
Applying Machine Learning to Facilitate Autism Diagnostics: 
Pitfalls and promises

Daniel Bone1, Matthew S. Goodwin2,3, Matthew P. Black4, Chi-Chun Lee5, Kartik 
Audhkhasi1, and Shrikanth Narayanan1

1Signal Analysis & Interpretation Laboratory (SAIL), University of Southern California, 3710 
McClintock Ave., Los Angeles, CA 90089, USA

2Department of Health Sciences, Northeastern University, 336 Huntington Ave., Boston, MA 
02115, USA

3College of Health Science & College of Computer and Information Science, Boston, MA, USA

4Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del 
Rey, CA 90292, USA

5Department of Electrical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu 
Road, Hsinchu, 30013, Taiwan

Abstract

Machine learning has immense potential to enhance diagnostic and intervention research in the 

behavioral sciences, and may be especially useful in investigations involving the highly prevalent 

and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in 

the absence of clinical domain expertise can be tenuous and lead to misinformed conclusions. To 

illustrate this concern, the current paper critically evaluates and attempts to reproduce results from 

two studies (Wall et al., 2012a; Wall et al., 2012b) that claim to drastically reduce time to 

diagnose autism using machine learning. Our failure to generate comparable findings to those 

reported by Wall and colleagues using larger and more balanced data underscores several 

conceptual and methodological problems associated with these studies. We conclude with 

proposed best-practices when using machine learning in autism research, and highlight some 

especially promising areas for collaborative work at the intersection of computational and 

behavioral science.
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The landscape of psychological and psychiatric research is increasingly interdisciplinary, 

where novel insights often stem from diverse expertise. The integrative study of autism 

spectrum disorder (ASD) represents an exemplar for translational research of a psychiatric 

disorder (Amaral et al., 2011). Theoretical and empirical contributions from clinical, 

genetic, neuroscientific, and animal studies have the potential to not only elucidate the 

causes of ASD, but also to identify mechanisms for early diagnosis and individualized 

interventions (Dawson et al., 2002; Levitt & Campbell, 2009).

In recent years, advanced computational and engineering methodologies have been 

employed to meet the needs of cross-disciplinary applications in psychology and psychiatry. 

For example, machine learning methods have demonstrated success in areas such as 

bioinformatics (Baldi, 2001), affective computing (Picard, 2000), behavioral informatics 

(Black et al., 2013; Narayanan & Georgiou 2013), and medical diagnosis (Wei et al., 2005). 

Machine learning – which builds upon sophisticated mathematical learning, statistical 

estimation, and information theories – is of particular interest to researchers as a generally 

applicable computational framework for automatically discovering useful patterns in large 

amounts of data. A learned data representation can, for instance, provide insights into the 

processes that generated the data, help visualize data to assist humans in clinical decision 

making, and predict a target variable from a set of input features (i.e., classification). Given 

these appealing affordances, it is not surprising that the use of computational and 

engineering methodologies is rapidly evolving in the study of neurocognitive disorders 

(Bone et al., 2014; Chaspari et al., 2013; Hu & Steinberg, 2009; Ye et al., 2012).

One apparent utility of machine learning in autism research is to create an efficient and 

robust diagnostic algorithm based on human coded behaviors from diagnostic instruments 

such as the Autism Diagnostic Interview-Revised (ADI-R; Lord et al., 1994) and the Autism 

Diagnostic Observation Schedule (ADOS; Gotham et al, 2007; Lord et al., 2000). A certain 

degree of hand-construction by experts (supported by rigorous statistical analysis) is 

involved in creating these diagnostic instruments, so it is reasonable to believe that objective 

machine learning methods may provide more reliable performance and/or increased 

efficiency by reducing redundancy within an instrument. More rapid diagnostic procedures 

could facilitate acquisition of the very large cohorts (over 10,000 subjects; Abrahams & 

Geschwind, 2010) needed to reliably uncover the complex neurogenic etiology of ASD. 

Researchers have sought rapid categorical assessments of ASD (Constantino et al., 2007; 

Lee et al., 2010), although often at the cost of reduced sensitivity/specificity, or population 

sampling biased towards more severely impacted individuals. Machine learning seems a 

viable option for accelerating these diagnostic efforts by identifying essential nosological 

components, eliminating redundancy but maintaining accuracy. However, as we will discuss 

and demonstrate empirically in this paper, the task is not as simple as it may initially appear.
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While powerful, machine learning is prone to misinterpretation, especially when utilized in 

interdisciplinary studies (not unlike other statistical techniques). The application of 

engineering methods and interpretation of the results they generate requires a thorough 

understanding of both computational and clinical content domains. It is essential that a 

computational researcher consider the sources and properties of the data when applying 

machine learning techniques; the manner in which data were elicited/collected and what 

purposes they are intended to serve are of paramount importance to ensure that interpretation 

of results are accurate, unbiased, and not overstated. Focusing solely on data processing, but 

ignoring context, can produce misleading results and conclusions. Conversely, the 

application of computational methods by researchers outside machine learning communities 

can be a precarious situation because there are numerous ways to misuse algorithms and 

misjudge their results1. As such, it is crucial that computational and behavioral researchers 

collaborate in these endeavors, with each community learning as much as possible about the 

other’s domain to relay best practices, provide context, and assist in interpreting results. This 

approach to inquiry is especially vital in an area with such profound impact and public 

health significance as mental health disorders research; if an algorithm is widely purported 

to improve diagnostics or aid intervention, the claim comes with tremendous social 

ramifications and responsibility.

The current paper identifies several subtle but important pitfalls when incorporating machine 

learning techniques in autism diagnostics, leading to proposed best-practices for future 

applications of machine learning in autism research. The impetus for this contribution stems 

from two published autism studies which sought to use machine learning techniques for very 

rapid (several minutes) assessment of ASD using the ADOS (Wall et al., 2012a) and the 

ADI-R (Wall et al., 2012b). In addition to critically evaluating these experimental 

contributions, we attempt to reproduce the findings of Wall and colleagues using a larger, 

more balanced corpus of ADOS and ADI-R data, while accounting for potential sources of 

error that we will argue, if not addressed, produce misleading and non-replicable results. We 

also recommend a classification performance metric called unweighted average recall that is 

better suited for data with unbalanced classes than the more commonly used measure of 

performance, accuracy. Finally, we close by briefly outlining applications of machine 

learning and signal processing that hold promise to advance our understanding of autism 

diagnosis and intervention research.

Wall et al. (2012a) Experiments and Critique

The experiments of Wall et al. (2012a) claim to shorten the observation-based coding of the 

ADOS in an effort to provide more time-efficient diagnoses while maintaining validity. Our 

critical analysis of this study begins with a brief overview of the ADOS instrument, 

followed by a description of the data used, their experimental claims, and our critique citing 

conceptual and methodological issues in the approach.2

1For instance, model over-fitting can occur when training data is included in testing sets, which can inflate confidence in a result that 
is not likely to replicate in independent samples. Cross-validation is a common solution.
2The work of Wall et al. (2012a) has been extended in Duda et al. (2014). While some methodological issues are resolved, primary 
conceptual issues remain.
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Autism Diagnostic Observation Schedule

The ADOS is a widely used, standardized assessment for diagnosing ASD that consists of 

30–45 minutes of semi-structured interaction with a trained administrator to elicit and code 

behaviors relating to social interaction, communication, play, and imaginative use of 

materials (Lord et al., 2000). The ADOS consists of four distinct Modules that vary 

depending on an individual’s age and verbal abilities. We focus on Module 1 in this paper, 

as that was the module used in the Wall et al. (2012a) study under examination. It is 

designed for pre-verbal children and thus is most often used for early, initial ASD diagnosis. 

