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Abstract

Nonadherence to assigned treatment jeopardizes the power and interpretability of intent-to-treat 

comparisons from clinical trial data and continues to be an issue for effectiveness studies, despite 

their pragmatic emphasis. We posit that new approaches to design need to complement 

developments in methods for causal inference to address nonadherence, in both experimental and 

practice settings. This paper considers the conventional study design for psychiatric research and 

other medical contexts, in which subjects are randomized to treatments that are fixed throughout 

the trial and presents an alternative that converts the fixed treatments into an adaptive intervention 

that reflects best practice. The key element is the introduction of an adaptive decision point 

midway into the study to address a patient's reluctance to remain on treatment before completing a 

full-length trial of medication. The clinical uncertainty about the appropriate adaptation prompts a 

second randomization at the new decision point to evaluate relevant options. Additionally, the 

standard ‘all-or-none’ principal stratification (PS) framework is applied to the first stage of the 

design to address treatment discontinuation that occurs too early for a mid-trial adaptation. 

Drawing upon the adaptive intervention features, we develop assumptions to identify the PS 

causal estimand and introduce restrictions on outcome distributions to simplify Expectation-

Maximization calculations. We evaluate the performance of the PS setup, with particular attention 

to the role played by a binary covariate. The results emphasize the importance of collecting 

covariate data for use in design and analysis. We consider the generality of our approach beyond 

the setting of psychiatric research.
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1. Introduction

Large scale comparative effectiveness trials are conducted in real world settings to provide 

an evidence base directly relevant to clinical practice. Despite the emphasis on practical 
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intervention options, often a substantial percentage of subjects do not complete the 

effectiveness study protocol. This may have as much to do with the treatments being 

evaluated, as with the introduction of a controlled environment. This is especially true in 

psychiatry, in which both practice and trial settings are plagued by high rates of 

nonadherence and discontinuation. Two landmark studies exemplify the challenge for 

psychiatric treatment research. The Clinical Antipsychotic Trials of Intervention 

Effectiveness (CATIE) Schizophrenia Study reported a 74% discontinuation rate, despite 

optimizing treatment to forestall medication failures and allowing (randomized) medication 

changes [1]. About 40% of subjects dropped out of the Sequenced Treatment Alternatives to 

Relieve Depression (STAR*D) Study during early phases of the trial [2,3]. In this trial, 

randomization to each successive 12-week stage of treatment took into account the 

preferences of patients and their treating clinicians [4]. Such high rates of nonadherence and 

dropout jeopardize the power and interpretability of intent-to-treat (ITT) comparisons. 

However, this is not a failure of the ITT principle, but rather a reflection of the studies 

themselves. A similar view has been expressed in a National Research Council report on 

how to prevent missing data in clinical trials [5].

To help fix ideas, consider the design that is ubiquitous in mental health and many medical 

contexts: randomization to parallel groups in which assigned treatment is fixed for the 

duration of the trial. The simplicity of this design is undercut by the complexity of the 

patient's response to the unrealistic attempt to rigidly control treatment, and the results are 

often dissatisfying on all counts, with artificially fixed treatments and critically incomplete 

data. Because the study protocol fails to accurately reflect the realities of clinical practice, 

the pragmatic argument for ITT inference can fail to convince the intended audience. Causal 

methods have been developed to tease out scientifically relevant results from fixed-treatment 

trial data with non-negligible nonadherence. These methods, however, attempt to fix the 

consequences of the design's weakness, rather than the design itself. Design alternatives are 

crucial to a comprehensive solution to nonadherence, for both experimental and real world 

settings. The approach we take in this paper rests on the observation that the principle of 

analysis by ITT should also inform design [6]. The intent is to ensure clinically relevant ITT 

comparisons that preserve the initial head-to-head comparison of scientific interest.

The key modification we make to the standard design is to convert each fixed treatment 

option to an ‘adaptive treatment strategy’ (ATS) [7], which allows more flexible 

management of each subject's treatment and adherence to it. The ATS includes a decision 

point midway into the trial that addresses the critical question faced by clinicians: What to 

do when the patient wants to give up on treatment before completing a full-length trial of 

medication or therapy. Resolving the clinical uncertainty as to how to proceed prompts the 

introduction of a second (mid-trial) randomization to evaluate relevant ATS options, such as 

changing the treatment that was assigned at baseline, or attempting to enhance adherence to 

it. That design is a Sequential Multiple Assignment Randomization Trial (SMART) [8]. 

Both the ATS (applied in practice by the clinician) and the randomization (applied in the 

SMART by the trialist) are adaptive, taking into account the patient preferences at that point, 

to maximize continued adherence. Similar SMART designs have been proposed for 

evaluating adherence enhancement strategies for patients with type II diabetes, although 

they do not incorporate individual preferences [9]. The SMART design is also similar to 

Dawson and Lavori Page 2

Stat Med. Author manuscript; available in PMC 2016 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



those for STAR*D and CATIE, except for the timing of the new randomization. It occurs 

earlier in the course of treatment because both studies showed that adaptively changing 

treatment at the end of the standard medication or therapy trial is not sufficient to prevent 

nonadherence.

