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Abstract

Cellular differentiation and evolution are stochastic processes that can involve multiple types (or 

states) of particles moving on a complex, high-dimensional state-space or “fitness” landscape. 

Cells of each specific type can thus be quantified by their population at a corresponding node 

within a network of states. Their dynamics across the state-space network involve genotypic or 

phenotypic transitions that can occur upon cell division, such as during symmetric or asymmetric 

cell differentiation, or upon spontaneous mutation. Here, we use a general multi-type branching 

processes to study first passage time statistics for a single cell to appear in a specific state. Our 

approach readily allows for nonexponentially distributed waiting times between transitions, 

reflecting, e.g., the cell cycle. For simplicity, we restrict most of our detailed analysis to 

exponentially distributed waiting times (Poisson processes). We present results for a sequential 

evolutionary process in which L successive transitions propel a population from a “wild-type” 

state to a given “terminally differentiated,” “resistant,” or “cancerous” state. Analytic and numeric 

results are also found for first passage times across an evolutionary chain containing a node with 

increased death or proliferation rate, representing a desert/bottleneck or an oasis. Processes 

involving cell proliferation are shown to be “nonlinear” (even though mean-field equations for the 

expected particle numbers are linear) resulting in first passage time statistics that depend on the 

position of the bottleneck or oasis. Our results highlight the sensitivity of stochastic measures to 

cell division fate and quantify the limitations of using certain approximations (such as the fixed-

population and mean-field assumptions) in evaluating fixation times.
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1. Introduction

Stochastic models of populations are commonly applied to biological processes such as stem 

cell dynamics [1, 2], tumorigenesis [3, 4, 5, 6, 7, 8], cellular aging [9], and organismal 

evolution [10, 11]. In such applications, one is often interested in the statistics of the time it 

takes for members of a population to first arrive at a specific “absorbing” state. Such a state 

may represent, for example, a high fitness phenotype that eventually takes over the entire 

population.

A classic biomedical application of first passage times of a single conserved entity arises in 

models of cancer progression that attempt to describe the survival probability of patients as a 

function of time after initial diagnosis or treatment. In the Knudsen hypothesis of cancer 

progression (illustrated in Fig. 1) [12, 13], an individual acquires a certain number of 

sequential mutations or “hits” before acquiring cancer [14, 15, 5]. If multiple rare transitions 

are required before onset of disease, we can define the probability of transition from state ℓ 

to state ℓ + 1 in time dt as wℓ(t)dt. The overall waiting-time distribution W(t) to first arrive at 

the diseased state ℓ = L + 1 is a convolution of all the wℓ(t) and can be easily expressed using 

Laplace transforms: . Since each mutation is considered rare, the event 

times of each mutation are exponentially distributed. If all transitions occur at the same rate, 

k0 = k1 = … = k, wℓ(t) = ke−kt, and W̃(s) = kL/(s + k)L. The inverse Laplace transform then 

gives [16]

(1)

This expression assumes that all the transition rates are equally rate-limiting. If kt ≪ 1, the 

survival probability against disease onset is approximately

(2)

If sufficiently accurate fitting of this expression to measured S(t) can be performed, the 

number of mutations, or “hits” L before onset of cancer can be inferred. Using this Knudsen 

hypothesis [14], typical cancers have yielded L ~ 4 – 15 or higher [17, 18].

Such studies implicitly assume a “single-particle” picture of a conserved random walker that 

eventually reaches a target. On a cellular level this picture is appropriate for a single 

immortal and nonproliferating cell that successively acquires different mutations. Estimates 

and scaling relationships of first passage times of conserved particles on complex networks 

have been developed in more general contexts [19, 20]. Similar results have been developed 

for a fixed multiple number of noninteracting particles [21]. Inverse problems (similar to the 

inference of the number of mutations in Knudsen’s hypothesis) have also been recently 

explored. Li, Kolomeisky, and Valleriani [22] considered how first passage times of a 

conserved random walker can be used to estimate the shortest paths to the absorbing site, 
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even for nonexponentially distributed waiting times between jumps within the network. First 

passage times of Brownian motion and random walks have also been used to infer properties 

of continuous energy landscapes [23, 24].

If a network is finite, and all nodes are connected, conserved particles will always arrive at 

an absorbing state and the survival probability S(t → ∞) → 0. However, in the presence of 

other pathways for particle annihilation, the absorbing site may never be reached. Additional 

particles need to be continuously injected into the network in order for one of them to 

eventually arrive with certainty at a specific absorbing state [25]. Alternative annihilation 

pathways and immigration lift the fixed population constraint and is an essential feature in 

cell and population biology.

Going beyond single-particle picture, the classic Wright-Fisher and Moran models of 

evolution consider a population of organisms distributed between two states [10]. Evolution 

across multiple states or fitness levels have also been explored in models of stochastic 

tunneling [26, 27, 28]. Many of these models impose a fixed mean population and do not 

resolve the possible microscopic transitions an organism can take during the evolution 

process. These differences in the “microscopic” mechanisms of evolution are especially 

distinguishable in cell biology, in which changes in genotype or phenotype can arise 

spontaneously in an individual cell, or from symmetric or asymmetric replication. Different 

cell fates are clearly important in the context of stem cell differentiation and cancer [11, 8, 2, 

29]. Moreover, due to cell death, cell populations typically have high turnover within the 

timescale of their evolution. Therefore, the total instantaneous population need not be fixed, 

even if the ensemble-averaged population remains constant. We shall see that the different 

transitions inherent in cellular differentiation and evolution, as well as fluctuations in 

population, can qualitatively affect fixation times.