Module 1 incorporates 29 behavioral codes and 10 subtasks/activities. The ADOS 

algorithms were designed in an effort to map standardized behavioral observations to an 

ASD diagnosis. Creators of the instrument judiciously fused their collective and extensive 

clinical knowledge, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 

(DSM-IV; American Psychiatric Association, 2000) criteria, and statistical analytics to 

handcraft the algorithm (Figure 1). The resulting algorithm was tested against best-estimate 

clinical (BEC) diagnosis that takes into consideration all the previously mentioned sources 

of information. The algorithm begins with 29 ADOS codes scored on varying integer scales 

from 0–3, with scores of 7 or 8 reserved for behaviors not assessable during test 

administration. As a pre-processing step, scores of 3 are mapped to 2, and all scores of 7 and 

8 are mapped to 0 (i.e., non-score-able) for validity and reliability purposes (Lord et al., 

2000). Next, the most relevant and reliable codes indicative of a BEC ASD diagnosis are 

selected. Of the 29 Module 1 codes, 12 are utilized in the original algorithm (Lord et al., 

2000) and 14 in the revised algorithms (Gotham et al., 2007). The revised algorithms3 select 

separate sets of 14 codes depending on the verbal proficiency of the child. The remaining 

steps of the ADOS algorithm are comprised of summation and thresholding to classify 

differences between diagnostic groups. Specifically, all modified scores from the 14 selected 

codes are summed to create a combined Social Affect and Restricted, Repetitive Behavior 

Total (SA+RRB). Finally, the SA+RRB Total is used to classify three groups using two sets 

of thresholds. The three ADOS diagnostic groups are: Autism, Autism Spectrum, and Non-

Spectrum (or Below Cutoffs).

ADOS Data used in Wall et al. (2012a)

The training data used in Wall et al. (2012a) consisted primarily4 of ADOS Module 1 

administrations from the Autism Genetics Resource Exchange (AGRE; Geschwind et al., 

2001) database. The AGRE data (at that time, download meta-data unknown) contained 612 

Autism subjects (M = 6.6 yr., SD = 4.1 yr.) and 11 Non-spectrum subjects (M= 4.6 yr., SD = 

3.9 yr.); the central Autism Spectrum class contained in the ADOS was omitted. These 

numbers are post exclusion-criteria; in particular, test administrations missing 50% or more 

of ADOS scores and subjects not in the age range of 2–17 years were excluded.

Critical analysis of Wall et al. (2012a) ADOS experiments

Wall et al. (2012a) sought to shorten the ADOS by using machine learning techniques to 

automatically identify an ADOS diagnosis (outcome) using the fewest number of human 

3Analyses we conducted in this paper use these revised ADOS algorithms.
4Apart from 4 Non-Spectrum subjects from the Boston Autism Consortium database.
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expert-derived ADOS codes (features). The experimental setup is illustrated in Figure 2. 

From a systems’ point-of-view, this approach is an attempt at dimensionality reduction, one 

of the many plausible goals for computational analysis in ASD. The authors used 16 tree-

based classifiers in the Weka toolkit of machine learning algorithms (Hall et al., 2009) with 

default parameter settings5. They found that two classifiers produced the highest accuracy, 

and thus selected the one that used the fewest number of codes: Alternating-Decision Tree 

(ADTree; Freund & Mason, 1999). Again, they omitted the central ADOS Autism Spectrum 

class due to insufficient sample size and instead conducted the simpler task of separating the 

more severe ADOS Autism cases from the ADOS Non-ASD cases. Eight codes were found 

to produce 100% accuracy in the training set using cross-validation. Testing on the 

remaining data revealed greater than 99.7% recall6 (sensitivity) classifying children with an 

ADOS Autism diagnosis and 94.4% recall (specificity) detecting an ADOS Non-Spectrum 

diagnosis in 1,000 simulated controls (97% unweighted average recall, the mean of 

sensitivity and specificity) – simulated controls were generated by randomly sampling 

scores from ADOS Non-spectrum cases in the training data.

While these classification results appear very promising, they need to be considered 

carefully within the context of how the ADOS was designed in order to be judged reliable 

and valid. As detailed below, the experimental setup of Wall et al. (2012a) suffers from 

several conceptual problems relating to the psychometric design and diagnostic principles of 

the ADOS, and several methodological issues relating to incorrect application of machine 

learning and data set limitations. Collectively, these issues bring into question inferences 

drawn from the results. We address the conceptual issues first, followed by the 

methodological issues.

Conceptual problems of Wall et al. (2012a) study

There are at least four conceptual problems with the study. First and foremost, Wall et al. 

(2012a) assert that a reduced set of ADOS codes – those utilized as inputs to the trained 

ADTree classifier – reduce the time required to determine an autism diagnosis “to minutes.” 

However, the ADOS must be fully administered for reliable and valid ADOS codes to be 

scored. More precisely, when ADOS scores were initially subjected to reliability analyses, 

coders were allowed to score any behavior in any subtask; meaning ADOS coding reliability 

is only established when administering all subtasks. Therefore, the approach by Wall et al. 

(2012a) may reduce ADOS codes, but it does not reduce tasks, i.e., administration time.

Second, in the absence of any established theoretical or empirical support, the authors 

implicitly assume incorrectly that ADOS codes are valid outside the context of a full ADOS 

administration. ADOS codes (input data to the machine learning algorithm) are currently 

only considered reliable and valid when elicited by a trained administrator using 

standardized materials during semi-structured social presses in the ADOS context. One of 

5Proper application of machine learning usually entails optimizing parameter settings for a chosen classifier. The peak performance of 
a classifier for a given dataset cannot be achieved without this step. Since optimizing parameter settings for maximal classification 
performance can lead to over-fitting, an independent test set is required; often a third set called the Development set is used or another 
layer of cross-validation is performed. In our experiments, we use default parameter settings in order to most closely replicate the 
methodology employed by Wall et al. (2012a).
6Recall can be used interchangeably with either sensitivity or specificity, which differ only in naming convention of the “true” class.
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the primary assertions of Wall et al. (2012a) is that their algorithms can enable out-of-clinic 

screening; specifically, in-home (and thus more affordable, they claim) procedures for 

diagnosis. Yet, there is no empirical support that data collected from unstructured 

interactions by non-experts in non-standardized settings is sufficient for valid ADOS scoring 

with their proposed model. Validation of an instrument that operates in this scenario requires 

independent large-scale clinical studies.

Third, as mentioned briefly before, the study disregards the crucial middle ADOS Autism 

spectrum class. Only ADOS Autism (reserved for the most severe social-communicative 

impairments) and Non-spectrum diagnoses were used in classification, neglecting the 

subtlest, more heterogeneous, and most-difficult-to-identify Autism Spectrum diagnostic 

category. One could argue that classifying ADOS diagnosis from ADOS codes is trivial with 

polarized categories. Thus, the algorithm performance reported by Wall et al. (2012a) would 

be expected to drop significantly if this middle category were included, and we evaluate this 

hypothesis in our replication experiments described later in this paper.