In some contexts, design alone cannot address nonadherence because a substantial number 

of subjects may discontinue treatment too early for a clinically reasonable mid-trial 

adaptation. To address such premature discontinuation when it may occur, we extend the 

principal stratification (PS) framework for all-or-none nonadherence [10] to the first stage of 

the proposed SMART design. The idea is to restrict causal inference to the subset of subjects 

who would persist at least to a therapeutic dose of therapy or medication on either baseline 

option. This restriction further strengthens the connection to the scientific goals of the 

standard design.

In Section 2, we develop the design framework and the principal stratification setup for 

causal estimands. Sections 3 and 4 present our approach to identification and inference for 

the causal estimands. In Section 5 we evaluate the role played by different design parameters 

on the performance of the principal stratification set up. Section 6 concludes with 

discussion. Throughout, the exposition is grounded in mental health treatment research. We 

briefly discuss the generality of our approach to addressing nonadherence as part of Section 

6.

2. Design and Inference for Intent to Treat

2.1 Design: SMART counterpart to fixed-treatment trial

Our conversion of the standard fixed-treatment protocol into an adaptive intervention centers 

on critical decisional uncertainty intrinsic to treatment nonadherence: In response to patient 

dissatisfaction to a medication or therapy that is not yet fully evaluable, is it optimal to 

change treatment or should efforts be made to enhance adherence to the current treatment? 

Given the patient would have limited exposure to treatment (perhaps only long enough to 

achieve a therapeutic dose), there may be clinical uncertainty about the appropriate 

adaptation if the patient expresses reluctance to remain on treatment. Uncertainty about the 

possible consequences if the patient can be convinced to continue treatment raises the 

question of whether to try to enhance adherence or change to another treatment. Moreover, 

the decision leading to optimal long-term benefit may depend on the treatment itself, given 

different modes of action and effectiveness across distinct drug classes and therapy 

modalities. This is the scientific rationale for adding another stage of randomization to the 

original design (with alternatives ‘enhance adherence’ vs. ‘change treatment’).

The simplest form of the conversion to a SMART design presupposes that early 

discontinuation is not a significant risk, as can be the case for psychotherapy treatment of 

certain anxiety and depressive disorders [11]. To be concrete, suppose that one of the 

treatments, labeled T0 is an established cognitive therapy for panic disorder, while the 

alternative T1, is a more intensive behavioral intervention. Further assume that after reaching 

therapeutic dose (a certain number of sessions), the subject's preferences about treatment to 
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that point are measured as ‘stay’ or ‘switch’. We specify four possible ATS options that use 

individual preferences to operationalize the critical decision underlying the new design:

Strategy 1: Start on T0. Rule 1: Once the patient achieves a therapeutic dose of T0, 

obtain and act upon preferences: if ‘stay’, keep on current treatment; if ‘switch’, change 

to T2. Continue to follow.

Strategy 2: Start on T0. Rule 2: Once the patient achieves a therapeutic dose of T0, 

obtain and act upon preferences: if ‘stay’, keep on current treatment; if ‘switch’, add 

adherence enhancement. Continue to follow.

Strategies 3 and 4 are similarly defined in terms of T1. As in the standard design, 

randomization at baseline is to either T0 or T1; randomization upon reaching therapeutic 

dose on assigned treatment is (adaptively) to the two options specified by Rules 1 and 2 

for subjects who prefer to switch treatment: ‘change treatment’ or ‘enhance adherence’ 

(see Figure 1). Note that each ATS is comprised of two of the six possible branches in 

the two-stage design. For example, the second strategy includes the first two branches 

in the design tree (bolded in Figure 1). Also, the second randomization inherits the 

treatment adaptation of the ATS: whether a subject is re-randomized and to what is 

determined by individual preferences and the possible options specified by the 

competing ATS.

We refer to the design in Figure 1 as SMART-ES, where SMART designates (as above) that 

this is a Sequential Multiple Adaptive Randomization Trial [8] and Equipoise-Stratification 

(ES) formalizes preference-based randomization [4]. The SMART-ES design resembles 

those developed for improving adherence to diabetes treatment [9], but is distinguished 

notably by the inclusion of individual preferences in the ATS (and in the randomization). 

The consideration of clinically-driven preferences during the course of treatment 

approximates shared decision-making that occurs in practice, thereby reducing the 

possibility of nonadherence specific to the experimental context. More generally, we 

conceptualize preferences obtained through clinician-patient discussion as a broad indicator 

that encompasses emerging response to the current treatment, which is pivotal to mid-course 

treatment decisions.

For general applicability, the ATS in the design must explicitly specify how to treat 

individuals who fail to persist to a minimal therapeutic dose of therapy or medication. The 

strategies must also contend with the potential for treatment with medication to introduce 

sufficient side effects to preclude further use by some patients. Assume now that the 

treatments of interest are two medications and that T0 is an established, generally tolerated 

active control (e.g., a well-studied selective serotonin reuptake inhibitor antidepressant), 

while the alternative T1 is a more aggressive medication that may have intolerable effects in 

some patients. To allow for the possibility of early discontinuation and intolerance, the first 

ATS becomes:

Strategy 1 (revised): Start on T0. Rule 1: If the patient tolerates and persists to a 

therapeutic dose of T0, obtain and act upon preferences: if ‘stay’, keep on current 

treatment; if ‘switch’, change to T2. Continue to follow. If the patient fails to persist 

before reaching a (tolerated) therapeutic dose, switch to T1, and proceed as in Rule 1.
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The remaining strategies are revised in the same way, e.g., specifying a switch to T0 if the 

patient fails to persist after starting on T1. The intentional crossover derives from the 

original equipoise concerning the effects of T0 and T1, given lack of sufficient clinical 

indication to rule out either alternative. Note that the revised first and second strategies are 

stated generally, even though intolerance (as distinct from persistence) is not expected under 

T0. Also, fully operational strategies for the clinician would require options beyond T0 and 

T1 to handle patients who fail to persist to a tolerated dose under either.