We begin by considering a whole population of cells or “particles” in a network. Fixation in 

this context will be defined by a single cell or particle first arriving at an absorbing node. 

Absorbing nodes can represent, for example, terminally differentiated, fully drug-resistant, 

or highly fit, fully cancerous states. We first treat only a noninteracting population and 

temporarily neglect any regulation or population constraint such as carrying capacity. The 

analysis is simplified when the total population is unconstrained; however, we will extend 

mathematical framework in order to resolve the effects of different types of allowed 

transitions. To describe the evolution of a whole population of cells and their arrival times to 

the absorbing nodes, we exploit a multi-type Bellman-Harris branching process that allows 

for general distributions of waiting times between transition events [30, 10, 31]. Our 

approach is related the analysis of Portier, Sherman, and Kopp-Schneider [4] and the 

simulations of Sherman and Portier [3], but we provide numerical, asymptotic, and exact 

mean-field results to illustrate the effects of microscopic transformations and the different 

ordering of their rates. New approximations for analyzing processes constrained by carrying 

capacity are also developed.

In the next section, for completeness, we present the continuous-time semi-Markov multi-

type branching formalism and derive the equations obeyed by the probability generating 

functions for particle numbers at each node in the network. The corresponding equations for 
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the survival probabilities are then derived. By further assuming exponentially distributed 

waiting times and a sequential evolution model, we explicitly derive the matrix Riccati 

equation governing the evolution of survival probabilities in the presence of immigration. In 

the Results, we present analytic, asymptotic, and numerical results for survival probabilities 

and mean first passage times. Effects of the probabilities of the different cellular transitions 

on our results are explored. A breakdown of mean-field theories of survival probabilities 

(even when particles are noninteracting) is described. Effects of heterogeneity in the 

transition rates are discussed in the context of evolutionary oases and bottlenecks. The 

conditions under which the order of the transition rates along the evolutionary chain can 

affect the survival probabilities and first passage times are investigated. Finally, we 

summarize our results, discuss related biological applications, and describe extensions and 

future directions.

2. Mathematical Model

Here, we describe in detail a stochastic multi-type population in the presence of 

immigration. The general framework is presented before restricting ourselves to 

exponentially distributed inter-transition times and sequential evolution for a more detailed 

analysis.

2.1. Multitype Branching Process

Our analysis of the problem is most efficiently performed using an age-dependent multi-type 

branching process where a parent cell of type k waits a time τ before dividing into a number 

of cells of possibly different types. Cells with different numbers of mutations, or at different 

stages of differentiation, can have different distributions of waiting times before 

proliferation. Moreover, each cell type, upon proliferation, can yield different numbers of 

new cells. In the analysis of this multi-type branching process, we employ the probability 

generating function (pgf)

(3)

in which z = (z1, z2, …, zL, zL+1) and n = (n1, n2, …, nL, nL+1). Pk(n; t) is the probability at 

time t the entire population contains nj cells of type j, given that the system started at t = 0 

with a single cell of type k. We assume that all daughter cells proliferate independently and 

that each branching event of a single cell of type k yields m1, m2, …, mL+1 cells of type 1, 2, 

…, L + 1 with probability a(k)(m1, m2, …, mL+1)≡ a(k)(m).

What equation of evolution does Fk(z; t) obey? For notational simplicity, it is easiest to first 

consider a single-species branching process described by the simple pgf F (z, t) that 

corresponds to P(n, t|1, 0), the probability of n particles at time t, given a single parent 

particle at t = 0. If we now define F(z, t|τ) as the generating function of the process 

conditioned on the original parent particle having first “branched” between τ and τ + dτ, we 

write the recursion [10, 30, 32]
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(4)

where

(5)

defines the probability a(m) that a particle splits into m identical particles upon branching. 

Since this overall process is semi-Markov [33], each daughter behaves as a new parent that 

issues its own progeny in a statistically equivalent manner to the original parent, giving rise 

to the compositional form in Eq. 4. We now average Eq. (4) over the distribution of waiting 

times between branching events, g(τ), to find

(6)

This Bellman-Harris branching process [30, 31] is defined by two parameter functions, a(m), 

the vector of progeny number probabilities, and g(τ), the probability density function (pdf) 

for waiting times between branching events for each particle. Given a single-particle initial 

condition, F (z, 0) = z and Eq. 6 can be solved to find a F (z, t), from which P (n, t|1, 0) can 

be generated.

For our multistate model, we simply generalize Eq. 6 to a multi-type process, where 

particles at different states constitute different types. The vector of progeny probabilities 

a(m) now becomes a matrix a(k)(m) coupling the birth of different types of particles from a 

parent particle of state k. Thus,

(7)

is the pgf of the progeny number distribution matrix associated with each branching event. 