Finally, Wall et al. (2012a) predicted ADOS diagnosis rather than BCE. As mentioned 

previously, BCE incorporates other measures in addition to the ADOS to achieve higher 

diagnostic validity, and should be considered the true “gold-standard.” Since the ADOS is 

one component towards a final diagnosis, any inaccuracy predicting ADOS diagnosis 

compounds diagnostic error. A more logical approach for Wall et al. (2012a) would have 

been to classify BCE from ADOS scores directly (thereby creating a new “ADOS 

algorithm”), especially considering their criticism of the “hand-selected” construction of the 

current ADOS algorithms. However, as stated previously, this still would not achieve the 

goal of reducing ADOS administration time.

Methodological problems of Wall et al. (2012a) study

This study also suffers from a variety of methodological issues that raise concerns about the 

reliability and validity of the results obtained. First, the resulting classifier was not validated 

on adequate data. The training data was severely imbalanced, limiting statistical power. The 

validation (test) data they used did not contain any “negative” instances, that is, ADOS Non-

spectrum samples. Thus, the algorithm could not be validated for specificity on independent 

data.

To counter this data limitation, the authors simulated “test” samples using instances from the 

training data – the second methodological problem. Training data were used to learn feature 

distributions, and samples were simulated by randomly sampling scores for each code 

individually. Yet, this synthesized test data is merely a “noisy” version of the training data, 

wherein the test set is not independent.

Third, we feel that Wall et al. (2012a) should have pursued more rigorous evaluation of their 

results. That is, it appears that no effort was made to evaluate the reliability or validity of 

their results aside from peripheral reporting of accuracy on the test data. For instance, the 

reliability of the selected codes and resulting accuracy could have been assessed using data 

sub-sampling (e.g., bootstrapping). Since those analyses were not reported, questions left 

unanswered include: Were different subsets of codes selected within each cross-validation 
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fold? Were the selected eight codes a unique set in achieving the reported performance? 

How robust are the results to variations in parameter settings?

Wall et al. (2012b) Experiments and Critique

Wall et al. (2012b) also claim to reduce time to diagnose autism using machine learning, 

although here they focus on behavioral-based codes from the ADI-R. In presenting our 

critical analysis of this study, the ADI-R is introduced briefly, followed by a description of 

the data used in Wall et al. (2012b), their experimental claims, and our critique, again citing 

conceptual and methodological issues in the approach.

Autism Diagnostic Interview – Revised

The ADI-R is a validated parent-report measure contributing to BCE diagnosis of children 

with autism. The interview is conducted by a trained clinician, contains 93 items, and 

typically takes three hours to complete. The ADI-R focuses on the areas of reciprocal social 

interaction; communication and language; and restricted and repetitive, stereotyped interests 

and behaviors. Questions in the interview provide a high degree of granularity; for example, 

questions in the Reciprocal Social Interaction category query specific social cues such as 

inappropriate facial expressions, use of other people’s bodies to communicate, and 

appropriateness of social response. Each ADI-R question is asked twice, once about current 

behavior, and once about either “most abnormal 4 to 5 years” or “ever”; the algorithm uses 

the latter two time periods.

The ADI-R has an associated algorithm that generates subtotal scores tapping its respective 

content areas; wherein each subtotal has a threshold that must be met for a diagnosis of 

Autism (much like the ADOS). If any cutoff is not met, the subject is diagnosed as Non-

Autism. Items are given integer scores in the range 0–3, where a 0 indicates the behavior was 

not currently present, and a 3 indicates “extreme severity” of the coded behavior. There are 

also scores of 7–9 indicating non-score-able items. As with the ADOS, scores of 3 are 

mapped to 2, and scores of 7–9 are mapped to 0 before summation. In addition to meeting 

all subtotal thresholds, onset of the disorder must have been evident by 36 months of age. 

Separate cutoff scores exist for verbal and non-verbal subjects.

ADI-R data used in Wall et al. (2012b)

The AGRE ADI-R data was exclusively used for training in Wall et al. (2012b), however, 

the authors made a key decision to use the “Affected Status” diagnosis from AGRE rather 

than an ADI-R diagnosis. The ADI-R does not have validated algorithms for the broad 

autism spectrum, and thus only contains Autism and Non-Autism diagnoses. The “Affected 

Status” diagnosis (AGRE Pedigree Algorithms, 2013) is meant to categorize subjects based 

solely on the ADI-R, although these are not diagnoses “per se”; additional categories are Not 

Quite Autism (NQA) and Broad Spectrum (BS). AGRE states that NQA represents 

individuals who narrowly missed reaching ADI-R Autism criteria, and BS defines 

individuals who “show patterns of impairment along the spectrum of pervasive 

developmental disorders.” An additional class, Not-Met (NM), is reserved for individuals 

who do not meet any of the potential cutoffs for spectrum behavior. Affected Status 
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diagnoses of NQA, BS, and NM compose the ADI-R Non-Autism category. The data 

distribution according to Affected Status diagnosis was: 891 Autism subjects (M= 8.1 yr., SD 

= 4.4 yr.) and 75 Not-Met subjects (M = 9.2 yr., SD = 5.5 yr.).

Critical analysis of Wall et al. (2012b) ADI-R experiments

This study sought to shorten the ADI-R diagnostic instrument through classification with 

ADI-R items, wherein the selected classifier ideally learns a sparse transformation (using a 

reduced set of items) from the ADI-R items to the ADI-R diagnosis (Autism vs. Non-Autism) 

– or more exactly, “Affected Status” diagnoses of Autism vs. Not-Met. This experimental 

setup parallels that of Wall et al. (2012a) that used the ADOS, with one major distinction: 

certain ADI-R items are independently score-able, and thus administration may be reducible, 

a point we will return to at the end of our critique.

Wall et al. (2012b) used the AGRE dataset, which consists primarily of children on the 

autism spectrum. Although the ADI-R diagnosis contains two categories, the authors used 

AGRE’s “Affected Status.” Again, Affected Status is a 4-category decision based on the 

ADI-R, created as an ancillary severity measure for the AGRE corpus. Affected Status 

divides ADI-R Non-Autism diagnosis into three sub-categories. Wall et al. (2012b) chose to 

exclude the two middle severity categories (NQA and BS) – thus, like Wall et al. (2012a), 

comparing only the least and most severe cases. The authors used 15 tree-based classifiers in 

the Weka toolkit (Hall et al., 2009), finding the ADTree to perform best. They found that 

only seven items were needed for a classifier to produce 100% recall (sensitivity) classifying 

children with Autism, 98.7% recall (specificity) in detecting Not-Met cases, and 99.9% 

accuracy (there were more Autism instances). The algorithm was tested on two other 

databases (Simons Simplex Collection and Boston Autism Consortium) that had a combined 

1,976 Autism instances and 17 Not-Met instances, resulting in high sensitivity (99.7%) but 

low specificity (53%). Specifically, Wall et al. (2012b) reported that when classifying 17 

ADI-R Non-Autism test subjects, 8 were incorrect (i.e., they also received ADOS Autism 

Spectrum diagnoses). While the reported results may seem impressive, similar conceptual 

and methodological issues present in Wall et al. (2012a) exist in this study that bring into 

question the validity and reliability of the associated claims.

