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Abstract

The generalized Wilcoxon and log-rank tests are commonly used for testing differences between 

two survival distributions. We modify the Wilcoxon test to account for auxiliary information on 

intermediate disease states that subjects may pass through before failure. For a disease with 

multiple states where patients are monitored periodically but exact transition times are unknown 

(e.g. staging in cancer), we first fit a multi-state Markov model to the full data set; when censoring 

precludes the comparison of survival times between two subjects, we use the model to estimate the 

probability that one subject will have survived longer than the other given their censoring times 

and last observed status, and use these probabilities to compute an expected rank for each subject. 

These expected ranks form the basis of our test statistic. Simulations demonstrate that the 

proposed test can improve power over the log-rank and generalized Wilcoxon tests in some 

settings, while maintaining the nominal type 1 error rate. The method is illustrated on an ALS data 

set.
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1. Introduction

In clinical trials that compare treatments on overall survival, some patients are censored due 

to drop-out or the administrative completion of the study. In analyses of survival of patients, 

under the usual independent censoring assumption, patients who are censored at a specific 

time are treated as having the same prognosis as those who are alive and continue in follow-

up. However, there is often information on each patient’s clinical status at the time they are 

censored that could be used to refine these analyses. Many chronic diseases involve a 

complex process by which individuals move through different disease states (progress), and 

by including this “auxiliary” information on censored patients in the analysis of survival, we 

can hope to obtain a more precise treatment comparison. For example, in clinical trials of 
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Amyotrophic Lateral Sclerosis (ALS), we obtain intermediate information on neurological 

function via ALSFRS-R scores, which may be predictive of survival. The goal of this paper 

is to develop a new test to improve power and accuracy in treatment comparisons based on a 

survival endpoint.

There have been several methods developed that utilize auxiliary information in survival 

analysis. In many of these papers, the authors reconstruct overall survival estimates with the 

additional information, and compute test statistics that are based on the new survival 

estimates. Finkelstein and Schoenfeld [1], and Gray [2] propose methods based on a 3-stage 

model with progression as an intermediate stage. Malani [3] incorporates biomarkers into 

the survival estimate by redistributing the weight of censored observations to individuals 

with similar biomarker values at the time of censoring. Murray and Tsiatis [4, 5 ] propose 

weighted Kaplan-Meier estimators to account for fixed or time-dependent covariates and 

propose a test statistic based on that of Pepe and Fleming [6, 7] for comparing the two 

samples. They indicated that their estimate was equivalent to Malani’s for categorical 

markers and that it is also related to the inverse probability of censoring weighted (IPCW) 

survival curve estimate of Robins and Rotnitzky [8]. Mackenzie and Abrahamowicz [9] 

proposed tests based on functionals of any type of Kaplan-Meier estimators, including ones 

that account for longitudinal markers such as the Murray-Tsiatis estimator. Under certain 

conditions their adjusted hazard ratio and log-rank test are equivalent to the IPCW versions 

proposed by Robins and Finkelstein [10]. Hsu et al. [11, 12 , 13 ] use auxiliary variables and 

a multiple imputation approach to estimate the marginal survival function and adjust for 

dependent censoring, and apply the conventional nonparametric two-sample tests to the 

augmented data sets. This method involves reducing the auxiliary variables into two sets of 

risk scores via proportional hazards models, one for event times and one for censored times, 

and utilizing these scores in the imputation scheme. Conlon et al. [14] use time to recurrence 

as an auxiliary variable for survival, and impute missing values due to censoring. Song [15] 

developed a covariate adjusted log-rank test in the recurrent events setting.

While each of these approaches rely on tests constructed from auxiliary variable refined 

estimates of the survival curve, the approach we propose is to develop an extension of 

Efron’s modification for the Gehan-Wilcoxon test [16]. Our test is based on scores for each 

patient, derived from the probabilities that they survived longer than other subjects in the 

study. We use these probabilities to construct what are essentially expected ranks for each 

subject given their observed states and censoring times, and then make inference on the 

ranks. To estimate the probabilities, we propose using a multi-state Markov model. The 

Markov model is chosen for its simplicity and flexibility in modeling different disease 

processes. With it, we can accommodate forward and backward transitions between states 

and estimate transition probabilities even when the exact transition times in to and out of 

each state are unknown (resulting in interval censored data), which is often the case in 

clinical studies as patients are monitored over periodic visits.

