFG/MFG -20, 4, 72 -3.66 0.0002 10

Inferior parietal -34, -74, 32 -3.62 0.0003 14

Temporal lobe 42, -14, -28 -3.60 0.0003 149

Inferior parietal/SMG -50, -22, 26 -3.59 0.0003 128

Superior parietal lobule 32, -38, 40 -3.54 0.0004 12

STG -60, -12, -8 -3.54 0.0004 56

MTG -54, -52, 10 -3.54 0.0004 44

MFG 40, 12, 36 -3.50 0.0005 51

Inferior parietal/SMG 62, -30, 32 -3.49 0.0005 56

Superior parietal/precuneus 14, -42, 62 -3.48 0.0005 30

Insula 40, 12, -12 -3.48 0.0005 34

Superior parietal -12, -64, 60 -3.47 0.0005 21

Superior parietal/precuneus 0.0, -40, 56 -3.45 0.0006 23

Superior Thalamus/fornix 18, -30, 14 -3.44 0.0006 41

Temporal pole 38, 16, -22 -3.43 0.0006 19

MTG 46, -60, 0 -3.43 0.0006 32

Occipital -4, -84, 42 -3.39 0.0007 16

Dentate gyrus -24, -28, -4 -3.34 0.0008 28

Cerebellum 8, -36, -24 -3.34 0.0008 15

Precuneus/Parietal 22, -72, 28 -3.32 0.0009 27

Precuneus 12, -68, 26 -3.17 0.0015 10

Hippocampus cornu ammonis -22, -14, -12 -3.17 0.0015 30

Cuneus/superior parietal -16, -82, 32 -3.16 0.0016 10

Cerebellum -2, -64, -52 3.42 0.0006 14

Temporal fusiform -28, -16, -44 3.41 0.0006 11

All peaks and clusters were determined using a voxel extent �10, minimum distance 10mm, and bootstrap ratio (BSR) � 3.00. MNI, Montreal

Neurological Institute (mm).

doi:10.1371/journal.pone.0120315.t002
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FA and younger age was related to greater SDBOLD. Global FA contributed most to the relation-
ship (r>0.4), and age to a lesser degree (r>0.2). Greater fluid intelligence and memory were
also related to greater SD BOLD, but their contribution to the model was not significant (while
vocabulary and processing speed showed a negative non-significant association). This result
confirms that WM integrity is related to SDBOLD, that brain structure-function relationship
may be stronger than brain-performance associations, and this issue should be further investi-
gated (see Discussion). We highlight, however, that the purpose of this article was to investigate
the structural WM correlates of behaviorally relevant SDBOLD only.

Discussion
We investigated the associations between resting SDBOLD and performance on four distinct
cognitive constructs in healthy older adults with a whole-brain, multivariate approach. We
demonstrated that 1) better fluid abilities and memory was linked to greater SDBOLD in multi-
ple regions including precuneus, insula, temporal, parietal, and prefrontal regions, and cingu-
late, and 2) behaviorally relevant SDBOLD pattern was shared by fluid abilities and memory.
Moreover, inter-individual differences in these SDBOLD-cognition relationships were related to
the global WM integrity, above and beyond the effects of chronological age.

Association of SDBOLD with performance differs by cognitive domain
A previous study reported that greater SDBOLD in healthy adults was associated with younger
age, faster, and more consistent response times (RT) across three levels of a perceptual match-
to-sample task (immediate comparison, cued short-delay comparison, and delayed compari-
son; [14]). Our results provide further evidence for greater SDBOLD being related to better per-
formance in aging. Specifically, we showed that the cognitive constructs requiring adaptive and
flexible processing–fluid abilities and memory–were driving this positive SDBOLD–performance
association. For example, tasks defining the fluid abilities require abstract reasoning and prob-
lem solving that enable optimal adaptation to a changing and complex environment [49]. Simi-
larly, episodic memory involves association formation and binding, as well as flexible and
context-dependent retrieval. As a result, both fluid abilities and memory should benefit from
greater dynamic range and the ability to explore different network states at the neuronal level
[4,12,50].

On the contrary, the vocabulary construct representing semantic knowledge requires robust
retrieval of information from long-term memory that was acquired, stored, and reinforced
over years. Thus, vocabulary knowledge operates on “hard-wired”, automatic and repetitive re-
sponses and therefore may benefit from less SDBOLD at the neural level. As an additional behav-
ioral PLS analysis with only vocabulary construct did not yield a significant LV, this result
relating lower SDBOLD to better vocabulary performance should be treated as preliminary and
further investigated with more cognitive tasks defining this domain.