Conceptual problems of Wall et al. (2012b) study

Two primary conceptual issues are present in this study. First, as mentioned before, the 

investigators excluded the important middle-severity class, leaving only subjects with high 

or low severity ASD symptoms according to the ADI-R; thus, classification with ADI-R 

codes becomes much simpler. We believe that inclusion of the middle severity categories 

will severely and negatively impact performance of this automated classifier, since those 

classes are the easiest to confuse when estimating diagnoses from ADI-R codes. Second, 

like Wall et al. (2012a), this study predicted ADI-R diagnosis rather than BCE. As 

previously stated, unless the machine learning diagnosis exactly matches ADI-R diagnosis, 

error in classifying ADI-R diagnosis will create further error in final diagnosis (decreasing 

the validity of the ADI-R).
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Methodological problems of Wall et al. (2012b) study

We identified three primary methodological problems with this study. First, the results did 

not demonstrate generalizability between the datasets tested. Out of the 17 Not-Met subjects 

in the test set, only 9 (53%) were identified correctly, which is effectively chance 

performance. Additionally, the authors did not validate the algorithm on adequate data. That 

is, the validation (test) data contained only 17 Not-Met instances, which is less than 1% of 

the entire test data. This number is too small to reliably assess performance. A second 

methodological issue is that of simulating “test” samples using cases from the training data. 

As we asserted for the Wall et al. (2012a) experiment, simulating the minority class (Not-

Met) using the training data does not produce an independent test set, bringing into question 

the validity of the recall reported on the simulated samples.

Third, the authors did not evaluate feature reliability via data subsampling (e.g., 

bootstrapping). Wall et al. (2012b) reported that the ADTree classifier, when training on the 

whole AGRE data, utilized seven items. However, the algorithm could have selected other 

codes in each cross-validation fold. The authors could have shown reliability of those 

reported seven items within their data by presenting (i) the percentage of time the codes 

were selected within subsamples of the data, and/or (ii) accuracy when the algorithm was 

limited to only those seven items in each cross-validation fold. Lastly, returning to the 

previous point about the ADI-R being a good candidate measure for machine learning item 

reduction, it is surprising that Wall et al. (2012b) did not administer the ADI-R with only a 

reduced set of questions and test whether the shorter version produced the same results as 

the full set of questions.

Methods

In addition to highlighting conceptual and methodological concerns across these two studies, 

we conducted, and hence report on, a set of experiments that attempt to reproduce the 

findings of Wall et al. (2012a) and Wall et al. (2012b) using larger and more balanced 

datasets. These experiments provide empirical support for certain assertions in the preceding 

critiques. In the following, we provide details about the experimental data used in our 

experiments and specify better-practice technical approaches for evaluating machine 

learning techniques.

Details of Diagnostic Data Used in Our Experiments

The experiments we conducted used subsets of two corpora containing ADOS and ADI-R 

administration scores. The first corpus is AGRE, similar to Wall et al. (2012a, 2012b); 

however, our subset is larger (984 vs. 623 sessions) since it was downloaded at a later date. 

The second corpus, which we will refer to as Balanced Independent Dataset (BID), is a 

combined research and clinical dataset, part of which was utilized in experiments supporting 

the initial generation of the ADOS and ADI-R algorithms (Gotham et al., 2007; Lord et al., 

2000).

There are two major differences between the corpora we used and those used by Wall et al. 

(2012a, 2012b). First, the AGRE data is much more biased towards ASD subjects than the 
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BID data. That is, there are very few non-ASD samples in the AGRE data, while the BID 

data is better balanced (details below). Since confidence in recall for a class with a small 

number of samples is low, regardless of the overall size of the data set, this more balanced 

dataset is preferable for machine learning experiments. Second, the BID data contains BCE, 

including categories of Typically-Developing (TD), Autism, Non-Autism ASD, and Non-ASD 

Developmental Disorder. BCE diagnosis was used to validate the ADOS and ADI-R 

algorithms, and thus is a useful (and arguably the more valid) target variable for machine 

learning experiments. Conversely, AGRE contains no explicit BCE diagnosis. However, we 

do not present any experiments targeting BCE in this article.

ADOS Data Used in Our Experiments—Our ADOS experiments are conducted 

individually on ADOS Module 1 administrations from AGRE data and BID data (additional 

information is provided in Appendix A1). We downloaded the AGRE data on April 6th, 

2013 and applied the same exclusion criteria as Wall et al. (2012a). Our AGRE subset 

contained 984 subjects: 942 Autism (M = 6.8 yr., SD = 3.1 yr.), 30 Autism Spectrum (M = 

5.6 yr., SD = 3.9 yr.), and 12 Non-Spectrum (M = 4.8 yr., SD = 3.1 yr.). The BID Module 1 

data subset contained 1,033 subjects: 858 Autism (M = 5.2 yr., SD = 3.6 yr.), 73 Autism 

Spectrum (M = 3.9 yr., SD = 2.4 yr.), and 102 Non-Spectrum (M = 3.4 yr., SD = 2.0 yr.). 

Importantly, the BID data is more representative of the minority classes (i.e., the AGRE data 

had only 12 Non-Spectrum subjects compared to 102 in the BID data).

ADI-R Data Used in Our Experiments—Our ADI-R experiments are conducted on the 

AGRE ADI-R data downloaded on April 6th, 2013 as well as the BID ADI-R data 

(additional information is provided in Appendix A2). Our download of the AGRE data 

contained 1,169 subjects: 1,027 Autism (M = 8.9 yr., SD = 3.0 yr.), 19 NQA (M = 10.2 yr., 

SD = 3.0 yr.), 42 BS (M = 9.4 yr., SD = 3.5 yr.), and 81 Not-Met (M = 9.4 yr., SD = 3.1 yr.) – 

thus a total of 142 ADI-R Non-Autism subjects. In our experiments, we combine the latter 

three categories back into the original ADI-R Non-Autism diagnosis for reasons we will 

detail later. The BID data was more balanced, containing 680 subjects in the following 

categories: 462 Autism (M = 9.2 yr., SD = 3.1 yr.) and 218 Non-Autism (M = 9.4 yr., SD = 

2.9 yr.). Following the procedure of Wall et al. (2012b), we exclude certain ADI-R items for 

classification that, for example, were scored more-often-than-not with an exception code or 

had hand-written answers; and we only include subjects in the age range of 5–17 years.

Technical Approach

In the following we describe the classification methodology and performance metrics 

employed in our experiments.

Classification Methodology—The classification experiments in Wall et al. (2012a) and 

Wall et al. (2012b) utilized a number of machine learning techniques7 and found that a 

common tree-based classifier, ADTree, performed best. Therefore, we focus our 

experiments on ADTree to make more direct comparisons between their findings and ours. 

7It is advisable to test multiple algorithmic approaches to achieve optimal accuracy; however, since this increases potential for over-
fitting and consequently inflating results, an independent, held-out dataset is valuable.
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Generally speaking, a classifier takes as input a set of features (e.g., ADOS code scores) and 

learns a mapping to an output (e.g., ADOS diagnosis). The ADTree classifier learns a set of 

rules (decisions based on feature values) from which a prediction is made, but the tree’s 

structure need not incorporate all features (i.e., ADOS code scores) available as input. Since 

the ADTree classifier does not necessarily use all features, it can be considered to perform 

feature selection (or reduction of the feature set). This is the approach used by Wall et al. 

(2012a).

In our experiments, we limit the available input features to the ADTree algorithm. For 

example, Wall et al. (2012a) asserted that only eight codes were needed for replication of the 

ADOS algorithm, so we also limit the ADTree to use only those eight codes as features. 

Since we are performing multiple experiments that were not conducted in Wall et al. 