The relationship for the multi-type pgf becomes

(8)

where gk(τ)dτ is the probability that a particle of type k branches between time τ and τ + dτ 

after it was created.

The probability that starting from one parent cell in state k no cell of type L + 1 has formed 

up to time t is simply . According to the 
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definition of the pgf in Eq. 3, we can extract this survival probability using Sk(t) = Fk(zj≠L+1 

= 1, zL+1 → 0+; t). Setting zj≠L+1 = 1 in Eq. 8, we find

(9)

where S = {Sj≠L+1} is the vector of survival probabilities initiated by a single cell in state j. 

Since L + 1 is defined as an absorbing state, we are interested in the first time a particle first 

arrives at node L + 1. Therefore, by setting AL+1 = 0, we allow particles to only accumulate 

in state L + 1, and define the survival probability SL+1(t) = FL+1(zi≠ L+1 = 1, zL+1 = 0) = 0. 

This “boundary condition” in the starting positions, along with the initial conditions Sj≠L+1(t 

= 0), completely defines the problem for S(t).

Note that our model neglects particle-particle interactions and that the transition 

probabilities a(k)(m) do not depend on the number of particles in the network. Therefore, all 

initial particles behave independently and the survival probability associated with a system 

initiated with N cells at node i = 1 is simply Σ(t) ≡ [S1(t)]N. Provided that no particles leave 

the network other than through state L + 1, Sk(t → 0) = o(t−1), the mean first arrival time 

 is well-defined. However, if the particle dynamics include death, there can 

be extinction before node L + 1 is reached, and the mean arrival time T will diverge. In this 

case, a more useful measure of the speed of evolution would be the mean arrival time 

conditioned on arrival at L + 1 [25].

A process that ensures arrival to the final state L + 1 is injection of particles from an external 

source. We can extend the branching process formulation to include immigration of parent 

particles into the system [34, 35]. Suppose that particles of type i are injected into the system 

with inter-injection times distributed according to hi(τ). Upon assuming an initially empty 

network, the pgf for the total particle numbers resulting from independently injecting type i 

particles is thus [30, 34, 35]

(10)

where  is the pgf constructed from the probability bi(ni) that ni 

particles are simultaneously injected into state i during each immigration event. For 

example, if particles are injected only three-at-a-time into node i, bi(ni) = δni,3. In a cellular 

biology setting, immigration into the ith state can arise from spontaneous mutation or from 

mutations acquired during replication of an “external” (not included in the states k) wild-

type cell or primordial stem cell. Therefore, , where bi(1) and bi(2) 

are the probabilities that during each event, one and two cells immigrate into state i, 

respectively. For example, asymmetric differentiation of a stem cell would produce a single 

incrementally-differentiated cell (state i) and would be described by the asymmetric 

differentiation probability bi(1). On the other hand, symmetric differentiation into state i 

would simultaneously inject two cells into state i and occur at a rate proportional to bi(2). 

Since these are the only allowed mechanisms of cellular immigration, bi(1)+ bi(2) = 1. In the 
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presence of immigration into all possible stages, the pgf of the total particle number is thus 

.

Upon using Eqs. 8 and 10 to find Ψ(z; t), one can construct quantities such as the expected 

number of cells of type k, 〈nk(t)〉 = (∂Ψ(z; t)/∂zk)|z=1, and the probability that no cells have 

yet reached the fully mutated state i = L + 1: Σ(t) = Ψ(zj≤L = 1, zL+1 → 0; t). Without loss of 

generality, we henceforth restrict our analysis to immigration only into node i = 1. This limit 

can be explicitly constructed by letting the times between consecutive immigration into 

stages i > 1 diverge. For example, if hi≠1(τ) = limTi→∞ δ(τ − Ti), Eq. 10 then yields Φi≠1 → 

1 and Ψ(z; t) = Φ1(z; t).

When i = 1, Eq. 10 shows that the overall survival probability Σ(t) in the presence of cell 

immigration obeys

(11)

By solving Eqs. 9 for S1(t) and using the result in Eq. 11, we can find the overall survival 

probability of an initially empty network after cells begin to immigrate into state i = 1. Since 

cells are not conserved (in particular, they can die), Sj≠ L+1(t → ∞) need not vanish. 

However, provided particle injection into state i = 1 persists, the absorbing state will 

eventually be reached with certainty and Σ(t → ∞) → 0. Depending on the immigration 

frequency and number of imported particles per injection event, reaching the terminal state 

may be rate-limited by either the internal dynamics defined by a(k)(m) and g(τ), or by 

immigration described by bi(ni) and hi(τ). Finally, the mean first passage time (MFPT) can 

be calculated from [25, 36]

(12)

2.2. Exponentially distributed sequential processes

Our results can be simplified if branching and immigration times are exponentially 

distributed, gj(τ) = λje−λjτ and h1(τ) = β1e−β1τ. After some algebra, Eqs. 9 and 11 become

(13)

(14)

Thus, the survival probability can be explicitly expressed as

(15)
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where S1(t) is found from solving Eq. 13.

The analysis can be further simplified by assuming a sequential evolution processes where 

each division by a cell can yield only daughter cells of the same type or of an incrementally 

more differentiated (or mutated) type. In other words, when a type k cell attempts to 

proliferate, either death occurs, or daughters of only type k and/or k + 1 are produced. 

