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ABSTRACT Maize silage is forage of high quality and yield, and represents the second most important use
of maize in the United States. The Wisconsin Quality Synthetic (WQS) maize population has undergone five
cycles of recurrent selection for silage yield and composition, resulting in a genetically improved population.
The application of high-density molecular markers allows breeders and geneticists to identify important loci
through association analysis and selection mapping, as well as to monitor changes in the distribution of
genetic diversity across the genome. The objectives of this study were to identify loci controlling variation for
maize silage traits through association analysis and the assessment of selection signatures and to describe
changes in the genomic distribution of gene diversity through selection and genetic drift in the WQS recurrent
selection program. We failed to find any significant marker-trait associations using the historical phenotypic
data from WQS breeding trials combined with 17,719 high-quality, informative single nucleotide poly-
morphisms. Likewise, no strong genomic signatures were left by selection on silage yield and quality in the
WQS despite genetic gain for these traits. These results could be due to the genetic complexity underlying
these traits, or the role of selection on standing genetic variation. Variation in loss of diversity through drift was
observed across the genome. Some large regions experienced much greater loss in diversity than what is
expected, suggesting limited recombination combined with small populations in recurrent selection programs
could easily lead to fixation of large swaths of the genome.
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Silage production is the second most important use of maize in the
United States following grain production (USDA National Agricultural
Statistics Service 2014). With the expected increase in consumption of
animal, especially dairy, products worldwide, as well as regulations
currently in place in the United States and other countries in the world
related to the need to increase the presence of biomass-derived biofuel
production, improving forage yield and composition has become an
area of substantial research and development.

Maize silage is forage of high quality and yield (Coors and Lauer
2001). A major difference between maize silage and other types of
forage relates to the contribution of the grain, which represents approx-
imately 50% of the total biomass in average temperate maize hybrids in
the United States. (Lorenz et al. 2010). Cell wall–bound carbohydrates
provide another important energy source for ruminant animals. Breed-
ing for silage production in maize, therefore, involves the simultaneous
improvement of forage yield and cell wall composition. A substantial
amount of work has been dedicated to establishing associations between
the relative contribution of compositional properties—digestibility, car-
bohydrate concentration, and protein—to animal productivity (Schwab
et al. 2003). Summative equations, such as MILK2006 (Shaver et al.
2006), combine forage composition and yield to calculate expected milk
per hectare, which can be directly used as a selection criterion.

The Wisconsin Quality Synthetic (WQS) maize population was
developed by the University of Wisconsin maize breeding program
nearly three decades ago and is currently in its fifth cycle of recurrent
selection for high-quality stover and high forage yield (Frey et al. 2004;
Gustafson et al. 2010). Gustafson et al. (2010) evaluated forage yield and
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composition for each cycle of WQS per se as well as topcrosses to two
commercial testers. Linear improvements were observed in whole
plant yield, stover yield, and whole-plant composition both in the
population per se as well as topcross evaluations. Although stover
quality per se did not improve through selection, milk yield on the
basis of Mg ha21 has increased 24%. Changes in silage yield have been
greater than changes in silage composition, suggesting that the current
selection protocol tends to emphasize improvements in forage yield
compared with composition (Gustafson et al. 2010). Eight inbred lines
have been released from the different cycles of this population
(W601S, W602S, W603S, W604S, W611S, W612S, W613S, and
W614S) and made available to the public.

Recurrent selection in plant breeding is a cyclical process of
evaluation, selection, and recombination practiced within a closed
population with the goal of improving the mean population perfor-
mance while maintaining genetic variation (Bernardo 2010). Maintain-
ing genetic variation in a population undergoing recurrent selection is
critical for continued response to selection, but achieving an intensity of
selection sufficient for making genetic gain can be antagonistic to this
goal. Studies reporting changes in average diversity at the molecular
marker level within maize recurrent selection programs have been fre-
quently performed and have found decreases in diversity in proportion
to that expected through genetic drift alone (Butruille et al. 2004; Romay
et al. 2012; Labate et al. 1999). Low marker densities prevented these
studies from examining the distribution of the genetic diversity across
the genome. This is important to examine because diversity in some
genomic regions may have been maintained by chance, whereas diver-
sity in other regions may have been completely lost by chance through
the fixation of large swaths of the genome due to infrequent recombi-
nation. Only two to three crossovers per chromosome are expected in
maize (Anderson et al. 2003)