(2012a), we cannot copy the exact tree structure and feature weights. Further, that tree was 

trained using the entire AGRE dataset, and we are only testing on a portion of that data. As 

such, we re-train the ADTree (building a new tree structure and assigning new feature 

weights) within each training layer of cross-validation (detailed below), but only allow the 

algorithm to select certain features. This retraining framework allows the proposed approach 

a better chance of succeeding since it is being re-configured to the characteristics of a new 

database. We also perform an experiment with the remaining 21 codes. Some readers may 

be concerned that this is an unfair comparison to the proposed eight codes since there are 

more degrees of freedom. However, we argue that this is not a serious concern because: (i) 

we use cross-validation, which is intended to prevent over-fitting; (ii) not all codes in the 

ADOS are equally informative of ADOS diagnosis; and (iii) most importantly, the 

conclusion from Wall et al. (2012a) is that the proposed eight codes can sufficiently explain 

the ADOS, having removed redundant information. Thus, the remaining 21 codes provide 

insight into the information available in the “redundant” code set.

In order to test an algorithm’s classification performance on unseen data, a method known as 

cross-validation (CV; Kohavi, 1995) is used. In k-fold CV, the data is partitioned into k-

subsets. A portion of the data is reserved for testing (prediction) and the remaining data is 

used for training the model. The testing data is alternated (k times) until all data have been 

predicted. Wall et al. (2012a) and Wall et al. (2012b) used 10-fold CV (90% train/10% test), 

so we also used 10-fold CV in our experiments. The major assumption in CV is that the data 

samples used for training and for testing are independent. Thus, we exclude multiple 

evaluations from the same observation (e.g., ADOS administration) in order to reduce 

dependence between data folds.

Classification Performance Metric—Accuracy (percentage correct) is a poor 

performance metric when the distribution of samples among classes is unbalanced since it 

emphasizes the majority class. Take, for example, a classification between two groups, A 

(positive) and B (negative), where Group A accounts for 90% of the data. If a one-rule 

classifier is constructed that always selects the majority class (A), the accuracy becomes 

90%, while the recall of classes A and B become 100% and 0%, respectively. A common 

technique to address this issue is to simultaneously observe measures like sensitivity (e.g., 

Group A recall) and specificity (e.g., class B recall); but a machine learning algorithm can 

optimize sensitivity and specificity simultaneously. In our experiments we use a measure 
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called unweighted average recall (UAR; Schuller et al., 2009), which is the mean of 

sensitivity (recall of positive instances) and specificity (recall of negative instances)8. We 

prefer UAR to accuracy – which was used in Wall et al. (2012a, 2012b) – as a classification 

metric because it equally weights each class regardless of number of subjects that populate 

them, and has become a preferred metric in modern machine learning tasks with unbalanced 

data (Schuller et al., 2009, 2011). Baseline (chance) UAR is 1/N, where N is the number of 

classes. In our pedagogical example above, UAR is only 50%, which is chance performance. 

Appendix A3 contains additional information on statistical testing with UAR for the 

interested reader.

Readers may also be curious why statistical measures such as true positive rate, false 

positive rate, sensitivity, and specificity are not analyzed simultaneously. This is due to 

several factors that jointly support analyzing UAR. First, a machine learning algorithm must 

optimize a single objective function. This means we should optimize for a single metric 

(e.g., UAR or accuracy) or some combination of measures (in the form of a linear or non-

linear equation). Second, analyses should primarily focus on the measure being optimized. 

More specifically, since our experiments effectively optimize UAR, no explicit constraints 

are placed on sensitivity and specificity. An optimal solution with respect to UAR may 

result in unbalanced sensitivity vs. specificity; however, this may be a random realization of 

possible models that achieve this UAR since the algorithm is only concerned with 

optimizing UAR. Therefore, it is not meaningful to perform independent statistical tests on 

other measures when optimizing for UAR. Finally, UAR is a good first indicator of the 

information captured by a modeling approach, wherein further experiments could be 

conducted depending on a researcher’s goals. For example, if a researcher wants to place 

more emphasis on sensitivity than specificity, the objective function can be modified as 

such. Nevertheless, these measures are included (along with additional discussion on their 

suitability for interpretation) in Appendix C.

Results

Our critical analyses of the methods and results reported in Wall et al. (2012a) and Wall et 

al. (2012b) reveal serious conceptual and methodological implementation issues that call 

into question the reliability and validity of their claims. As empirical support for our 

critiques, we performed a set of experiments attempting to classify ASD diagnosis using 

ADOS and ADI-R item scores. In the following, we describe our experiments with the 

ADOS and ADI-R along with results we believe to be more valid.

Our Experimental Results with ADOS Data

The experiments in this section are conducted with ADOS data in order to support our 

critique of Wall et al. (2012a), wherein we replicate those experiments with a larger and 

more balanced dataset.

8Note that sensitivity and specificity only differ in the naming convention of the “true” or “positive” class, and thus the term recall 
applies to any class.
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Replicated experiments with ADOS Data—Based on the results of Wall et al. 

(2012a), we targeted the following question to guide our first experiment: Are the proposed 

eight codes reproducible (i.e., selected) in a larger and more balanced data set that includes 

the Autism Spectrum class? Through performing classification with the ADTree classifier in 

various data subsets, we look at the features (codes) selected by the ADTree classifier. The 

results (presented in Table 1) indicate that the proposed eight codes are not, in fact, unique. 

In particular, even our attempt at replication with the (updated) AGRE data produced very 

distinct results from the proposed eight codes: only 5 of the 9 selected codes in our 

replication (from the full 29) overlap. This finding raises concerns about designing a 

simplified and generalizable instrument based on a smaller set of derived codes. 

Additionally, little overlap was observed when we included the (previously excluded) 

ADOS Autism Spectrum class in the ASD group and when evaluating in the BID data. The 

fact that the selected codes changed considerably with even minor variations in the data 

suggests that there is important information in the remaining 21 codes and that the proposed 

eight codes do not generalize.

To evaluate the information contained in the proposed eight codes more directly, we carried 

out classification experiments with cross-validation as in Wall et al. (2012a). Results are 

displayed in Figure 3. We find classification performance is 87% UAR when attempting 

replication (ADOS Aut/Non-ASD classification in the AGRE data with the ADTree 

classifier, while limiting the feature set to the proposed eight codes), which is low compared 

to the reported 100% accuracy (and thus 100% UAR) by Wall et al. (2012a). Additionally, 

the remaining 21 codes produce 95% UAR, and all 29 codes produce 96% UAR. Pair-wise 

statistical significance is difficult to achieve due to the small size of the ADOS Non-ASD 

class in AGRE and ceiling effects. Since the only difference between these two experiments 

appears to be minor data variation (our AGRE dataset is larger since it was downloaded at a 

later date and we exclude the four Non-Spectrum subjects from the Boston Autism 

Consortium database), these results suggest the findings in Wall et al. (2012a) are not 

reproducible.

Higher statistical confidence is obtained for the following results with the more balanced 

BID dataset. Performance of the proposed eight codes is 94% UAR, while the remaining 21 

and all 29 produce 95% UAR and 99% UAR, respectively. In this case, the performance of 

all 29 codes is significantly higher than the proposed eight codes (p<0.05). Thus, it is clear 

that some independent information exists in the remaining 21 codes and that the proposed 8 

do not robustly produce optimal performance across datasets. These findings point toward 

the power of redundancy in the ADOS coding system. Redundancy is a core design 

component of well-designed, reliable, and valid psychometric instruments, and has allowed 

the ADOS algorithm to be refined since its initial development. Further, the most 

differentiating features vary with developmental age and other behavioral attributes. Given 

the heterogeneous symptomatic display in ASD, these "lessor" features, so to speak, are 

likely needed to fully characterize the spectrum.