Consequently, a(k)(m) = 0 for any mj > 0 when j ≠ k, k + 1. Therefore, Fk+1 in Eq. 8 is 

coupled to Fk through the integrand Ak[F1, F2, …, FL+1], and one must solve for all Fj. To 

be explicit, if the only possible transitions are those depicted in Fig. 2(a), we find

(16)

In the context of cell biology, the probabilities a00, a01, a02, a11 and a20 shown in Fig. 2 

represent death, somatic mutation, symmetric differentiation, asymmetric differentiation, 

and replication after each attempt at cell division. Note that we have not restricted the 

waiting time distributions for the different transitions. However, for exponentially 

distributed waiting times, gj(τ) = λje−λjτ, we can define rates for the individual processes by 

, and , as shown in Fig. 2(b). 

Similarly, we define α1 = β1b1(1) and α2 = β1b1(2) as the rates of injecting a single particle 

and double particle into state i = 1, respectively. The values μk, νk, pk, qk, and rk correspond 

to rates of death, somatic mutation, symmetric differentiation, asymmetric differentiation, 

and symmetric replication, respectively, of cells in state k.

A sequential evolution model can thus be constructed by assigning a set of transition 

probabilities at each successive cell state, or node, as shown in Fig. 3. Eq. 13 for Sk(t) and 

the associated initial condition thus reduces to

(17)

and Sk≤L(0) = 1, SL+1(t) = 0.

3. Results

In this section, we present both analytic and numeric results for Sk(t), Σ(t), and the MFPTs T 

for sequential, exponentially distributed processes described by Figs. 2 and 3. We discuss 

their properties as functions of transition rates and system size, and compare these results 

with those obtained from the simplest mean-field approximations.

3.1. Linear processes

For “linear” dynamics, defined by pk = qk = rk = 0, Eqs. 17 for the survival probability in the 

absence of immigration and for a single particle initially in state k are linear and can be 

solved exactly using Laplace transforms:
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(18)

This result explicitly shows that S̃
1(s), and hence Σ(t) is invariant with respect to the order of 

μi + νi = λi. Therefore, heterogeneity in the transition rates of this linear Poisson process 

does not influence the first passage times to the absorbing state. Similarly, the survival 

probability for a sequential process with general waiting time distribution gk(τ) can be found 

from solving Eq. 9 to find , which is also clearly independent 

of the order of the transitions.

Eq. 18 can be inverted to obtain explicit expressions for Sk(t). S1(t) can be then used in Eq. 

15 to obtain the full survival probability Σ(t), and ultimately the MFPT using Eq. 12. For 

uniform λk = λ, Eq. 18 simplifies to

(19)

which is equivalent to the survival probability of a zero-range process with death [37].

If there is no immigration nor death (μ = 0 and λ = ν), the process is analogous to an 

irreversible multistep Moran process in which a parent cell immediately dies after producing 

one mutated/evolved/differentiated daughter cell. The conservation of particles means that 

eventual arrival to any connected node L + 1 is certain. For an initial condition of N particles 

in node k = 1, the mean time for a first cell to arrive at the terminal state L + 1 can be 

constructed from the survival probability S1(t) of a single particle that can only hop forward.

(20)

The result S1(t) for a asymmetrically hopping particle on a finite one-dimensional lattice is a 

special case considered in Pury and Caceres [38].

If there is death (μ > 0) but also immigration (α1 and/or α2 > 0), the explicit expression for 

the overall survival probability Σ(t) can be found by using Eq. 18 for S1(t) in Eq. 15. In the 

constant λ = μ + ν case, we find

(21)
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When α2 = 0 (no double-particle immigration), the integral  can be 

approximated in the small and large limits of Ω ≡ (α1/λ)(ν/λ)L by considering the structure 

of integrand Σ(t) in Eq. 12[39]:

(22)

Fig. 4(a) shows exact survival probabilities of the homogeneous sequential linear process for 

different values of chain length L. For comparison, we plot curves corresponding to different 

rate parameters μ and ν relative to the total uniform transition rate λ = μ + ν. Fig. 4(b) plots 

ln λT as a function of chain length L. For large ΩL, the rate limiting step is immigration and 

the MFPT is approximately the inter-immigration time, normalized by the probability each 

immigration event eventually leads to fixation (the Ω ≪ 1 limit in Eq. 22).

3.2. Nonlinear processes

Now, consider cell replication processes where pk +qk +rk > 0. When these higher order 

cellular processes arise, Eq. 17 is nonlinear for N > 1, and the evaluation of survival 

probabilities and first passage times must be approximated or computed numerically. From 

Eq. 15, we can see that for sufficiently small α1/λ, the survival probability will scale as Σ(t) 

~ e−α1(1−S̄1)t. Note that if μk = 0 for all k, the only steady-state solution to Eq. 17 is Sk(t → 

∞) ≡ S̄
k = 0. Hence, Σ(t) ~ e−α1t, indicating that immigration is the rate limiting step. In the 

following we we will provide results to a few specific illustrative cases.