Dense genotyping of populations undergoing recurrent selection
can also be used for identifying signatures of selection, as has been
performed with model organisms (Parts et al. 2011; Turner et al. 2011)
and agricultural species such as maize (Wright et al. 2005; Hufford
et al. 2012; Wisser et al. 2008; Coque and Gallais 2006; Falke et al.
2007; Hirsch et al. 2014; Beissinger et al. 2014). When combined with
genomic information, an array of statistical methods, both widely rec-
ognized and recently proposed, hold great promise for identifying
genes underlying phenotypic response to selection and impacts of
selection on genomic structure (Lewontin and Krakauer 1973; Barrett
and Hoekstra 2011). A disadvantage of selection mapping stems from
the fact that selection is often not performed for a single trait, making it
impossible to estimate effects of individual loci on specific traits.

Association mapping is another option for identifying loci un-
derlying variation for traits of interest within breeding populations. A
major setback of this approach, however, is low power to detect rare
alleles for populations of moderate size (Myles et al. 2009). Another
issue highly relevant to the application of association mapping to pop-
ulations undergoing recurrent selection is the fact that alleles conferring
favorable values for traits are expected to change in frequency through
selection and thus contribute to structure between the different cycles of
selection. When population structure is corrected for using a mixed
linear model (Yu et al. 2006), power to detect these alleles contributing
to genetic differences between cycles is reduced (Rincent et al. 2014).
Wisser et al. (2011) proposed combining selection mapping and asso-
ciation mapping to overcome deficiencies of both methods for dissect-
ing the genetic architecture underlying response to selection.

Assessing the impact of recurrent selection on the distribution of
diversity across the genome would further the understanding of how
drift and selection shape genomic architecture. Moreover, identifying

genomic regions influencing forage composition and yield would be
beneficial to silage breeding. With this in mind, the objectives of this
study were to identify loci controlling variation for maize silage traits
through association analysis and the assessment of selection signatures
and to describe changes in the genomic distribution of gene diversity
through selection and genetic drift in the WQS recurrent selection
program. To accomplish this, individuals from multiple cycles of the
WQS recurrent selection program were genotyped using a high-density
SNP array. Phenotypic data were collated from historical records of the
long-term WQS recurrent selection program.

MATERIALS AND METHODS

Germplasm
Details on the formation of WQS can be found in Frey et al. (2004)
and Gustafson et al. (2010). The breeding protocol utilized to advance
WQS is depicted in Figure 1. Briefly, for cycles zero through three,
between 400 and 500 S1 families of WQS were initially screened for
general agronomic suitability in a high-plant-density replicated trial in
South Central Wisconsin. The same S1 families were simultaneously
self-pollinated in the breeding nursery. Approximately 50% to 67% of
the S1 families were discarded based on the stress trial. During the
following season, S1:2 families descended from random plants within
selected S1 families are crossed to testers belonging to the Stiff Stalk
heterotic group. Resulting topcross hybrids are evaluated at two loca-
tions the following summer. Evaluations used standard field plot tech-
niques for silage hybrids to estimate forage yield and composition (Frey
et al. 2004; Gustafson et al. 2010).

Details of the forage composition analysis are provided below.
Advancing WQS from cycle four to cycle five involved the same
procedures except 200 S1 families were initially screened instead of
400–500.

After the fall harvest, the top 20 S1:2 families presenting the highest
milk production index based on the MILK2006 prediction were selected.
These S1:2 families were recombined using the bulk entry method,
whereby each selected progeny is crossed with each other selected
progeny and each cross contributes equally to the next cycle of
WQS. In this setup, population improvement and inbred development
occurred simultaneously as superior finished (S6) lines were identified
through the process of selfing, topcrossing, and evaluating.