2.2 Inference: Principal stratification setup for persistence

We apply the principal stratification (PS) framework [10] to the initial stage of the (second) 

SMART-ES design to account for the inability or failure of some subjects to persist on 

assigned medication until a therapeutic dose is reached. The usual stability assumption 

‘SUTVA’ is assumed so that individual potential outcomes under either baseline treatment 

are well defined [12]. The goal is to obtain approximately valid inferences for the latent 

subset of subjects who would persist at least to a therapeutic dose and exposure duration 

under either initial assignment.

Let Z indicate randomization to the aggressive treatment (Z = 1) or the active control (Z = 0), 

and D be a trinary indicator: persist through a minimal therapeutic medication trial (D = P), 

tolerate but fail to persist (D= A), intolerant (D = I), with A standing for abandonment of 

assigned treatment. We adopt the standard potential outcomes notation, e.g., D0 is the 

indication D that would occur under Z = 0. Note that the observed outcome D ≡ DZ. Nine 

possible latent types are determined by (D0, D1): G = PP, AP, PA, AA, PI, IP, AI, IA, or II, 

where PP is interpreted as ‘persist, persist’, etc. and G indicates latent type. When 

evaluating medications for which intolerance is not be an issue, D becomes binary and G = 

PP, AP, PA, or AA. The binary case would also be applied to psychotherapy treatments, 

when early discontinuation occurs with some frequency.

The causal estimand of interest is the average treatment effect for the principal stratum G = 

PP, which we refer to as the ‘persister’ average causal effect (PACE). PACE is the similar 

to the ‘survivor’ average causal effect (SACE) defined for the dichotomy of survive or not 

(‘persist’ = ‘survive’) [13,14]. For SMART-ES, there are two versions, PACE(W) and 

PACE(Y), where W is measured after observing D, and Y is measured at the end of the study. 

Note that W is an intermediate outcome along the way to Y, the primary outcome and object 

of study. This allows flexibility in choosing W so as to maximize the validity of any 

assumptions needed for PS inference.

Formally, PACE(W) = E(W1|G = PP) - E(W0|G = PP). The causal estimand PACE(Y) is 

similarly defined but must take into account mid-trial treatment adaptation. To do so, we use 

the comparison of (revised) strategies 2 and 4 to define PACE(Y) as E(Y(1,AE)|G = PP) - 

E(Y(0,AE)|G = PP), where (z,AE) corresponds to the ATS that calls for starting with Tz, z = 0 

or 1, and adaptively adding adherence enhancement (if a switch is preferred). The causal 

effect from the fixed-treatment trial closely resembles PACE(Y), in that all subjects 

participating in the PS estimand are assigned to initial treatment throughout the study, 

possibly in combination with adherence enhancement. Oetting et al. [15] present additional 

comparisons specific to a two-stage SMART design that could also serve to define 

Dawson and Lavori Page 5

Stat Med. Author manuscript; available in PMC 2016 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PACE(Y). For example, the initial treatment effect is defined as the marginal or main effect 

of Z on Y, which pools over possible treatment adaptations (switch medication vs. add 

adherence enhancement) for Z = 0,1. The main effects comparison may be useful when most 

subjects prefer to change assigned treatment (and are hence re-randomized [16]), thereby 

ensuring maximal sample size for the PS estimand. All derivations we develop would apply 

directly to this alternative.

As defined, PACE(W) and PACE(Y) are the ITT effects (effects of treatment assignment) for 

subjects who would persist under either initial treatment. In particular, PACE(Y) takes into 

account any deviations from protocol after persistence. By intent, the SMART-ES design is 

meant to forestall such deviations to ensure that the ITT comparisons that develop over time 

will closely resemble the adaptive interventions that would occur in clinical practice. The 

overall ITT effect may be written as the weighted average of the stratum-specific estimands 

for different latent types (effects for II and AA are zero [14]). For the remainder of this 

article, our focus is on PACE(W) and PACE(Y) because they preserve the scientific goal of 

the original fixed-treatment trial.

3. Identification of the ‘persistence’ PS Estimand

The latent nature of principal strata makes identifiability of causal effects a primary 

challenge. This is particularly so when the number of latent types increases, as it does by 

additionally modeling the potential for intolerance. A naive approach to identifying 

PACE(W) or PACE(Y) in this case would be to exclude subjects who are unable to tolerate 

assigned treatment. Doing so would seemingly simplify latent structure by allowing D to be 

binary, while shifting focus to a more clinically relevant population of subjects who are able 

to persist to therapeutic doses. However, exclusion of observed intolerance does not 

completely exclude latent intolerance. In particular, a subject who persists under Z = 0 

would be kept in the smaller reference population but may not tolerate Z = 1 (type PI). 