3.2.1. Mean field Approximation—The simplest approximation to the survival 

probability can be obtained without using Eqs. 13 and 15. The time rate of change of 

survival is simply defined as the total probability flux into absorbing states, conditioned on 

no particle having yet entered any absorbing state [25]. In our problem, the unconditioned 

instantaneous particle flux into state L + 1 is Jmf(t) ≡ (pL + qL + νL)〈nL(t)〉, where 〈nL(t)〉 is 

the expected occupation of state L. If we assume that the mean occupation is uncorrelated 

with the probability Σ(t) of survival, Σ̇
mf ≈ −Jmf(t)Σmf. This approximation is exact when 

particles are always independent and is widely used. The survival probability under this 

mean-field assumption is thus

(23)

The unconditioned occupation 〈nL(t′)〉 can be found using mass-action equations for the 

particle density at each site. The Laplace-transformed expected particle number can be 

written as

(24)
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where ai ≡ 2pi + qi + νi and bi ≡ μi + νi + pi − ri. Like Eq. 18, this result shows that the 

mean-field survival probability of a system injected at the first site is independent of the 

specific order of the rates. Moreover, upon comparing Eq. 24 to Eq. 18, we see that the 

mean field survival probability Σmf(t) = Σ(t) is exact if α2 = pi = qi = ri = 0.

For general rates but uniform ai = a and bi = b, the general mean-field approximation for the 

survival probability is

(25)

which has a form analogous to Eq. 21. To explicitly see that Σmf(t) is not exact when any α2, 

p, q, r > 0, consider the single intermediate state case L = 1. In this case, Eq. 17 can be 

solved exactly to yield explicit expressions for S1(t) and Σ(t):

(26)

where

(27)

and

(28)

Analogous results have been previously considered a general context [28] and in the context 

of clonal expansion in the two-hit cancer progression model [40].

Fig. 5 explicitly shows the difference between Σ(t) and Σmf(t) (Eq. 25) for various values of 

α2, p, q, r > 0. The discrepancy between the exact and mean-field results vanishes as (α1/b)

(a/b)L/L! ≫ 1. In this limit, the numbers of particles derived from independently immigrated 

lineages are sufficiently large such that the effects of correlations among their branching 

times are small. The mean-field limit can also be derived by considering the solution to S1 in 

the short time limit when it deviates only slightly from unity. Linearization of Eq. 17 about 

Sk = 1 results in a set of equations whose solution also yield the mean-field result of Eq. 25.

3.2.2. Numerical results—To investigate the effects of nonlinear proliferative processes 

on evolution and first passage times in larger systems, we solve Eq. 17 numerically and use 

Eqs. 15 and 12 to find survival probabilities and MFPTs. Since Eq. 17 is nonlinear, we 

expect the ordering of the rates and positioning of defects along the chain to influence first 

passage times, in contradistinction to linear processes in which spatial ordering of rates does 

not play a role.

Chou and Wang Page 11

J Theor Biol. Author manuscript; available in PMC 2016 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We first compare proliferative processes with an irreversible-mutation linear Moran-type 

process in which asymmetric differentiation occurs followed immediately by death of the 

parent cell. This assumption is typically used to enforce fixed population (in the absence of 

immigration) and in our framework corresponds to νk > 0 and μk = pk = qk = rk = 0. This 

process is linear and a mean-field assumption yields exact results. A related nonlinear 

process can be defined by qk = μk > 0 (and νk = pk = rk = 0). This process will give rise to 

identical expected populations 〈nk(t)〉 if qk are assigned the same values as νk used in the 

linear Moran-type process. Here, asymmetric differentiation and death are balanced such 

that the mean occupations are identical to those derived from the linear process μk = pk = qk 

= rk = 0. However, in the linear process, mutation and death of the parent particle are 

completely correlated, unlike in the nonlinear process (qk = μk > 0) in which they occur 

independently. The nonlinear process allows fluctuations in the total population to affect 

FPT statistics. In Fig. 6, Σ(t) and the MFPTs between two processes with uniform intrinsic 

rate f, (ν = f, p = q = r = μ = 0) and (q = μ = f, ν = p = r = 0), are contrasted. The results in 

Fig. 6 can also be qualitatively understood from the likelihood of any particle at site k 

generating one at site k + 1. If μ = q = f > 0, then any single cell would have a probability of 

only one half of generating an advancing daughter cell particle. However, in the linear 

Moran-type process with ν = f, all particles will eventually move forward.

In the small α1/f limit, the MFPT of the nonlinear proliferative process scales as T ~ α1(1 − 

S̄
1)−1. For μ = q = f, S̄

1 = L/(L + 1), and T ~ (L + 1)/α1 > Tmf, where Tmf is the exact mean-

field result for the MFPT of the linear Moran-like process, which can be found from Eq. 22 

or by using Eq. 25 in Eq. 12. When α1/f is large, the number of statistically independent 

particles in the system is large and the survival probability of the proliferative process will 

approach a common mean-field limit (Eq. 25). Thus, the relative difference between the 

MFPTs of the linear spontaneous mutation process and the mean-field-equivalent nonlinear 

process diminishes at large injection rates α1 (and α2). Nonetheless, cells in the proliferative 

process have a nonzero death rate and the MFPT is bounded above by that of the linear 

process. Therefore, in terms of reaching the absorbing state, we observe that the linear 

irreversible Moran-type process is always faster.