Phenotypic data
Starting in 1997, WQS silage yield trials were conducted to select the
best 20 S2 families for advancing the WQS to the next cycle. WQS C0,
C1, C2, C3, and C4 were trialed in 1997, 2000, 2003, 2006, and 2010–
2011, respectively. All trials were planted at either West Madison
Agricultural Research Station (WMARS; Madison, WI) or Arlington
Agricultural Research Station (AARS; Arlington, WI) or both. In 1997,
a trial of WQS C0 S2 topcross families was planted at one location,
WMARS, with four replications. In 2000, a trial of WQS C1 S2 top-
cross families was planted at two locations, WMARS and AARS, with
two replications per location. The WQS C2 and C3 S2 topcross fam-
ilies were evaluated at WMARS and AARS using three replications at
each location in 2003 and 2006, respectively. However, the AARS
location in 2006 was abandoned because of a severe windstorm that
caused extensive lodging. In 2010, a trial of WQS C4 S2 topcross
families was planted at WMARS and AARS with two replications,
but data quality from AARS in 2010 was very poor and it was there-
fore discarded. The WQS C4 trial was replanted at WMARS in 2011
using two replications to provide an additional environment for eval-
uation. All trials consisted of two-row plots, 6.08 m long and with 0.76 m
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spacing between rows, arranged in a randomized complete block de-
sign. Planting densities were common for silage production in the
region. Different testers were used across cycles. Tester LH119 was
used in WQS C0, LH198 was used in WQS C1, HC33 was used in
WQS C2, and LH244 was used in WQS C3 and C4. All testers used are
highly related to B73.

Most recently, nutritional quality is evaluated using MILK2006,
a summative equation for calculating milk yield based on factors that
affect whole-plant maize silage feed quality, including yield, dry matter
(DM) content, neutral detergent fiber (NDF) content, NDF digestibility
(NDFD), protein, and starch (Schwab et al. 2003). Previous versions of
this summative equation were utilized in earlier cycles of the WQS
selection program. In MILK2006, as well as previous versions, each
component (NDF, protein, and starch) is weighted to take into account
its respective digestibility. Starch and protein digestibility are traditionally
treated as constant, whereas the digestibility of the cell wall, or NDFD, is
measured separately for each resulting hybrid. In vitro true digestibility
(IVTD), acid detergent fiber (ADF), NDF, crude protein, and starch are
predicted using a global near-infrared reflectance calibration developed
in-house at the University of Wisconsin (https://cornbreeding.wisc.edu/
nirs). Wet chemistry procedures to develop the calibration set are de-
scribed elsewhere (Frey et al. 2004; Gustafson et al. 2010). The sum-
mative equation is then used to develop predictions of milk yield
described as kg milk yield Mg21 DM and kg milk yield ha21.

Genotyping
Remnant seed of available S2 families from WQS C0 to WQS C4 and
of S1 families from WQS C5 were germinated. Immature leaf tissue
was collected from 10 individual plants and pooled to represent each
of the S2 (for WQS C0 to WQS C4) and S1 (in the case of WQS C5)
families, respectively, selected at each cycle. Genomic DNA was extracted

from each sample using a modified CTAB method (Saghai-Maroof et al.
1984). Samples were then genotyped using the Illumina MaizeSNP50
BeadChip, an Infinium HD assay (Illumina, Inc. San Diego, CA) with
56,110 SNP markers distributed across the maize genome (Ganal et al.
2011). Alleles for each sample were called using the Genotyping Module
within the Illumina Genome-Studio software. The built in GenCall data
analysis software, which relies on the GenTrain clustering algorithm, was
used for automatic clustering and calling of genotypes (Oliphant et al.
2002; Fan et al. 2003). To maintain only the highest-quality SNPs, a
GenCall threshold of 0.6 was used. This filtering resulted in a dataset of
17,719 high-quality SNPs to be used for further analysis. The mean
frequency of missing data was 0.07, with a range of 0 to 0.20. Of these
markers, 15,646 were polymorphic, with polymorphic markers being
defined as those with minor allele frequencies greater than 0.025. Missing
marker scores were imputed using Beagle (Browning and Browning
2009) implemented in the R package Synbreed (Wimmer et al. 2012).
Imputation accuracy was defined as the mean posterior probability of the
most likely genotypes and calculated using the gprobsmetrics utility in the
Beagle package. The average imputation accuracy in this SNP dataset
was greater than 99% for all chromosomes.