We first present our modification of the Gehan-Wilcoxon test, some basic notation, and 

concepts for multi-state models, including how to estimate the probabilities that we need. 

Next, simulation results are presented, illustrating in which settings the method is valid and 

works best. Then we demonstrate the method on an ALS (Lou Gehrig’s disease) data set. 
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Finally, in the discussion we consider the merits and drawbacks of our method, possible 

variations and extensions on the model, and other considerations to be taken when 

implementing it.

2. Methods

2.1. Test Statistic

We are interested in using auxiliary information, the disease state at the censoring time for 

each subject, to improve the efficiency of the Gehan rank statistic used to test for equality of 

two survival distributions [17]. For the Gehan test, if we have two groups of subjects, then 

for every pair of individuals i and j, the test assigns a score uij, where uij = 1 if i clearly 

survived longer than j, uij = 0 if it is unclear who survived longer, and uij = −1 if j outlived i. 

Let Zi be the indicator that subject i is in group 1. The “rank” for individual i is given by Ui 

= Σj uij, and the numerator of this test statistic is Σi ZiUi.

Efron proposed a modification of the Gehan-Wilcoxon test, assigning to pairs of subjects a 

value equal to the probabaility that i outlives j given the follow-up times and censoring 

indicators for both [16]. We note that this modification assigns the same score of +1 or −1 

when survival times can be compared, but for subjects for whom uij = 0 in Gehan’s test, 

Efron’s test could give a non-zero value to the comparison. Efron suggested using Kaplan-

Meier type estimates for the probabilities above, conditional on the censoring times but not 

disease states [16].

We now suggest a further modification of Efron’s test by including auxiliary information 

available at the censoring times. Let Ti and Ci be the survival and censoring times for 

individual i, respectively, let δi = I(Ti < Ci), and Zi the indicator that subject i is in group 1. 

Suppose individuals independently move move among d possible states 1,…,d, where d is 

an absorbing state (e.g. death). Let Si(t) denote the state occupied at time t for subject i. 

Further, suppose we observe the state of individual i at mi times {ti1,…,timi}. For the pair of 

subjects i and j, the statistic we propose assigns the score:

(1)

where P(Ti > Tj|Si(timi), Sj(tjmj),Ci,Cj) denotes the probability of subject i surviving beyond 

subject j conditional on each of their last observed disease states and censoring times. If it is 

known that j fails before i, or i before j, the score uij would be 1 or −1 respectively, as in the 

Gehan test. If it is not known who of i or j lived longer, we must calculate the probability 

given in (1). This is described in the next section. The basis for using probabilities is that 

they give us the expected Wilcoxon scores when we do not have full data (i.e. when there is 

censoring). The expected rank score for individual i is given by , and as in the 

Gehan test the numerator of the statistic is W = Σi ZiUi.

Under the null hypothesis that the treatment has no effect on the transitions between states, 

and the censoring distributions in both groups are equal, the permutation distribution of W 

has mean 0 and variance [18]:
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(2)

2.2. Multi-State Models

Multi-state Markov models give us a simple and flexible way to model the disease state 

process, and estimate the probabilities we need to compute our test statistic. These models 

are well-established and have been used in a variety of medical and epidemiological 

applications, including modeling hospital length of stay [19, 20 ], competing risks of bone 

marrow transplantation [21], estimating risk of death after an intermediate event [22] and 

modeling an epidemic in populations susceptible to an infectious disease [23, 24 , 25 ]. Our 

use of the multi-state Markov model differs from other work in that it is auxiliary; we are 

simply using the model as a flexible tool to unify the measurement of patient disease states 

and mortality in order to estimate the desired probabilities described in the previous section. 

With continuing research on multi-state models in general, the models used for this method 

may become more and more sophisticated, as long as the probabilities can still be estimated. 

For example, Naranjo et al. recently developed a method that allows multi-state models to 

accommodate missing response and covariate data [26].

A formulation of these models can also take into account the interval-censored nature of 

data on time to intermediate states (and if necessary, the absorbing state), as those times 

typically will not be oberved exactly. For a thorough treatment of estimation for multi-state 

Markov models with panel or interval-censored data, see Kalbfleisch and Lawless [27], 

Gentleman et al. [28], and Commenges [29]. We will briefly cover the notation and concepts 

here. The notation will follow that of Kalbfleisch and Lawless [27], and Jackson [30]. An 

important issue is that the model should be fit under the null hypothesis, that is, it is fit on 

the pooled data set. This way when two subjects are censored at the same time and in the 

same state, there will be no difference in their expected rank. In this paper, we will use the 

time-homogeneous Markov model to illustrate the method, though some extensions on the 

model are possible and will be discussed later.