Nonetheless, we show below that plausible assumptions can be made that effectively reduce 

trinary D to the binary case. To do so, we consider PACE(W) because W is measured 

proximally to D, and prior to any treatment adaptation that is intrinsic to the ATS under 

evaluation.

As before, let PACE(W) = E(W1|G = PP) - E(W0|G = PP). Consider the quantities that are 

often used to point identify the PS estimand: (1) the relative sizes of each latent type: Pr(D0 

= t, D1 = t’) = πtt′, t, t’ = A,P,I, and (2) the mixture distributions of latent types determined 

by Z and D (see Table 1). We appeal to the features of the treatments and the 

conceptualization of the PS setup to allow reduction to binary D. First, as previously 

described, intolerance is assumed to not occur under the active control:

A1. πIP = πIA = πII = 0

Second, the effort or persistence required to stay on a treatment long enough to experience 

intolerance is similar to that required to reach (minimal) therapeutic dose. For our context, 

this suggests that a subject who is unwilling to make the effort to persist under Z = 0 will 

abandon the more aggressive treatment before reaching intolerance:
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A2. πAI= 0

It also supports:

A3. E(W0|G = PI) = E(W0|G = PP)

The clinical rationale is that subjects of type PP and PI are persistent under either treatment, 

but one is stymied by the side effects of the aggressive treatment. Assumption A3 ensures 

that the PACE(W) estimand coincides for binary and trinary D, allowing subjects of latent 

type PI to be pooled with subjects of type PP (see Z = 0, D = P in Table 1). Taken together, 

A1-A3 allow reduction to the binary case, noting that the first two assumptions imply that 

subjects observed to have D = I are of latent type PI, a subset which is extraneous to our 

purposes (see D = I in Table 1). In an abuse of notation, we use D hereafter to indicate 

persistence or not (see Table 2).

Under the supposition that (reduced) D is binary, we make the following identifying 

assumption commonly used for ‘all or none’ non-compliance in a trial of two treatments:

A4. Monotonicity: πAP = 0

The proportion πAP is assumed to be zero because of the nature of the treatments. For 

example, sicker patients may be motivated to persist under medication T1 despite possible 

side effects because of greater illness burden, but would also do so under T0. Later we 

discuss relaxation of this assumption.

The exclusion restriction assumption is often used with monotonicity to fullyidentify the PS 

estimand but does not hold here, analogous to its failure for the SACE estimand [13]. Failure 

of exclusion precludes identifying Table 2 in the standard way, although the population 

proportions remain identified given A4. Specifically, it is not possible to disentangle the 

mixture distribution that occurs when Z= 0, D =P. One way to address this is to exploit the 

‘crossover’ feature of SMART-ES, and impose (structural) stochastic restrictions on data 

observed when subjects who fail to persist under assigned treatment (Z = 0 or 1) are 

switched to the other treatment (Z=1 or 0). Another is to impose parametric, rather than 

structural assumptions. We find greater generality in the parametric approach, which we 

pursue here in detail.

4. Inference for the ‘persistence’ PS estimand

Table 2 shows that inference for PACE(W) and PACE(Y) can be carried out using the subset 

of subjects observed to persist under assigned treatment. Given Assumption A4 (there are no 

subjects of type AP), the latent type indicator G can be replaced by a binary one, defined as 

C = 1 if of type PP, and 0 if of type PA; C indexes the mixture of subjects assigned to active 

control. Inference from the data in the Z = 1, D = P cell can be obtained by standard 

methods. Inference from the data in the Z = 0, D = P cell is suitably addressed by algorithms 

such as expectation-maximization (EM) that convert the mixture structure into a missing 

data problem, which we adopt.
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For illustration, we consider the simplest design that contains the key elements of our setup 

for mixture distribution calculations: a single randomization Z (at baseline), W and D 

measured midway into the trial, Y measured at the end of the trial. We suppress the second 

randomization during exposition, noting that PACE(Y) is essentially a function of the values 

of Z, because treatment adaptation is fixed at a specific option. For notational convenience, 

we also suppress the conditioning on Z = 0, D =P, which holds throughout Section 4; for 

example, Pr(W|Z = 0, D = P) is written as Pr*(W). We use the subscript i to denote 

quantities associated with a specific individual and let θ be the vector of parameters for the 

mixture distribution of subjects of type PP and PA.

To simplify EM or similar calculations, we make two conditional independence 

assumptions:

A5. Pr* (C | W, Y) = Pr* (C|W);

A6. Pr* (W, Y| C) = Pr* (W|C)Pr(Y|C).

The corresponding joint distribution Pr*(W,Y|C) = Pr*(W|C)Pr(Y|C) is specified as:

(4.1)

with probability or density function f*(Wi, Yi, Ci|θ) and prior distribution P(θ); S(0, P) is the 

subset of subjects with observed values Z = 0, D = P. For suitable priors, (4.1) often 

provides a basis for maximum likelihood (ML) inference. Alternatively, both assumptions 

can be stated in terms of f*(·|·), noting that the likelihood function is proportional to it. For 

example, f*(C |W, θ) = f*(C |W, θ).

The SMART-ES design provides general support for A5 and A6 because of the second 

intervention (add adherence enhancement), which is introduced adaptively by each of the 

ATS. The non-random treatment changes for selected subjects dilute the relationship 

between W (response to an incomplete trial of initial treatment) and Y (response to the entire 

strategy). This is particularly so because adaptation depends intrinsically on emerging 

response via individual preferences to switch treatment obtained at the same time as W. 