Perhaps even more critical is the issue of excluding the central ADOS Autism Spectrum 

class, which we suggest leads to inflated accuracies and is of little value since it does not 

reflect real-world clinical conditions. We validated this claim by examining the performance 
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of this approach when including the more subtle and ambiguous ADOS Autism Spectrum 

samples, joining them with the ADOS Autism samples to form a new ASD group (following 

DSM-V standards). We observe that two-class classification performance drops 

significantly. The pronounced drop when selecting from all 29 codes is 14% UAR (96% to 

82%; p=0.19) in the AGRE data, and 9% UAR (99% to 90%; p<0.01) in the BID data. The 

drop when selecting from the proposed 8 codes in the BID data is 11% UAR (94% to 83%; 

p<0.01). Such large drops confirm that excluding the middle class makes the approach by 

Wall et al. (2012a) a significantly easier task than if it were included. Lastly, in the BID data 

the full 29 code set significantly outperformed the proposed 8 in the ASD/Non-ASD task, 

yielding 90% UAR compared to 83% UAR (p<0.05).

Discussion of our experiments with ADOS Data—Taken together, our results 

indicate that the proposed eight codes do not produce replicable results and do not 

generalize across datasets in terms of code selection or classification performance. It should 

also be noted that given a large enough dataset, only the ADOS algorithm would achieve 

perfect accuracy at this task. Additionally, the critical middle severity class is shown to be 

more confusable, yet it was ignored in Wall et al. (2012a). The best classification 

performance of ASD/Non-ASD classes in BID used all 29 codes and produced 90% UAR. It 

is also noteworthy that, by definition, the ADOS algorithm achieves 100% UAR in this task; 

so a classifier that only achieves 90% UAR compounds diagnostic error. Coupled with the 

fact that clinician administration and family participation time is not actually reduced with 

the approach proposed by Wall et al. (2012a), this error in predicting ADOS diagnosis is 

without any benefit.

Our Experimental Results with ADI-R Data

In this section, we support our critique of Wall et al. (2012b) with experimental evidence 

through replicated experiments. We began this experiment by asking if the proposed seven 

ADI-R codes selected by Wall et al. (2012b) are reliable and optimal (generalizable) in 

terms of the accuracy they produce. Since our ADOS experiments demonstrated that the 

selected codes vary depending on the data used, we forgo those experiments with the ADI-R 

and instead examine classification performance (with UAR) using the ADTree classifier and 

10-fold cross-validation.

As we suggested earlier, excluding more severely affected cases receiving an ADI-R Non-

Autism diagnosis makes this classification problem much simpler. We validate this claim by 

examining performance when those with “Affected Status” classifications of NQA and BS 

are included in the analysis (see Table 2). In our replication experiment we find results 

similar to those reported by Wall et al. (2012b). In particular, using only those seven items 

and classifying with the two extreme categories, we reach 99% UAR in the AGRE data. 

However, we find that classification between “Affected Status” categories of Autism and the 

middle-severity categories of NQA and BS (together denoted B-ASD) leads to much lower 

UAR of 78% (p<0.01). Classification of the ADI-R two-class diagnosis (which includes the 

Not-Met group with the middle-severity categories) produces a significantly lower 89% 

UAR (p<0.01). These findings support our hypothesis that classification without the more-

confusable, central diagnostic categories is much simpler.
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Next we evaluate the predictive power of the proposed seven items versus all items. We 

observe no statistically significant differences in performance between the proposed items 

and the full item-set in the AGRE data (p>0.63). This could indicate that the proposed seven 

items captured much of the variance in the AGRE data (on which they were selected through 

training); however, they may not generalize to other data. When classifying ADI-R 

diagnosis in the BID data, performance is 80% UAR with the proposed seven items, which 

is significantly lower than the 87% UAR when including all items as features (p<0.01). 

Since the proposed seven items were significantly outperformed in this independent dataset 

(including the middle diagnostic categories), our hypothesis that the proposed seven items 

do not generalize is supported.

Discussion of our experiments with ADI Data—Our experiments provide empirical 

support that excluding the middle diagnostic category makes predicting ADI-R-based 

diagnosis from ADI-R codes a trivial task. These experiments also show that the seven 

codes (as inputs to the ADTree classifier) do not produce robust classification performance 

in an independent dataset. These findings highlight major shortcomings of the results and 

corresponding claims found in Wall et al. (2012b).

Discussion

Several lessons can be learned from a critical analysis of the results reported by Wall et al. 

(2012a, 2012b). These studies were a laudable attempt to simplify administration of a 

complex and time-intensive psychological diagnostic instrument using machine learning. 

However, these efforts underscore the importance of accounting for details at both 

conceptual and methodological levels when applying machine learning. The following 

suggestions are offered as general best-practice guidelines for translational studies at the 

intersection of computational science and behavioral science based on our failure to 

reproduce results from Wall et al. (2012a, 2012b) in larger and more balanced data sets.

First, it is essential for computational researchers to understand the underpinnings of the 

target domain they are working in. When engineering methods are developed in isolation 

and are applied in a new domain, there is great potential for errors in interpretation. For 

instance, knowledge about the psychometric design and implementation of the ADOS 

reveals that shortening its administration through reducing the number of codes in the 

algorithm is not a valid or feasible approach. Similarly, emerging machine learning methods 

should not be applied off-the-shelf by scientific and clinical researchers unless they are well-

versed in the underlying assumptions that come with the algorithms. For instance, if a 

researcher does not take care in the manner in which they divide the data for cross-

validation, classification performance can be artificially inflated. More specifically, if the 

same subject appears in both training and testing data, performance can increase 

dramatically due to dependence between samples.

Accounting for the concerns raised in this paper is an opportunity for fruitful education, 

training, and collaboration between clinical and computational researchers. In the age of 

interdisciplinary research, collaborative science needs researchers who have in-depth or at 

least significant working knowledge in multiple domains to both conduct and adequately 
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peer-review reliable and valid science. Specifically, computer scientists working in autism 

should be well versed in the autism literature, and autism researchers using machine learning 

should be confident in their understanding of these methodologies. Cross-fertilization of this 

sort holds great potential for translational possibilities in ASD research.

Limitations

The data used in our experiments is limited because it does not equally represent certain sub-

populations. Specifically, the AGRE data contains few Non-ASD subjects; and the BID data, 

while more balanced, is far more representative of the Autism category. An ideal database 

would contain thousands of samples from all diagnostic categories collected from 

independent clinical groups. Also, we did not test generalizability of performance across 

databases; but given that our assertions were supported within databases, this seemed 

unnecessary at this time.

Conclusions

Computational methodologies, including machine learning, are powerful tools for 

understanding data, but with their immense promise come potential pitfalls. Problem 

formulation and interpretation should be made in concert with researchers who are experts in 

the applied tools. This is a notable issue when conducting interdisciplinary research, where 

the researcher should be knowledgeable about all relevant aspects of a study in addition to 

possessing sufficient computational abilities. Specifically, issues in conceptual problem 

formation, methodological implementation, and interpretation are demonstrated in Wall et 

al. (2012a) and Wall et al. (2012b). In both cases, while the analytics offer tantalizing 

conclusions, we demonstrated empirically using larger and more balanced datasets that the 

authors’ claims of reducing diagnostic times while maintaining accuracy are not 

reproducible.