Next, consider another proliferative process that might be expected to yield similar FPTs as 

the linear Moran-like process. If cells undergo only symmetric differentiation and death with 

rates p = μ = f and q = r = ν = 0, a parent cell can die or beget two differentiated daughters 

that each die at the same rate. Even though the expected populations of this process and of 

the irreversible Moran-type process (ν = f) differ, the mean positions of the lead particle are 

equal (conditioned on survival). Fig. 7(a) shows the survival probabilities of the two 

processes for two different values of immigration. For small immigration rates α1/f, the 

linear (mean-field) process reaches the absorbing state faster, while for high immigration 

rates, the proliferative process is faster. Fig. 7(b) plots the MFPT of the two processes as a 

function of injection rate. For small α1/f, the exact MFPT Tmf of the linear process can again 

be found from the first limit in Eq. 22, while the MFPT of the nonlinear proliferative process 

scales as T ≈ α1(1 − S̄
1)−1. In this case, the lineage associated with each injected cell has a 

possibility of becoming extinct before fixation, resulting in a MFPT diverging as 1/α1. For L 

= 10, S̄
1 ≈ 0.861 and T ≈ (0.139α1)−1 > Tmf. When α1/f is large, Σ(t) for the nonlinear 
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proliferative process approaches the mean-field result in Eq. 25. Moreover, the associated 

MFPT can be shown to be less than the MFPT for the linear process. Thus, there is a cross-

over at a particular value of immigration below which the linear process becomes 

evolutionarily faster than the proliferative process. For large α1, immigration is sufficiently 

fast to allow overall proliferation to push lead particles to overtake those of the 

corresponding linear Moran-type process, leading to a smaller MFPT.

Finally, we illustrate the effects of two types of deserts (or bottlenecks) and two types of 

oases in an otherwise uniform evolutionary chain. Bottlenecks or deserts at site L* may arise 

from an enhanced death rate μ*, or from a suppression in ν*, p*, and/or q*. A local oasis can 

modeled by increased proliferation rates such as r* or p*. For example, Fig. 3 depicts a 

sequential process with an enhanced growth rate at site L*. Fig. 8 plots the MFPT for a 

bottleneck (a), and an oasis (b), at different positions along the chain. For the parameters 

used, bottlenecks are most effective at slowing down fixation when placed near the start the 

chain; conversely, an oasis is most effective at speeding up fixation when placed near the 

start of the chain.

The linear dependence on bottleneck position shown in Fig. 8(a) can be understood by 

viewing this scenario as a FPT problem in the second segment of the chain L* < ℓ ≤ L + 1. 

Related sequential segmentation methods have also been used to self-consistently compute 

steady-state transport fluxes across excluding 1D lattices [41, 42]. Here, the bottleneck 

reduces the effective immigration rate into the second segment. If the bottleneck is 

sufficiently strong (as are the cases shown in Fig. 8(a)), immigration into the second 

segment is rate-limiting and since ν = 0, we expect the MFPT to scale as 1/(L − L* + 1).

The effect of an oasis site in the presence of an otherwise uniform process involving death 

and spontaneous mutation is to decrease the MFPT, as shown in Fig. 8(b). If the rates at site 

L* are such that r* > μ* + ν*, there can be unlimited growth and the rate of immigration into 

site L* + 1 will exponentially increase time. Thus, an oasis near the beginning of the 

evolutionary chain will strongly drive immigration into the remaining segment and be more 

effective at reducing the MFPT to fixation compared to one that is hard to get to near the 

end of the chain.

An oasis with a positive net growth rate leads to an unbounded population at long times. 

However, our approach does not allow for interactions and constraints such as carrying 

capacity. Nonetheless, if the first arrival times to L + 1 are much smaller than the time it 

takes for any site to reach carrying capacity (K > exp [(r* − μ*)T]), our unlimited growth 

model still provides a reasonable approximation to the FPT.

In the opposite limit of small carrying capacity (K ≪ exp [(r* − μ*)T]) another 

approximation to the MFPT can be obtained. We can model an oasis by assuming that in an 

otherwise homogeneous chain along which p = q = r = 0, site L* carries a growth process 

with a carrying capacity K and r* → r*(1 − nL*/K). We also assume that μ* = 0 and that r* is 

greater than all other rates in the model. Therefore, once the first particle arrives at site L*, 

its population quickly rises to a level ~ K. These cells then feed into site L* + 1 through 

mutational processes described by ν, p, or q. By considering two linear processes joined by 
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an oasis at site L*, the MFPT to state L + 1 can be approximated as the mean time to reach 

L* plus the time to reach state L + 1 given an effective immigration rate Kν into site L* + 1. 