Suppose we have d states, 1,…,d, where d represents the absorbing state, and S(t) is the state 

occupied by a randomly chosen individual at time t. The continuous-time Markov process 

can be specified in terms of transition intensities,

This is the rsth entry of the d x d transition intensity matrix Q, and represents the 

instantaneous risk of moving from state r to state s at time t. The rows of Q sum to zero, 

with the diagonal entries defined to be qrr(t) = −Σs≠ r qrs(t). For time-homogeneous models, 

where the intensities are independent of t, this is related to the sojourn time spent in state r, 

which has an exponential distribution with mean . The pattern of zeros in the intensity 

matrix determines which states individuals can move to and from, and this is be specified by 
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the investigator. For example, if the last state is absorbing, the bottom row of the matrix will 

be 0 because subjects cannot move out of the absorbing state.

Now define:

This is the rsth entry of the d x d transition probability matrix P(u,t + u), and represents the 

probability of moving from state r to state s in the interval (u,t + u). If we have a time-

homogeneous model, then the transition intensities are constant over the interval (u,t +u), 

and P(u,t +u) reduces to P(t). The models can be fit and transition probabilities can be 

calculated with the msm package for R. [30, 31]; other packages for this exist as well. For 

details on the likelihood and computation of transition probabilities, see Appendix.

2.3. Estimating the Probabilities

After we fit the model, we can estimate the transition probabilities needed to compute our 

test statistic. There are three scenarios under which we need to calculate an estimate for the 

probability of subject i surviving beyond j: 1) when j fails after i is censored; 2) i fails after j 

is censored; 3) or when both subjects are censored.

1. Suppose i is observed to be in state k at timi, i.e. Si(timi) = r, is censored at ci ≥ timi, 

and j fails at tj > ci. Then the probability that subject i survives longer than subject j 

is given by:

2. This is the same as the case above, with i and j switched. The probability that i 

would have survived longer than j is 1 − Pr(Tj > ti|Sj(tjmj) = r, Tj > cj)

3. Without loss of generality, suppose subject i is observed in state ri at timi, censored 

at ci, and subject j is observed in state rj at tjmj, and censored at cj > ci. Then the 

probability of i surviving longer than j is estimated by:

(3)

where  represents the l,dth entry of . We can see how to 

arrive at 3 by first assuming that both subjects are censored at the same time cj. 

Then we get the integral above by the law of total probability, integrating the 

survival function for subject i weighted by the density function for the event time 

for subject j conditional on each of their disease states. However, we have to 

weight the integral by the probability that subject i is in state k and subject j is in 

state l at time cj, where k and l are any of the non-absorbing disease states.
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For some models, analytic forms for the function prs(t) are complicated functions of the 

intensities, so in general we will estimate this function locally for each t over a fine grid of 

values, and use numerical integration to compute the integral above. However, for simpler 

models, analytic expressions for the functions are tractable (though the integral above may 

still need to be computed numerically). For example, for a three-state unidirectional model 

with transition intensity matrix:

the transition probability functions to state 3 (death) would be:

Symbolic algebra software such as Mathematica [32] can be used to obtain these 

expressions. Note that the multi-state Markov model is just one possible choice of 

probability model. A different class of models, including semi-Markov, could be used 

provided that we can estimate the necessary probabilities.

A quantity that may also be of interest to investigators is the hazard of transitioning to the 

absorbing state over time. While the hazard and the limiting hazard rates of absorption can 

be derived for the multi-state process, this paper focuses on using the state information and 

transition probabilities to augment a nonparametric comparison of survival. Please see Aalen 

et al. for details on obtaining the hazard functions [33].