Furthermore, if the’ main effects’ definition of PACE(Y) is used, there is additional dilution 

due to pooling over which treatment change to make (add adherence enhancement vs. switch 

medication). The overall effect is to weaken any relationship between early response and 

final outcome that may sometimes be anticipated in a fixed-treatment study. Setting W to 

some measure of early response and Y to a (distal) clinical state such as recovery may 

specifically support the assumptions when early response is strongly related to C and 

therefore W mediates the relationship of C to Y.

The application of A5 and A6 is straightforward with the EM algorithm. Given W,Y, and a 

current estimate of θ, denoted θc, the E-step in EM replaces each (unobserved) Ci with its 

conditional expectation, Pr*(Ci = 1 |Wi, Yi, θc). The calculation, which is derived using 

Bayes Rule as:
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(4.2)

shows that A5 eliminates the need to specify joint density functions for the E-step, with (4.2) 

simplifying to:

(4.3)

The second step, the M-step, uses the expected complete-data likelihood from the E-step 

based on (4.3) to obtain the next estimate of θ. Assumption A6 further allows the 

‘maximization’ calculation to be factored into separate models for W and Y, while applying 

(4.3) to each. For example, it may be plausible to specify separate (marginal) Gaussian 

mixture models for W and Y, reducing the M-step to two standard calculations. In this case, 

the M-step for E*(Y |C = 1) ≡ E(Y|C = 1, Z = 0, D = P) is:

(4.4)

where i ∈ S(0, P) and wi θc = Pr*(Ci = 1 |Wi, θc) ≡ Pr*(Ci = 1 |Wi, Yi, θc). The calculation 

shows that inference for PACE(Y) is linked to that for PACE(W) via the use of the 

individual estimates of latent type membership that are (posterior) functions of W. The result 

is intuitive given the intervening adaptive intervention introduced by the SMART-ES design 

between the measurement of (W,D) and Y.

4.1 Bayesian model for mixture distribution

We assume both initial treatments have been previously studied in standard (fixed-

treatment) trials. In particular, a good estimate of the rate of persistence under Z = 1 should 

be available. This provides an a priori value for πPP, given monotonicity. We also assume 

that covariate data have been collected to help aid parametric identification of the mixture 

distribution [14, 17] and consider the case of a single binary X. The conditional versions of 

the assumptions for EM calculations become:

A7. Pr*(C |W, Y, X) = Pr*(C|W, X)

A8. Pr*(W, Y|C, X) = Pr*(W|C, X)Pr*(Y|C, X).

Let θ be the vector of parameters for the mixture distribution of subjects of type PP and PA, 

assumed to be Gaussian. The (complete-data) model for W and the model for C used in the 

EM calculations are specified as regressions:

(4.5)
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where X is X augmented with a column for the intercept. A diffuse conjugate prior 

distribution similar to the one used by Hirano et al. [18] takes the form of adding extra 

observations to the likelihood function. There are 5 observations for each value of X, scaled 

by 0.01 (g = 0.01−2 in Zellner's g prior for βj[19]; their W values are set to the overall sample 

mean of W, and their Z values are set to π0*5 for X = 1/0, where π0 is the a priori value for 

πPP. All parameters are functions of θ, e.g., βj ≡ βj(θ), and are a priori independent. As 

above, conditioning on Z = 0, D = P has been suppressed.

5. Evaluation of PS setup for SMART-ES

A central issue underlying the approach to inference for PACE(Y) described in Section 4 is 

how well given choices for W and X can be used to disentangle the mixture distribution of 

subjects of type PP and PA, as exemplified by how well the individual estimates of latent 

type membership predict mixture membership. To a large extent, this will be governed by 

the distance between latent type components [20] and the inclusion of (predictive) covariates 

in the modeling [17]. For evaluation of the PS setup, we simulate data using different values 

for πPP drawn from the range of clinically relevant ones. We consider the sample size and 

mixture structure thought to be ‘minimally’ necessary, in the sense that smaller sample or 

(between-type) effect sizes may not allow feasible inference via principal stratification. We 

presume that both πPP and the effect sizes implicit in the mixture structure are governed (to 

some extent) by design through inclusion, exclusion and other criteria, thereby making the 

simulation study pertinent to design. We also extend our evaluation to Y to understand 

overall performance.

5.1 Simulation study for intermediate outcome W

The simulations varied according to: (a) πPP = 0.6, 0.7, 0.8 (early discontinuation under the 

aggressive treatment at most 40%); and (b) whether or not Pr(C|X) = Pr(C) (X may or may 

not be related to C). Otherwise, simulated design scenarios were fixed at (c) n = 200 is the 

number of subjects observed to persist after randomization to Z = 0; (d) μ0 = 3, μ1 = 2 are 

the means of W for subjects of types PA and PP, (e) ; β0 - β1 = 1 = σ; (g) when 

X is related C the odds ratio is 2; (h) Pr(X = 1) = 0.6. For (a), values of πPP less than 0.60 

were excluded because larger rates of failure to even persist on Z = 1 threaten the clinical 

relevance of ITT comparisons, including the PACE estimand. Also, we did not consider πPP 

= 0.9, even if achievable by design, as any adjustment due to mixture modeling would likely 

be dominated by the additional uncertainty it introduces. For (d), the between-type distance 

of one standard deviation is realistic for our context.