Not only does the MFPT depend on the spatial structure of the inhomogeneity, but in many 

cases, there will be an optimal placement of an oasis which most effectively reduces the 

overall MFPT. Such an optimal placement can be explicitly seen by considering Eq. 22 in 

the small immigration limit:

(29)

where Ω ≡ (α1/λ)(ν/λ)L*−1 and Ω* ≡ (Kν/λ)(ν/λ)L–L*
. This approximation clearly shows a 

position-dependent MFPT provided ν/λ < 1 (μ > 0). The position  which yields the 

smallest MFPT in the ΩL*, Ω*(L – L*) ≪ 1 limit can be approximated by solving ∂T (L, L*)/

∂L* = 0:

(30)

which shows that when Kν ≈ α1, the oasis lowers the MFPT the most when placed near the 

midpoint of the chain. Eq. 30 provides good estimates of the optimal oasis position  and 

its dependences on rates.

In Fig. 9(a) we use Eqs. 15 and 12 to compute the MFPT of a two-segment chain. For the 

segment before the oasis, we use , while for 

the second segment, . Evaluating the total 

MFPT T (L* – 1) + T (L – L*) clearly shows that the most effective positioning of an oasis is 

such that the segment with rate-limiting immigration is shortest. Since changes in μ only 

affect  logarithmically, small changes in the death rate do not affect the optimal oasis 

position. However, when μ increases, as shown in Fig. 9(b), the MFPTs across each segment 

increases exponentially with its length, increasing the sensitivity of the overall MFPT to L*.

4. Discussion & Conclusions

We have formulated an efficient way to analyze FPTs on a network containing multiple, 

mutating, and proliferating particles. Our model allows one to naturally study stochastic 

evolutionary processes and explicitly include cell fate decisions, fluctuations in total 

number, and immigration. An analogous generating function approach to multistage 

mutation of populations has been studied [3, 4]. Here, a number of asymptotic limits are 

explored and comparisons with mean-field calculations of survival probabilities performed. 

Kinetic Monte Carlo simulations were also performed and checked against our results. Our 

main findings illustrate the importance of specific cellular transitions and how mean-field 

assumptions can be misleading when used to compute first arrival times. Therefore, in 

evolutionary networks on which cells can stochastically participate in a number of 

proliferative processes, care must be taken in calculating fixation times. Even though 

expected particle numbers of a noninteracting particle system can typically be found exactly 

using mean-field approximations, our results explicitly show how survival probabilities and 
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first passage time statistics cannot be treated using simple mean-field approximations if 

particles can proliferate. These discrepancies are prominent in conditions of low 

populations, as encountered in stochastic tunneling.

Furthermore, we find in this work that proliferative processes, including symmetric and 

asymmetric cell differentiation, render FPTs dependent on the order of the transition rates 

along a sequential evolutionary chain. A related model of first passage times with 

immigration into a simple two-path network where each node presents environments with 

different fitness [43]. For a linear network, in many scenarios, we find that bottlenecks are 

most effective at increasing the MFPT when placed at the beginning of an evolutionary 

chain, while an unlimited oasis reduces the MFPT most effectively at the beginning of the 

chain. If the growth rate of an oasis site is faster than any other time scale, the mean times to 

the terminal state can be approximated by the mean time for the first cell to arrive at the 

oasis, plus the time for the progeny of any cell arising from an oasis to arrive at the terminal 

site. In the presence of regulating interactions that generate e.g., a carrying capacity K, we 

find intermediate oasis positions that optimally reduce the MFPT to the final L + 1-state. 

This optimal position is qualitatively determined by the ratio of the effective immigration 

rates into each of the segments and deviates from the halfway point by the log of the ratio of 

immigration rates, with the shorter segment associated with the smaller effective 

immigration rate.

Collectively, our results suggest that fixation times across a number of biological systems 

may be sensitive to the precise transitions allowed. Examples include stem cell 

differentiation [2] and mutation [29], where each differentiation or mutational state is 

represented by distinct nodes. Our approach is also particularly appropriate for modeling 

progression and drug resistance in cancer. Since mutated or precancerous cells may likely 

have only a small fitness advantage [18], the numbers of cells in these states may be small, 

and the effects of proliferative nonlinearity may be important. In such cases, cell states that 

are drug resistant will do the most harm when occurring at the beginning, or in the interior 

of the mutational sequence, depending on, respectively, whether a carrying capacity arises or 

not. We have investigated only simple, irreversible transitions along a 1D sequential chain. 

Extensions to more complex networks and nonexponentially distributed processes (such as 

cell-cycle timing) can be readily investigated by numerically solving Eqs. 9 and 11. More 

complex distributions of different transition rates can also be easily treated numerically.

Finally, note that depending on the specific network structure and transitions, estimates for 

MFPTs can be achieved by segmenting the chain according to the most rate-limiting stages. 