2.4. Remark on Permissible Transitions

The advantage of using a continuous-time Markov model is that it can accommodate 

transitions between any stages, but the fit will be more complex and convergence of 

parameters is not guaranteed, particularly if the sample size is insufficient for the number of 

transition parameters that need to be estimated. The allowed transitions in the model should 

make sense from a clinical standpoint. For example, Satten and Longini used multi-state 

models to examine the progression of CD4 cell counts before the onset of AIDS [34]. They 

discretized CD4 counts into 6 stages, allowing transitions only between adjacent stages. This 

makes sense clinically, because someone cannot go from stage 2 (700–900 CD4 count) to 

stage 4 (350–500), without passing through stage 3 (500–700). If CD4 counts are measured 

at visits that are far apart, then we might observe someone transition from stage 2 to stage 4 

between visits. However, even if we never observed them in stage 3, we know that they had 

to pass through stage 3 on the way to stage 4. That is, they cannot instantaneously transition 

from stage 2 to stage 4. When using a continuous-time model for a continuously changing 

outcome, we only need to allow transitions between adjacent stages to specify the model. In 
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some cases, the disease process will allow jumps. In the same example, the authors allow 

transition to the absorbing stage 7 (AIDS or death) from any of stages 3–6.

The zeroes in the Q matrix are determined by where we do not allow transitions to occur. 

For example, if we disallow an instantaneous transition from state 2 to state 4, the entry Q2,4 

will be 0. Zeroes will populate much of the Q matrix in many chronic disease settings, and 

this is ideal for model parsimony and convergence of parameters. If the model is excessively 

intricate for the number of transitions that we observe in the data, then maximum likelihood 

estimation may yield non-identifiable parameters. This can be an issue in the common 

setting of interval-censored transitions, where we only observe patients intermittently and do 

not know the exact transition time between two states. While we cannot specify an absolute 

minimum number of transitions that should be observed to ensure stable parameters (of 

course, at a bare minimum we need to observe at least 1 of each allowed transition), there 

are prescriptions to check and remedy the problem of non-identifiability. Initial values for Q 

need to be set before maximum likelihood estimation, so we should check that the 

parameters converge to the same solution using a variety of different initial values. If we end 

up with multiple unique solutions, we may need to simplify the model to allow fewer 

transitions or states. In general, it is good practice to use the simplest model that is 

consistent with the science of a disease process. Jackson also discusses options pertaining to 

the maximization algorithm that may help with convergence, including adjusting the 

tolerance level and rescaling the log-likelihood [30]. As far as the precision of model 

estimates, that is not a major issue with our method as long as they are identifiable, because 

we conservatively fit the model under the null hypothesis, on the pooled data.

2.5. Covariates and Piecewise-Constant Transition Intensities

Thus far we have only considered time-homogeneous Markov models. Covariates can be 

included with a type of proportional hazards model, described by Kalbfleisch and Lawless 

[27] and Marshall and Jones [35], where , where  is the 

baseline transition intensity from state r to state s,  is a vector of parameters, and z(t) a 

vector of possibly time-dependent covariates. The parameters are interpreted just as a Cox 

model for a particular transition intensity. For example, if we had a single covariate z that 

took values 0 or 1, then βrs represents the log-hazard ratio of transitioning from state r to 

state s for a subject with z = 1 vs z = 0. Confidence intervals for βrs are also available in the 

msm package in R. For each observation the likelihood contribution prs(tk,tk+1) is replaced 

with the conditional probability given the time-dependent covariates at time k, i.e. prs(tk,tk+1; 

z(tk)). Multi-state models can accommodate fixed covariates in this way, and use time-

dependent covariates to relax time-homogeneity.

Relaxing the time-homogeneous assumption is straightforward with interval censored 

transitions through the use of piecewise-constant transition intensities. This can be done by 

modelling a time-dependent covariate that changes value at each cut point where we want 

the intensities to change. For example, if we want the qrs transition to change at time tc, we 

could specify z(t) = 0 for t < tc, and z(t) = 1 for t ≥ tc in the model above. In general, suppose 

we allow the transition intensity matrix Q(t) to change at time points tc1 ,…, tcm, so that Q(t) 
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= Q0 over [0,tc1), and Q(t) = Qj over [tcj, tcj+1), and Q(t) = Qm over [tcm, ∞). Now suppose 

we want to calculate P(t1,t2) where tcj−1 < t1 < tcj, and tck < t2 < tck+1. Then

[36]. That is, it is just the product of transition probability matrices over the time-

homogeneous intervals. Then we can calculate the necessary probabilities for our test 

statistic as before. If piecewise constant intensities are to be used in the modelling, the cut 

points should always be specified prior to the study.