A motivating clinical example for the simulation setup distinguishes latent types PP and PA 

in terms of severity of illness (PP subjects may pursue aggressive treatment despite possible 

side effects because they experience a greater burden of illness) and speed of response 

thought to typify those less sick (PA subjects tend to abandon aggressive treatment with its 

side effects because they experience early relief and no longer believe it is necessary to 

continue in the face of the side effects). We set X to be an indicator of symptom severity at 

baseline and W to be an index of symptom severity (or change in severity) measured after 

persistence under Z = 0. This scenario sets up large between-type differences in the marginal 
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distribution of symptoms (condition d) and in changes from baseline (condition f). 

Moreover, assumptions A7 and A8 required for EM calculations should be satisfied if we set 

Y to be recovery, a qualitative clinical milestone quite distinct from early response, 

especially given the treatment changes adaptively introduced after W. Conditioning on X 

should improve their plausibility.

Each simulation scenario was replicated 50 times. In all cases, the true model was fit 

according to Section 4. Starting values for the EM calculations were set using the method of 

Finch et al. [21] for two-component normal mixtures, which uses a starting value for πPP, 

denoted πS, to estimate starting values for the other parameters. Specifically, the sample is 

ordered and split into [nπS] and n-[nπS] observations, where [ ] stands for the integer part of 

x; the regression estimates and the pooled variance of the split sample are used as the 

starting values for β0, β1, w (logistic parameter in 4.5) and σ2 respectively. This method 

performs well, with respect to locating the global maximum [22]. For any given scenario, πS 

was set to π0, the a priori value for πPP.

5.2 Simulation results

Table 3 reports the estimates of μj, j = 0,1, (in terms of absolute relative bias and πPP 

obtained from the different scenarios. However, as described in Section 4, the estimated 

probabilities that an individual is of latent type PP are more germane to inference for 

PACE(Y). To this end, we calculated the allocation rate (AR) using the indicator C (PP or 

not) and the estimated discriminant rule:  implies PP, where 

 and  is the (converged) estimate of θ. AR is an estimate of the 

proportion of subjects with correctly identified latent type, which is maximized when the 

true discriminant rule is used [23]. Larger values of AR indicate better mixture 

disentanglement and improved inference for the mixture model [20], quantifying the degree 

to which modeling W provides reasonable inference for PACE(Y). To more fully evaluate 

how performance depends on the two design scenarios for X, Table 3 also includes the case 

of no covariate relationships.

The simulation results show that the use of X led to better estimates of μ0 and μ1. For 

example, the relative bias in  ranged from 19% = 0.38 σ (no X) to 8% = 0.16 σ (X related 

to C and W) when πPP= 0.6. The scenario when X is related to W, but not C, helps to discern 

the role played by covariate data. In this case, the difference in slopes (condition f in the 

simulations) can be represented as an interaction term for C and X in the regression model 

for W corresponding to (4.5), thereby aiding parametric identification of the mixture 

distribution. When β0 = μ1 there will still be some benefit due to X. Specifically, the 

conditional or adjusted means (associated with the main effect of X) will be equal to the 

unadjusted means ((β0 and β1), but reduced conditional (population) variances help to 

disentangle the mixture distribution. In this sense, increased precision due to covariate 

adjustment not only provides improved efficiency but also improved identification, even in 

the absence of an interaction of X and C.

Table 3 also shows a pronounced effect of changes to (πPP on the allocation rate, which 

ranged from 0.64 (πPP= 0.6, no X) to 0.81 (πPP = 0.8, X relates only to W). Larger values of 
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πPP also led to reduced bias in  but increased bias in . The simple model of no covariate 

data makes explicit the tradeoff expressed by the directional differences in bias. For 

example, the overall AR of 0.77 (row 7) decomposes into the conditional allocation rates 

among subjects of type PP and PA, equal to 0.88 and 0.31, respectively. Thus, 

misclassification errors are concentrated in the mixture component with substantially fewer 

data. Note that AR remained fairly stable across scenarios for a given value of πPP. This 

suggests that the estimated probabilities are more difficult to improve solely through the 

addition of covariate data. Rather, it may be necessary to include a disproportionate number 

of subjects of type PP (via πPP) to ensure sufficient information for their distribution when 

PACE(W) and PACE(Y) are the target estimands.

To supplement the results in Table 3, we carried out simulations for the case of no covariate 

data, with n as large as 500 and πPP = 0.7, 0.8. Table 4 shows that increasing the 

(standardized) difference between π0 and π1 improves estimates at the population (reduced 

bias) and subject (reduced misclassification) levels. In particular, comparison to Table 3 

shows AR to benefit as much or even more from a larger mean difference as from inclusion 

of X (n = 200). Note that there is modest impact due to even substantial increases to the 

sample size.

To summarize the main findings: (1) the impact of covariate data can be considerable but is 

largely limited to population estimates; (2) the overall allocation rate can be substantially 

improved at the expense of heavily misclassifying subjects of type PA; (3) even large 

increases to sample size are less important than the choice of W and the effect size it 

imposes on the mixture structure.