In the future, we will consider more complex computational methodologies to study 

multiple-annotation, multiple-code, and multiple-instrument fusion, as well as methods for 

longitudinal tracking of coded behavior (Audhkhasi & Narayanan, 2013). We also wish to 

harness advances in Behavioral Signal Processing (BSP) methodologies (e.g., Black et al., 

2013; Bone et al., 2012, 2013, 2014-in-press; Narayanan & Georgiou, 2013) to create 

objective dimensional behavior ratings of autistic symptomatology. BSP pursues methods to 

quantify qualitatively-characterized behavioral constructs based on low-level observed 

behavioral cues, contributing to the emerging broad realm of Computational Behavioral 

Science (CBS; Rehg et al, 2013; Rehg, Rozga, Abowd, & Goodwin, 2014). Unlike the 

application of machine learning to already-coded behavioral data, this approach has the 

potential to augment human knowledge with objective descriptors from time-synchronized 

video, audio, physiological, and physical activity data capture.

Autism nosology, although investigated for 70 years, is at a critical moment in which the 

field requires more detailed characterization of core ASD components (social-

communication, restricted/repetitive behaviors) for clinical reasons (e.g., personalized 

intervention) and neurobiological reasons (i.e., support finding neurobiological etiology). 

Bone et al. Page 16

J Autism Dev Disord. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Researchers will need efficient, reliable, and valid quantitative, dimensional measures that 

can help stratify the disorder (Lord & Jones, 2012). Lai et al. (2013) generated a list of 

desired behavioral specifiers toward identification of subgroups in autism, offering one 

potential direction for bringing computational methods to bear. Collaboration between 

computational and behavioral scientists holds immense potential for advancing knowledge 

of the highly complex condition of ASD, and in so doing underscores the importance of 

conducting research that attains the highest standards of quality, reliability, and validity.
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Appendix A: Additional Methodological Details

A1: Additional Methodological Details for ADOS Module 1 Data 

Experiments

The AGRE and BID ADOS Module 1 data demographics are provided in Table A1 for the 

experiments shown in Table 1 and Figure 3. For the BID data, BCE diagnosis is also 

available, although we do not utilize it in this paper.

Table A

Combined table of demographic information for experiments. Table A1. ADOS Module 1 

data (AGRE and BID) for experiments in Table 1 and Figure 3.* Table A2. ADI-R Data 

(AGRE and BID) for experiments in Table 2.*

A1. ADOS Mod. 1 A2. ADI-R

AGRE BID AGRE BID

# Sessions 984 1033 1169 680

Mean Age (years) 6.76 4.95 9.01 9.24

Stdv. Age (years) 3.11 3.45 3.02 3.01

Fraction Female 0.22 0.23 0.23 0.24

ADOS: Autism 942 858 - -

ADOS: Autism Spectrum 30 73 - -

ADOS: Below Cutoffs 12 102 - -

ADI-R: Autism - - 1027 462

ADI-R: Non-Autism - - 142 218

AffS: Autism - - 1027 -

AffS: Not Quite Autism - - 19 -

AffS: Broad Spectrum - - 42 -

AffS: Not-Met - - 81 -

BCE: Autism - 780 - 362

BCE: Non-Autism ASD - 96 - 146

BCE: Non-ASD DD - 82 - 165

BCE: TD - 22 - 2

BCE: missing - 53 - 5

*
AffS- AGRE “Affected Status”. BCE- best-estimate clinical diagnosis. DD- developmental disorder. TD- typical 

development
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To replicate the Wall et al. (2012a) proposed 8-code selection as in Table 1, Weka’s 

ADTree classifier was used. In this case, the algorithm was allowed to tune itself to the 

given training data, but was limited to making rules using only the proposed 8 codes. Wall 

et al. (2012a) did not specify whether the code scores were first re-mapped as in the ADOS 

algorithm (e.g., 3 is mapped to 2). We chose to re-map because: (i) from the tree-diagram 

provided by Wall et al. (2012a) it appears the codes were re-mapped; and (ii) codes were re-

mapped first in similar experiments by Wall et al. (2012b). Additionally, we noticed the 

selected codes did not match the proposed 8 regardless of code re-mapping or not.

Classification performance of ADOS diagnosis with the ADTree was evaluated (Figure 3). 

10-fold cross-validation was used. Three variations of input feature sets are considered. (i) 

All 29 – all 29 codes are included, as was done in Wall et al. (2012a). (ii) Proposed 8 – only 

the 8 codes proposed in Wall et al. (2012a) are input. (iii) Remaining 21 –the remaining 21 

of 29 codes not in the Proposed 8 are used for classification.

The performance metric is unweighted average recall (UAR), the mean of sensitivity and 

specificity. Many machine learning algorithms optimize for accuracy – also known as 

weighted average recall (WAR), since it is a weighted summation of sensitivity and 

specificity, dependent on the class priors – or an approximation thereof. One option for 

directly optimizing UAR is to balance classes through upsampling or downsampling 

(Rosenberg, 2012). Since the ADOS Autism class was much larger than the ADOS Non-

Spectrum class, the ADOS Autism class can be downsampled or the ADOS Non-Spectrum 

class can be upsampled to optimize for UAR. In our experiments, we chose the latter. 

Upsampling was performed by adding exact copies of samples from the minority class only 

within the training data subset, in order to keep training and testing data independent. While 

other statistical methods exist for upsampling, they rely on certain assumptions about the 

data. For example, when randomly sampling from individual code scores to generate the 

entire set of scores for a simulated instance, it is possible to generate a set of scores that is 

very unlikely or impossible to occur in the real-world. Rather than making such 

assumptions, we upsampled whole observed data instances from the training data.

Class imbalance is also observed for the ADOS ASD (ADOS Autism and ADOS Autism 

Spectrum) versus ADOS Non-Spectrum experiments. The ADOS Autism class has many 

more samples in the AGRE and BID data than the ADOS Autism Spectrum class. In order to 

show a representative effect from the middle, more-subtle ADOS Autism Spectrum class, the 

ADOS Autism class was first randomly downsampled during training to be equal in size to 

the ADOS Autism Spectrum class. Then, the ADOS Non-Spectrum class was upsampled to 

be the same size as the new ADOS ASD class (as was done previously in the Autism/Non-

Spectrum) experiments.

A2: Additional Methodological Details for ADI-R Data Experiments

Data demographics for the ADI-R experiments are provided in Table A2. Code remapping 

was performed as in Wall et al. (2012b); in particular, 3 was mapped to 2, and 7 and 8 were 

mapped to 0 (except for the Onset Age in Hindsight item, which has acceptable values from 

0–6). 10-fold cross-validation was performed. The upsampling and downsampling for ADI-
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R diagnosis experiments mirrors those for ADOS diagnosis experiments described in 

Section A1. In particular, when performing classification with 2-groups, the minority class 

was upsampled. For the case of Affected Status, categories of Not Quite Autism (NQA) and 

Broad Spectrum (BS) were first combined into a Broad-ASD (B-ASD) category; the Affected 

Status category was slightly larger, so it was downsampled to the size of the B-ASD 

category; then, the minority ADI-R Non-Autism (B-ASD + Not-Met) class was upsampled to 

be of equal size to the ADI-R Autism group during training.

A3: Significance Testing for Unweighted Average Recall

UAR is increasingly popular in the machine learning literature for tasks with unbalanced 

data in which the recall of all classes are equally important. However, no established 

technique exists for computing statistical significance. Some researchers have used the 

binomial proportions test, as is done with accuracy, although this is not entirely valid. 

Accuracy is a weighted average of individual class recalls, weighted by the corresponding 

class prior. UAR is an unweighted average of individual recalls. Statistical tests exist for 

accuracy, sensitivity, and specificity; but no established test yet exists for UAR.