2.6. Power and Sample Size

The test statistic is given by , where W and var(W) are defined as in section 

2.1. Define Q1 and Q2 to be the hypothesized transition matrices for groups 1 and 2, 

respectively. Let T1, T2 be the failure time random variables that correspond to Q1, Q2, and 

let C1, C2 the censoring random variables. Let t1, t2 be the random variables for the final 

observation times, and S1(t1) and S2(t2) be the random states at those visit times for each 

group. Define δ = P(T1 > T2|Q1, Q2,C1,C2, S1(t1), S2(t2)) − P(T1 < T2|Q1, Q2,C1,C2, S1(t1), 

S2(t2)). Without loss of generality, under the alternative that δ > 0, the power of the test is 

given by:

where β is the probability of making a type 2 error, Φ is the cumulative distribution function 

of the standard normal distribution, n1 and n2 are the sample sizes in each group, and zp is 

the pth percentile of the standard normal distribution. Obtaining δ and an estimate for the 

variance is difficult to do analytically, as they will be complex functions of the transition 

intensities, censoring distributions, and observation times. However, we can use simulation 

to obtain an approximate power or sample size for the test. To do so, first we need to specify 

hypothesized values for Q0 and Q1, censoring distributions, and an observation scheme. We 

can then generate multi-state data for each group, using a very large sample size for each 

group, and apply the method to this generated data set. Jackson provides a function for this 

type of data generation in the msm package in R [30]. Let  be the simulation sample size 

for group 1 and  where 0 < k ≤ 1. After generating the data, we can estimate δ with 

, and var(W) with  using formula 2 in section 2.1. Let . 

Then for given type 1 and type 2 errors α and β, we can estimate the necessary sample size 

per group with
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3. Simulations

We performed several simulations to assess power and type 1 error of the test statistic when 

the data were generated under a multi-state Markov model, when the model was 

misspecified, and under both equal and unequal censoring distributions. We compared the 

results of our test with the Wilcoxon rank-sum test on the unobserved exact death times, the 

Gehan-Wilcoxon test [17], and the Gρ family of tests of Harrington and Fleming [37], with ρ 

= 0 (log-rank test) [38, 39 ], and ρ = 1 (Peto & Peto Wilcoxon test) [40]. With our proposed 

test and the Gehan test, we computed the test statistic using the permutation variance, and 

compared it to a standard normal distribution. For each set of simuations, censoring 

distributions were uniformly distributed, each subject’s state was observed at the same fixed 

set of times, {1,2,3,…}, until failure or censoring, and transitions into the absorbing state are 

assumed to be observed exactly while all other transitions are interval censored. For each 

scenario, 1000 repetitions were performed for type 1 error, and 500 repetitions for power.

3.1. Model Correctly Specified

First we generated the data from a 3-state progressive multi-state Markov model under H0 

(Table 1). One can think of the 3 states as initial diagnosis (1), progression (2), and death 

(3). Under this model, the size of our proposed test was around the nominal level of 0.05 and 

comparable to that of the other tests considered. This held for each of the sample sizes 

considered, and under both equal and unequal censoring distributions. This also held for 

unequal sample sizes (results omitted) in the two groups.

For power, there were three types of alternative distributions considered (Table 3). For 

group 1, denote the transition intensities from state 1 to 2 and state 2 to 3 by λ1 = 0.2 and λ2 

= 0.1, respectively. Let c1λ1 and c2λ2 be the transition intensities for group 2. The 

alternatives considered were: (1) c1 = c2 = 1.5; (2) c1 = 2, c2 = 1; and (3) c1 = 1, c2 = 2. In 

the first case, the hazard ratio of transitioning to the next state for group 2 versus group 1 

was 1.5 for each transition. In the second alternative, the hazard from state 1 to state 2 is 

twice as high for group 2, but the hazard from state 2 to 3 is the same. This corresponds to 

group differences in only the intermediate transition. And in the third case, the hazard from 

state 2 to 3 is twice as high in group 2, but the same for state 1 to 2 (group differences in last 

transition, but not the intermediate one). Under alternative 1, of the four tests, the proposed 

test and the log-rank test performed best and were comparable to each other. Under the 

second alternative, the proposed test was far superior to the others under both equal and 

unequal censoring, with a relative increase of more than 20% power over the next best test 

in each simulation. Under alternative 3, the proposed test was inferior to the log-rank and the 

Peto-Peto test, but comparable to Gehan’s test.