5.3 Extension to final outcome Y

The ability to improve the allocation rate by including a greater number of subjects of type 

PP is specifically pertinent to inference for PACE(Y) because the estimators for the two 

PACE estimands are connected solely through the individual estimates of latent type 

membership (see expression 4.4). For the simulation setup for W, the negative impact of 

titling the study sample in this way is to degrade inference for subjects of latent type PA. 

However, it is necessary to further consider Y to evaluate the impact on overall performance.

For simplicity, we return to the design setup in Section 4. Let Y|(C = PA) ~ N(m, 1) and Y|(C 

= PP) ~ N(0, 1). (To be consistent with simulation notation, we suppress the conditioning on 

Z = 0, D = P.) Two extreme cases are instructive. First, suppose that m is much larger than 

E(W|C = PA) – E(W|C = PP) > 0. In this case, the penalty paid for misclassifying a subject 

of type PA will larger when considering the outcome Y than for W, given greater for 

separation of the mixture components comprising the distribution of Y; accordingly, we 

would expect greater bias Ê(Y|C = PP) because subjects of type PA are from the same 

distribution as for subjects of type PP. When differences between PP and PA means are 

similar for W and Y, the bias in the two estimates would be similar. We expect the patient's 

underlying clinical process to moderate differences in mixture structure over time, making 

the last case generally most likely.
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A more tractable evaluation of overall performance is possible when Y is discrete, as in the 

clinical example in Section 5.1. Assume now that Y| (C = PA) ~ Bernoulli(p0) and Y| (C = 

PP) ~ Bernoulli(p1). Recall from Table 3 that the relative bias in  is at 

most 9% when X is related to W or (W, C), or equivalently at most 0.18 of a standard 

deviation. If we assume p0 = 0.7, p1 = 0.3, the between-type effect size is approximately 

0.80, which is less than the one standard deviation (ES) difference for E(W| C = PA) – (W|C 

= PP). In this case, we would expect that the penalty paid for overweighting subjects of type 

PA will not differ too much for the two estimators, say perhaps at most 10% relative bias in 

Ê(Y|C = PP) or equivalently 0.065 of a say perhaps at most 10% relative bias in Ê(Y|C = PP) 

or equivalently 0.065 of a standard deviation (much less than the 0.18σ for W). Similarly, if 

p1 were instead equal to 0.5 (p0 = 0.7), then a relative bias of 10% would translate to 0.1 of a 

standard deviation. If the between were larger, e.g., 1.3 ES, as would occur when p0 = 0.85, 

p1 = 0.25, the relative bias would likely not exceed that Ê(W|C = PP) when expressed in 

standard deviations units. These calculations suggest that the overall performance of the PS 

setup for the SMART-ES design largely inherits that obtained for the intermediate outcome 

W.

6. Discussion

Underlying our approach to addressing nonadherence in randomized trials is the premise 

that if the trial design anticipates and adapts to nonadherence then it is possible to conduct 

an analysis that respects the ITT principle while yielding conclusions that are clinically 

interpretable and useful. We have used the ITT principle to motivate conversion of the fixed 

treatments offered in the conventional treatment trial design into an adaptive intervention 

that reflects best clinical practice. The key element is the introduction of an adaptive 

decision point midway into the trial to address a patient's reluctance to remain on a 

medication or therapy that is not yet fully evaluable. The resulting SMART-ES structure 

importantly isolates by design one patient's ‘mid-course’ dissatisfaction with a substantial 

exposure to current treatment from another patient's highly premature discontinuation from 

treatment (when it may occur). This has allowed us to define relevant ITT causal effects by 

applying the standard ‘all-or-none’ Principal Stratification to the first stage of the design to 

address early discontinuation. Restricting the PS setup in this way helps to represent 

nonadherence as a binary indicator (persist or not), which is often unrealistic when treatment 

is considered across the entire study protocol (see Stuart et al. [24] for discussion). The 

clinical underpinnings of the timing of the adaptive decision point and corresponding 

definition of persistence played a role as well, by providing a scientific basis for needed 

assumptions.

The ‘persistence’ PS estimand referred to as PACE in this paper is new but similar in latent 

type structure to the previously studied ‘survivor average causal effect’ (SACE). As for 

SACE, the failure of the usual exclusion restriction creates the need to strengthen 

identification of PS causal effects in other ways. One approach has been to use a form of 

latent independence as an identifying assumption [17,25], which is a version of assumption 

A6 in Section 4 used to simplify EM calculations. Instead, we have explored how covariate 

data could aid parametric identification, particularly with the goal to effectively link 
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inference for PACE(W) to that for PACE(Y) via individual estimates of latent type 

membership. For this reason, the allocation rate was used as a primary measure in the 

evaluation of the performance of the PS setup.

The simulation study highlights the importance of collecting data on covariates and 

intermediate outcomes so that appropriate X and W can be used to maximize covariate 

associations and between-type separation in the PS mixture structure. Since primary interest 

is in PACE(Y), there is greater flexibility in selecting W than in typical PS analyses. The 

potentially wider set of outcomes also provides more opportunity to expand to a bivariate PS 

mixture model. Choosing W = (W1,W2) that are either highly correlated or close in expected 

value should improve the predictive accuracy of estimates of latent type [20, 26]. We have 

shown that better individual estimates can also be achieved when the proportion of type PP 

in the study population is high (πPP = 70%, 80%). In this case, inference for subjects of type 

PA degrades, but this seems to be a good tradeoff, particularly for the SMART-ES context. 