We propose using a slightly modified version of the exact binomial proportion test – we use 

the exact test since the data are not always sufficiently large for a normal approximation. 

Since UAR is an unweighted average of individual recalls, it is equally influenced by the 

recall of either class. The recall of a class with very few samples (e.g., 12) can vary much 

more than recall of the majority class (e.g., 942); notably, the machine learning algorithm 

does not typically consider class-size when optimizing for UAR. As such, the minor 

modification we made was to reduce the sample size N from 954 (12 + 942) to something 

smaller – in particular, N_eff (effective N). We set N_eff to twice the size (since there are two 

classes) of the minority class. In our example, N_eff is consequently 24, compared to the 

original N of 954. The negative implication is that some of the statistical power from the 

confidence in recall of the majority class is discarded; but the benefit is that the statistical 

power in the minority-class recall is not grossly exaggerated. Thus, this test is conservative, 

and is less likely to create false-positives.

Appendix B: ADOS Module 1 Behavioral Codes

Table B1

List of the ADOS Module 1 Behavioral Codes

Code Category Code Label Code Title

Communication

A1 Overall Level of Non-echoed Language

A2 Frequency of Vocalization Directed to Others

A3 Intonation of Vocalizations and Verbalizations

A4 Immediate Echolalia

A5 Stereotyped/Idiosyncratic Use of Words or Phrases

A6 Use of Others’ Body to Communicate

A7 Pointing

A8 Gestures
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Code Category Code Label Code Title

Reciprocal Social Interaction

B1 Unusual Eye Contact

B2 Responsive Social Smile

B3 Facial Expressions Directed To Others

B4 Integration of Gaze and Other Behaviors During Social 
Overtures

B5 Shared Enjoyment in Interaction

B6 Response to Name

B7 Requesting

B8 Giving

B9 Showing

B10 Spontaneous Initiation of Joint Attention

B11 Response to Joint Attention

B12 Quality of Social Overtures

Play
C1 Functional Play with Objects

C2 Imagination/Creativity

Stereotyped Behaviors and Restricted 
Interests

D1 Unusual Sensory Interesting in Play Material/Person

D2 Hand and Finger and Other Complex Mannerisms

D3 Self-Injurious Behavior

D4 Unusually Repetitive Interests or Stereotyped Behaviors

Other Abnormal Behaviors

E1 Overactivity

E2 Tantrums, Aggression, Negative or Disruptive Behavior

E3 Anxiety

Appendix C: Additional Performance Measures

Here we present additional performance measures from our classification experiments with 

the following disclaimer: individual results should not be contrasted with metrics other than 

UAR, the mean of sensitivity and specificity, because the machine learning algorithms only 

optimizes for UAR in our experiments, and thus are not concerned with measures like 

sensitivity and specificity individually. That is, an algorithm is only concerned with reaching 

a peak in UAR. The other statistical measures may be viewed as a random realization that 

achieves the observed UAR; thus, comparison of, for example, sensitivity between 

individual results may be inappropriate.

We understand that analysis of each of these measures is standard in diagnostic research. 

However, our experimental results stand primarily as empirical support of certain 

methodological flaws present in the experiments of Wall et al. (2012a, 2012b); as such, we 

compare results using the measure that the machine learning algorithm optimizes, UAR 

(technically it optimizes accuracy, but it effectively optimizes UAR since we balance classes 

during training.) We also note that analyzing true diagnostic validity of this approach would 

be further complicated by the fact that the ADOS has its own diagnostic error.
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The following tables present six measures: unweighted average recall (UAR); sensitivity; 

specificity; positive predictive value (PPV); negative predictive value (NPV); and accuracy. 

Expanded results for the ADOS (c.f., Figure 3) are presented in Table C1, while expanded 

results for the ADI-R (c.f., Table 2) are displayed in Table C2.

Table C1

Results for classifying ADOS categories using ADOS items.*

Data Diagnosis Items UAR Sens. Spec. PPV NPV Acc.

AGRE

Aut/N

All 29 96 99 92 100 65 99

Proposed 8 87 99 75 100 47 99

Remaining 21 95 98 92 100 41 98

ASD/N

All 29 82 88 75 95 56 86

Proposed 8 82 82 83 96 48 82

Remaining 21 83 80 86 96 50 81

BID

Aut/N

All 29 99 99 98 100 93 99

Proposed 8 94 96 91 99 73 96

Remaining 21 95 97 92 99 79 97

ASD/N

All 29 90 90 90 93 86 90

Proposed 8 83 81 84 88 75 82

Remaining 21 87 88 87 91 83 88

*
Diagnoses; Aut – ADOS Autism; ASD – ADOS Autism Spectrum or Autism; N – ADOS Non-Spectrum. Feature sets: All 

29 – all 29 ADOS Module 1 codes. Proposed 8 – only the 8 codes proposed in Wall et al. (2012a); Remaining 21 –uses the 
other 21 of 29 codes only.

Table C2

Results for classifying “Affected Status” and ADI-R categories using ADI-R items.*

Data Items Affected Status UAR Sens. Spec. PPV NPV Acc.

AGRE

All

Aut/N-M 99 100 99 100 99 100

Aut/B-ASD+N-M 88 94 83 98 62 93

Aut/B-ASD 79 90 69 98 29 89

Proposed 7

Aut/N-M 99 100 99 100 94 99

Aut/B-ASD+N-M 89 94 84 98 63 93

Aut/B-ASD 78 88 67 98 25 87

BID
All Aut/B-ASD+N-M 87 84 90 79 92 88

Proposed 7 Aut/B-ASD+N-M 80 68 93 82 86 85

*
Diagnoses; Aut – ADI-R Autism; B-ASD – “Affected Status” categories of Not Quite Autism (NQA) and Broad Spectrum; 

Not-Met (N-M) – “Affected Status” Not-Met category. Note; B-ASD and Not-Met together comprise the ADI-R Non-Autism 
diagnosis.
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Figure 1. 
ADOS revised Module 1 algorithm (Gotham et al., 2007) block-diagram.
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Figure 2. 
Machine learning approach to efficient ADOS diagnosis employed by Wall et al. (2012a).
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Figure 3. 
Replicated experiments with ADOS codes: binary classification performance (UAR; 

(sensitivity + specificity)/2) for various subsets of ADOS codes. Note that the ADOS 

algorithm achieves 100% UAR on this task by definition. Also note that statistical 

significance in the AGRE data requires a relatively large effect size due to the small size of 

the ADOS Non-ASD class. Diagnoses Aut – ADOS Autism; ASD – ADOS Autism Spectrum 

or Autism; N – ADOS Non-Spectrum. Feature sets: All 29 – all 29 ADOS Module 1 codes. 

Proposed 8 – only the 8 codes proposed in Wall et al. (2012a); Remaining 21 –uses the other 

21 of 29 codes only. Significance levels: † (p<0.10); * (p<0.05); and ** (p<0.01).
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Table 2

UAR for classifying “Affected Status” and ADI-R categories using ADI-R items.*

Items Affected Status AGRE BID

All Aut/N-M 99

Aut/B-ASD+N-M 88 87

Aut/B-ASD 79

Proposed 7

Aut/N-M 99

Aut/B-ASD+N-M 89 80

Aut/B-ASD 78

*
Diagnoses: Aut – ADI-R Autism; B-ASD – “Affected Status” categories of Not Quite Autism (NQA) and Broad Spectrum; Not-Met (N-M) – 

“Affected Status” Not-Met category. Note: B-ASD and Not-Met together comprise the ADI-R Non-Autism diagnosis.
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