With the same models and heavier censoring, the percentage gain in power for our proposed 

test versus the others was more substantial under the first two alternatives.

3.2. Model Misspecified

When the model was misspecified with a 3-state process generated by Weibull sojourn times 

in each state (table 2), the size of the test was correct under equal censoring distributions, 
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but was inflated for some parameter levels under unequal censoring distributions. This was 

most severe with heavy censoring (50+% in each group) and when the shape parameter (k) 

for each transition time was equal to 0.5, which indicates a transition rate that decreases over 

time. With k = 1.5 for each state transiiton time, the type 1 error was also inflated for larger 

sample sizes, and was exacerbated by heavy censoring. With k = 0.5 for the state 1 sojourn 

time, and k = 1.5 for the state 2 sojourn time, the size of the test was accurate under equal 

and unequal censoring and all sample sizes. This may be because the probabilities were 

getting underestimated for one of the transitions, and overestimated for the other. Under 

unequal sample sizes (results omitted), the type 1 error was controlled under equal 

censoring, but in some cases inflated under unequal censoring as before.

Under the alternative with weibull-distributed sojourn times (table 4), the results were 

similar to those under the correctly specified model (with equal censoring). As before, say 

for group 1 we have scale parameters λ1 and λ2 for transitions from state 1 to 2 and 2 to 3, 

respectively. Then for group 2 we used c1λ1 and c2λ2 as scale parameters. We set the shape 

parameters k1 = k2 = 0.5 (decreasing hazard rate over time), and k1 = k2 = 1.5 (increasing 

hazard rate). The alternatives here correspond to the same used with the model correctly-

specified. If the shape parameters were set to 1, this would correspond to the same data-

generation process given under the multi-state Markov model. Unsurprisingly, the results for 

each alternative were similar to those obtained with data generated by the Markov model 

under equal censoring (see Table 1–2). Results for unequal censoring were biased when the 

shape parameters were less than 1, and are not presented.

4. Example Analysis

We will illustrate the proposed method on data from a clinical trial of patients with 

amyotrophic lateral sclerosis (ALS) [41]. Subjects in the trial were monitored for two 

endpoints: survival, and rate of decline in neurological function as measured by their 

ALSFRS-R scores. The ALSFRS-R is a functional rating scale by which physicians estimate 

the degree of functional impairment in ALS patients [42]. The scale ranges from 0–48, with 

a higher score indicating better function. ALSFRS-R was measured periodically in patients 

until death, drop-out, or the end of the study. We discretized this score into 4 states: 37–48 

(state 1), 25–36 (2), 13–24 (3), 0–12 (4). Subjects could go back and forth between states, 

and die from any state. The model is displayed graphically in Figure 1.

We fit the model to the longitudinal data using the msm package for R [30], and obtained the 

following transition intensity matrix:

From this, we can get the transition probability matrix, P(t), at any time t. For example, for 

this model, P(365) is given by:
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This gives us the probability of a subject being in a particular state after 1 year (365 days), 

given their current state (in the matrix, current state is indexed by rows). For example, the 

probability of a subject dying within a year given that they are currently in state 1 is 

estimated to be 0.164. A plot of the fitted survival probabilities from each state is given in 

Figure 2. We can see that estimated survival is worse for subjects with lower ALSFRS-R 

scores, so we hope to recover some information on survival that is lost due to censoring by 

accounting for the subjects state. We examined survival with respect to the variable site of 

onset, which is the type of diesease. The log-rank test gave a z-statistic of −2.249, with two-

sided p-value .0245. For the Peto-Peto Wilcoxon test, Z = −2.296, with a p-value of .0217. 

After applying our method, we obtained a Z-statistic of −2.39 and p-value .0166.

5. Discussion

The proposed test aims to use auxiliary information to test for group differences in survival 

when there are a general number of intermediate states and possible transitions between 

those states. It should be noted that with censoring, we are under a somewhat more 

restrictive null hypothesis of equality of transition intensities for each group. The reason for 

this is because we chose to fit the model on the pooled data. The advantages of doing so are 

that we will get less variable model estimates under the null, we can use a permutation 

variance when we have equal censoring or when the model is correctly specified, and 

subjects who are censored at the same time and in the same state will have the same score. 

The drawback is that we may not be gaining much, if any, power under certain types of 

alternatives (see Simulations). Another option is to fit separate models for each group, and 

get a bootstrap estimate of the standard error. We did not assess how this would perform 

relative to fitting under the null.