Specifying design criteria such as inclusion and exclusion of subjects so as to increase πPP 

may take better advantage of covariates deemed related to latent type than (only) including 

them in the analysis.

To fully evaluate the PS setup, we considered the impact on inference for PACE(Y) of tilting 

the study sample to favor PP subjects and conclude that the overall performance largely 

inherits that obtained for PACE(W). We expect this pattern to hold generally for other PS 

models (e.g., expansion to bivariate W) because the estimators for PACE(Y) and PACE(W) 

are connected solely through the individual estimates of latent type membership. This 

property of our approach allows the details of the PS modeling for W (or W) to be carried 

out flexibly according to the application, choosing methods for good subject-level estimates. 

This would be particularly important when the monotonicity assumption (A4) is in doubt 

and better parametric identification is needed (e.g., through more elaborate Bayesian models 

[26, 27]). This may be the case, for example, when the trial compares a new treatment to a 

placebo control.

The focus on psychiatric treatment trials in this paper was motivated by the high rates of 

nonadherence that occurred in two innovative large-scale effectiveness trials for depression 

and schizophrenia. The problems of nonadherence and early discontinuation are also 

widespread for treatment of medical disorders, making the SMART-ES design and the 

‘persistence’ PS setup more broadly of interest. Such applications may more commonly 

entail consideration of placebo-controlled studies. The case of a placebo control in 

comparison to a treatment for psychiatric or medical illness maps directly into the one 

considered in detail in previous sections (a generally tolerated active control). In particular, 

any occurrence of intolerance while taking placebo may usually be deemed a failure to 

persist, given the absence of any adverse effects due to treatment or sufficient duration 

during the early phase of the trial for intolerable symptoms to develop under placebo. 

Hence, the identifying assumptions introduced in Section 4 apply immediately, thereby 

giving our approach greater generality. We note that when early discontinuation from the 

treatments or therapies of interest is modest or negligible, the simplest version of the 

SMART-ES design can be applied with little assumption. In particular, there are no 
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restrictions on the nature of the control or experimental treatments and their effects, as there 

is no need to apply Principal Stratification.

Finally, as noted by others, the reliance on latent mixtures to define ITT effects taxes 

feasibility of their inference in the absence of structural restrictions to fully identify the 

causal estimand. Successful SMART-ES implementation may require tuning basic design 

elements (who gets into the study, what is the nature of the treatments) in order to maximize 

between-type effect sizes and minimize the proportion of study subjects that are extraneous 

to the ITT effect.
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Figure 1. 
Two-stage SMART-ES design for evaluating four strategies (strategy 2 is bolded). There are 

two options for initial medication, T0 and T1. The ATS alternatives for mid-course treatment 

changes are adaptively randomized to individuals preferences.

Dawson and Lavori Page 17

Stat Med. Author manuscript; available in PMC 2016 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dawson and Lavori Page 18

Table 1

Latent type membership in cells determined by Z, D (D trinary)

D = P D = A D= I

Z = 0 PP, PA, PI AA, AP,AI II, IP,IA

Z = 1 PP,AP, IP AA, PA,IA II, PI, AI
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Table 2

Latent type membership in cells determined by Z, D (D trinary)

D = P D = A

Z = 0 PP, PA AA, AP

Z = 1 PP,AP AA, PA
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Table 3

The impact of the binary covariate X as it relates to (C,W)

Regression scenario
a π PP π̂pp

AR Relative
b
 bias of μ̂1

Relative bias of μ̂0

X not related to W or C 0.6 0.57 0.64 0.19 0.16

X related to W 0.6 0.58 0.67 0.08 0.08

X related to W and C 0.6 0.62 0.65 0.08 0.09

X not related to W or C 0.7 0.65 0.68 0.15 0.18

X related to W 0.7 0.69 0.72 0.07 0.09

X related to W and C 0.7 0.73 0.73 0.08 0.10

X not related to W or C 0.8 0.75 0.77 0.11 0.21

X related to W 0.8 0.79 0.81 0.04 0.10

X related to W and C 0.8 0.72 0.76 0.09 0.17

a
Indicates which regression relationships were simulated and fit to the data

b
Relative bias of 
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Table 4

The impact of sample and effect sizes when there are no covariate data

Sample size Effect size
a π PP π̂pp

AR Relative
b
 bias of μ̂1

Relative bias of μ̂0

200 1 0.8 0.75 0.77 0.11 0.21

500 1 0.8 0.77 0.77 0.10 0.19

200 1.5 0.8 0.77 0.81 0.10 0.20

300 1.5 0.8 0.78 0.82 0.08 0.23

400 1.5 0.8 0.79 0.82 0.08 0.22

500 1.5 0.8 0.79 0.82 0.07 0.21

200 1 0.7 0.65 0.68 0.15 0.18

500 1 0.7 0.67 0. 69 0.12 0.14

200 1.5 0.7 0.68 0.76 0.11 0.23

300 1.5 0.7 0.70 0.77 0.09 0.22

400 1.5 0.7 0.70 0.78 0.08 0.21

500 1.5 0.7 0.70 0.78 0.08 0.20

a
Effect size = μ0-μ1

b
Relative bias of 
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