However, if waiting time distributions or transition rates vary slowly across nodes in a large 

network, equations for the survival probability Sk(t) (such as Eq. 17) can be studied in the 

continuum “hydrodynamic” limit: Sk(t) → S(x, t), x = k/L [44]. Although large system size 

expansions and continuum limits of a discrete master equation are known to yield inaccurate 

first passage times [45], continuum limits of Sk(t) and analysis of the resulting PDEs may 

provide accurate estimates of the discrete system.
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Figure 1. 
Multistage model in disease progression. When multiple steps are before the system reaches 

diseased state L + 1, an L-fold convolution of the state-dependent individual waiting time 

distributions provides the overall waiting time distribution and the survival probability 

against disease.
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Figure 2. 
(a) The five possible transitions of a single cell at an initial stage (white) and their 

probabilities amn. Dividing cells can produce daughters at a more differentiated or mutated 

stage (red). Since these are the only possible steps, a00 + a01 + a11 + a20 + a02 = 1. (b) When 

inter-transition times are exponentially distributed, the rates of each process can be defined 

in terms of the branching rate and the branching probabilities  at each node k.
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Figure 3. 
A sequential evolution model. The possible transitions and their rates are labeled. The rate 

of single-particle immigration due to e.g., asymmetric differentiation into state k = 1, is 

defined by α1 = β1b1(1), while the rate of two-particle immigration arising from e.g., 

symmetric differentiation into state k = 1 is defined by α2 = β1b1(2). Heterogeneities in the 

transition rates along the sequence can be easily incorporated in our computation. Localized 

heterogeneities (e.g., at site L*) can be used to model oases or bottlenecks. Our analysis 

focusses on the first arrival time to state L + 1.
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Figure 4. 
(a) Survival probabilities for L = 5, 10, 15 plotted as a function of λt. The set of three thin 

red curves decaying at short times correspond to α1 = λ, α2 = 0, μ/λ = 0.01, ν/λ = 0.99, while 

the three black curves decaying at longer times correspond to μ/λ = ν/λ = 0.5. The effects of 

increased chain length L are more dramatic when particle decay is faster and length-

dependent stochastic tunneling becomes rate-limiting. (b) Plots of ln(λT) as a function of L 

for α1/λ = 1, 10, 104 with fixed α2 = 0, μ/λ = 0.1, and ν/λ = 0.9. The two dashed curves 

correspond to the asymptotic limits in Eq. 22.
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Figure 5. 
Comparison between exact solutions and mean-field approximations for L = 1. (a) Σ(t) and 

Σmf (t) for μ = 0 and r/λ = 0.7 (solid) and r/λ = 0.4 (dashed). As expected, differences are 

larger for larger values of r/λ, where survival probability and the mean occupation 〈n1(t)〉 

share more correlations. (b) Σ(t) (solid) and Σmf (t) (dashed) for different values of single-

particle immigration α1 and fixed α2 = μ = 0, r/λ = 0.6, and (p + q + ν)/λ = 0.4. The 

difference is largest for smaller α1 where immigration is rate limiting, and the first arrival at 

the absorbing state k = 2 is more likely from particles that have replicated at k = 1. (c) 

Relative errors of MFPTs Δ ≡ (T − Tmf)/T as a function of α1 for the combinations of r/λ, 

μ/λ indicated. When rates of nonlinear processes (r in this case) are large, the error is large. 

In the limit of vanishing r/λ, mean-field theory becomes exact and Δ vanishes.
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Figure 6. 
Comparison of two mean-field-equivalent processes ν = f and μ = q = f along a chain of 

length L = 10. (a) The dashed curves are Σ(t) for the linear process ν = f and μ = p = q = r = 

0, while the thick solid curves correspond to numerical solutions of Eq. 17 for the nonlinear 

process μ = q = f and ν = p = r = 0. Due to the independent decay processes, the MFPT of 

the nonlinear process is always greater than that of the linear process. (b) MFPTs as 

functions of ln(α1/f). Despite the mean-field equivalence, mean-field approximations to the 

FPTs are qualitatively inaccurate.
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Figure 7. 
Comparison of two processes with similar mean lead-particle positions. (a) This dashed 

curves are Σ(t) (which is equivalent to Σmf) for the linear process ν = f and μ = p = q = r = 0, 

while the thick solid curves correspond to numerical solutions of Eqs. 17 and 15 for the 

nonlinear process μ = q = f and ν = p = r = 0. Due to independent decay process, the MFPT 

of the nonlinear process is always greater than that of the linear process. (b) The MFPTs as 

functions of ln(α1/f) for these two processes also dramatically differ, but a cross-over occurs.
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Figure 8. 
Spatial dependence of bottlenecks and oases. (a) Dependence of the MFPT on the position 

of a bottleneck. In an otherwise uniform chain with q = μ = f, ν = p = r = 0, cells at site L* 

die with increased rates μL* ≡ μ* = 5f (red circles) and μ* = 10f (blue squares). 

Alternatively, this bottleneck site may have a diminished asymmetric division rate qL* = q* 

= 0.05f (black triangles). (b) The dependence of the MFPT on the position of an oasis at a 

site with no death (μL* = 0), enhanced growth rates rL* ≡ r* = 2f, 5f, and corresponding 

immigration rates α1 = f and α1 = 10f, respectively. In the rest of the chain, there are no 

proliferative processes (p = q = r = 0) and cells both spontaneously mutate and die with rate 

ν = μ = f.
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Figure 9. 
MFPT in the presence of an oasis with large growth rate r* → ∞ but a finite carrying 

capacity K. (a) ln fT for various carrying capacities K at fixed immigration rate α1 = 10f and 

spontaneous mutation and death rate ν = μ = f. (b) When α1 = Kν = 10f, both effective 

immigration rates are equal and the MFPT-minimizing position L* ≈ L/2 (Eq. 30).
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