There are a few advantages and disadvantages to using the multi-state Markov model for 

auxiliary information. A major advantage is that we can estimate the model parameters even 

when we do not know the exact transition times between states, and get survival 

probabilities conditional on observed disease status. It is also flexible and can accommodate 

a number of disease states, forward and backward transitions, and different observation 

times between subjects. The main limitation is that it is a parametric model, and if it is 

incorrect, the test can behave poorly when censoring distributions differ substantially 

between groups. Semi-Markov models may be more appropriate and can also be used to 

estimate transition probabilities in some settings, but this will likely require knowing the 

exact transition times, and disallow backward transitions in the model.

We can also incorporate covariates into the model using a type of proportional hazards 

model. The transition matrices for a particular set of covariates can be calculated, and the 
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transition probabilities obtained from there. Adding too many covariates, however, can yield 

poor model estimates because the number of parameters increases by the number of possible 

transitions for each additional covariate. To limit this, covariates can be constrained to only 

affect specific transitions. One important application of this is using time-dependent 

covariates to allow the transition intensities to change at specific time points. This allows us 

to relax the strict assumption of time-homogeneity.

Assessing the fit of the model should be of interest to investigators who decide to use this 

method. While diagnostics are limited for models with panel-observed or interval-censored 

data, some methods are available. See Titman and Sharples for a review [36].

Limitations of this method include that it will not be valid under informative censoring or 

informative sampling times, i.e., when the censoring times or observation times depend on 

the current disease state of the individual. Sweeting et al. developed a model that 

incorporated informative observations times into the likelihood, which would be applicable 

with our method [43]. Additionally, a calculation for desired sample size may be difficult to 

obtain analytically, but we have provided a procedure to approximate it via simulation.

We have shown through simulations that in some settings, use of this method can improve 

power over the traditional tests. The most substantial improvement occurred with a 

progressive disease where the mechanism of treatment mainly delays transition to the 

intermediate states, which is often the case for targeted cancer treatments. The reason for 

this is that censored individuals in the non-treatment group will, on average, be in later 

disease stages and thus less likely to survive than those on treatment. In general, the utility 

we get from this method versus others will depend on the amount of censoring, the data-

generation process, and the treatment mechanism. While the proposed method performed 

increasingly better than others under heavier censoring, we need to observe at least a few 

transitions into the absorbing state in order to get reliable parameter estimates. Thus, the 

amount of censoring may not be excessively high, particularly in relatively small samples.

We also determined that the method yields a valid test under equal censoring distributions, 

even when the model does not match the data-generating process. Thus, it will be most 

appropriate to use in settings with roughly equal follow up, such as clinical trials. The ill 

effects of model misspecification with unequal censoring can possibly be mitigated by using 

piecewise constant transition intensities with a sufficient number of cut points.
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6. Appendix

The Kolmogorov forward differential equations relate the transition probability matrix P(t) 

and the transition intensity matrix Q:

The solution to this gives us P(t) = exp(Qt), where exp denotes the matrix exponential. This 

is defined as the power series: , where X is an n x n matrix. This can be difficult 

to compute, but in most cases, it can be computed via an eigensystem decomposition of Q. 

That is, if Q has k distinct eigenvalues, d1,…, dk, then Q = UDU−1, where D is the diagonal 

matrix with entries d1,…dk, and U is the matrix whose columns are the eigenvectors of Q. 

Then P(t) = UeDtU−1.

The full likelihood for the model is given by the product of the transition probabilities 

between states over all individuals and observation times:

Maximum likelihood estimates for the transition intensities can be computed by numerical 

optimization of the likelihood, via derivative-free algorithms such as Nelder-Mead [44], or 

through quasi-Newton methods [45]. Jackson notes that this likelihood is only valid when 

the sampling times tik are non-informative, that is, the current observation does not depend 

on the current state. For more on this, see Jackson [30] and Gruger [46]. For details on 

modelling informative sampling times as part of the likelihood, see Sweeting et al. [43].
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Figure 1. 
Multi-state model for ALS Trial, where states represent categories of ALSFRS-R scores. 1: 

37–48; 2: 25–36; 3: 13–24, 4: 1–12.
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Figure 2. 
Plot of survival probabilities from each state based on fitted multi-state model.
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