The dissociation of SDBOLD–performance relationship between the cognitive domains par-
allels their differential sensitivity to age. Namely, advanced age is related to decline in fluid abil-
ities, memory and speed, with relative sparing of vocabulary knowledge [51,52]. The regions
where we observed an association of SDBOLD with fluid abilities and memory (visual cortex,
temporal pole, insula, cingulate, parietal cortex, lateral frontal regions) overlap with regions
showing decreased SDBOLD in older compared to younger adults [13]. Therefore, we speculate
that SDBOLD might be one of the neural correlates underlying the discrepancy of age-related ef-
fects on the four main cognitive domains. Further exploration of this claim should be done by
extending analyses to samples with broader age range.
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Behaviorally relevant SD BOLDmay support integration of brain
networks
Many regions where we observed a positive association of SDBOLD with fluid abilities and
memory have been defined as degree-based hubs, “rich club” regions, or connector hubs in
structural and functional network analyses: posterior cingulate cortex, superior frontal, parietal
and insular cortex, as well as inferior temporal and fusiform cortex [22,53–55]. Brain “hubs”
are regions with high connectivity degree in a given neural community [23,55,56], while “rich-
club” regions are the high-degree hubs that tend to connect to each other [57]. Of particular
relevance to our findings are the connector hubs: regions highly connected primarily to distinct
brain networks [58–60]. Such connector hubs are localized to the insula, parietal, premotor, lat-
eral occipital, and dorsal superior frontal cortex [60], where we also observed higher SDBOLD in
better performing older adults. Connector hubs integrate functionally segregated domains with
possibly very distinct processing or oscillatory properties. We therefore suggest that the hub’s
high connectivity with multiple brain functional networks requires or results in the higher mo-
ment-to-moment variability in neural function, which should be reflected by greater SDBOLD.
Importantly, we predict that such SDBOLD related to a region’s cross-talk between different
neural networks should be driven by high variability in signal frequency and not only by vari-
ability as a result of high amplitude signal with a constant frequency. Clearly, our results need
to be followed by a direct comparison of SDBOLD patterns with functional connectivity network
properties, time-frequency analyses to tease apart time-constant SDBOLD from time-varying
SDBOLD, as well as changes in SDBOLD and power-law exponents in fMRI signal between rest
and task states [61,62], and their significance for cognitive performance in aging.

Despite careful removal of physiological noise with ICA, we acknowledge that some of
SDBOLD regions, such as posterior cingulate, occipital cortex and regions near large vessels
such as temporal pole and regions along the brain midline, may partly overlap with respiratory
or cardiac-related fluctuations [63,64]. High static cerebral blood flow (CBF) and high ampli-
tude of low-frequency fluctuations in CBF at rest in regions such as posterior cingulate cortex
and insula, however, suggest that spontaneous fluctuations of fMRI signal in these regions are
neuronally-driven rather than of vasomotor origin [65].

Finally, we note that our analysis yielded one model for memory and fluid abilities instead
of two LVs specific for each cognitive construct. This further supports the possibility that the
hub-related pattern of greater SDBOLD represents a common rather than a domain-specific
neural feature. In other words, our findings suggest that preserving high SDBOLD in regions as-
sociated with intra- and inter-network communication is linked with better performance on a
set of cognitive tasks requiring flexible neural processing. We speculate that hub regions that
show greater SDBOLD during spontaneous brain activity at rest would also have the capacity for
increased neural processing complexity during cognitive tasks (e.g. memory and reasoning)
[5,62]. Longitudinal designs and broader age ranges should help to tease apart age-related from
individual differences in SDBOLD.

White matter as a scaffold for behaviorally relevant SDBOLD

Our study provided the first evidence for an association between whole-brain behaviorally rele-
vant variability in the BOLD signal and WM integrity. Therefore, our study further extends
previous reports on a positive relationship between WM integrity and task-related changes in
BOLD signal [27,66], and structure-function brain network properties [54,67,68]. We propose
that poor WM integrity, most likely due to age-related changes in myelination, precludes fast
and reliable signal transduction. Consequently, optimal interaction between brain hubs within
or between brain networks becomes impaired [69,70]. For instance, some signals may be “lost”
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in between the GM regions, others may not arrive in a timely fashion to be optimally integrated
in the neural processes [27,71], or the resting kinetic energy of the system may not be sufficient
to adjust to externally driven cognitive challenges [5,62]. This may result in reduced processing
complexity that could be detected as reduced SDBOLD at rest and during task, for instance, dur-
ing the creation of mnemonic representations or updating information during mental rotation.

Our result that older adults with greater FA in all major WM tracts had greater SDBOLD and
better performance on memory and fluid abilities converges with previous reports on relation-
ships between diffusivity properties and fluid intelligence defined by reasoning abilities, cogni-
tive flexibility, episodic memory, and processing speed in older adults [25,72–75]; for a review
see also [76]. Although we observed only a trend relationship between WM integrity and fluid
abilities, this lack of strong diffusion-cognition association may be because our participants
represented a relatively narrow age range and being relatively high functioning, healthy older
adults (all qualified for the MRI, aerobic capacity test and an exercise intervention), which may
limit the variability in the FA and behavioral measures.

Together, our data suggests that magnitude and spatial pattern of SDBOLD that is linked to
high cognitive performance–and therefore represents optimal complexity of neural process-
ing–relies on the integrity of structural brain connectivity via WM in the healthy aging brain.
Our findings lay foundation for future investigations addressing more specific questions about
structural correlates of SDBOLD. One direction will be to define the regional (both GM and
WM) specificity of WM- SDBOLD associations in aging and across lifespan. Another important
issue that needs to be addressed is the role of cortical atrophy and the related partial volume ef-
fect in estimating SDBOLD in aging population, and the possible mediating role of GM volume
on the SDBOLD–cognition associations.

Conclusions
We found that greater SDBOLD in multiple brain regions, most of which have been identified as
inter- or intra-network connecting hubs, was linked to better fluid abilities and memory. This
suggests that optimal dynamic range of neural processing in hub regions may support cognitive
operations that specifically rely on moment-to-moment processing adaptability and flexibility.
Moreover, we showed that this behaviorally relevant SDBOLD is supported by global WM integ-
rity. We conclude that SDBOLD is a promising functional neural correlate of individual differ-
ences in cognition in healthy older adults.
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