Analysis of phenotypic data
Data from different cycles were kept separate and the initial
phenotypic data analysis was performed for each cycle separately.
The following mixed linear model was fit to the phenotypic data

yijk ¼ mþ gi þ lj þ glij þ bkð jÞ þ eijk

where yijk is the observation of the ith family evaluated in the jth

environment in the kth replication; m is the intercept; gi is the effect
of the ith family; lj is the effect of the jth environment; glij is the

Figure 1 Schematic of the selec-
tion protocol utilized to advance
the Wisconsin Quality Synthetic
(WQS) population. A second
generation (S2) topcross selection
method is utilized to improve this
germplasm. Inbreds derived from
succeeding cycles of improvement
are developed and released. Pop-
ulation improvement and inbred
development occur simultaneously.
The red oval highlights the ap-
proximately the 20 S2 families that
originate each subsequent cycle
of selection.
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interaction between the ith family and jth environment; bk(j) is the
effect of the kth replicate nested within the jth environment; and eijk is
the residual. Environment and replicate effects were modeled as
fixed effects. Family and family-by-environment interaction effects
were modeled as random effects assumed to be independent and
identically distributed. Variance components were estimated using
restricted maximum likelihood and best linear unbiased predictions
(BLUPs) for each trait were calculated for families. Each cycle was
analyzed separately. All calculations were performed using the sta-
tistical analysis software ASReml-R (Butler et al. 2009).

Variance components were used to calculate broad-sense herita-

bility (H) on a family-mean basis as H ¼ s2
G

s2
Gþs2

GE=eþs2
e=re

, where s2
G is

the variance among families, s2
GE is the variance due to family-by-

environment interaction effects, s2
e is the residual variance, e is the

number of environments, and r is the number of replications in each
environment.

Genomic heritability
The proportion of variation among S2 family BLUPs across cycles
explained by the genomic relationship matrix was calculated. The
genomic relationship matrix among all families was calculated as:

G ¼ WCWC’

2
P
l
plql

where WC is the centered genotype matrix, and pl and ql are allele
frequencies at the lth locus (Endelman and Jannink 2012). The fol-
lowing G-BLUP model was fit to the data:

ĝ ¼ Xbþ Zuþ e

where ĝ is the vector of family BLUPs; b is a vector of fixed year effects
(corresponding to selection cycle); u is a vector of random additive
genetic values where u eMVNð0;Gs2

uÞ; e is a vector of residuals; and
X and Z are incidence matrices relating b and u to ĝ, respectively. All
calculations were made using ASReml-R (Butler et al. 2009) and the
variance components s2

u and s2
e were estimated. Genomic heritability

was calculated as h2G ¼ s2
u

s2
uþs2

e
(De Los Campos et al. 2013).

Association mapping
A genome-wide association analysis for each trait was performed
using the model:

ĝ ¼ XbþWmþ Zuþ e

where ĝ, X, b, Z, u, and e are as above; m is a vector of marker
effects; andW is a matrix comprising marker scores. The association
analysis was implemented using EMMA (Kang et al. 2008). A sta-
tistical threshold of P = 1024 was used to declare significant marker-
trait associations. Because a preliminary analysis indicated no markers
surpassed this threshold, no further effort was made to better define
the statistical threshold to correct for multiple testing.

Selection mapping and gene diversity
Allele frequencies in WQS C2 and WQS C5 were calculated based on
their maximum likelihood estimate, i.e., the observed number of cop-
ies of the minor allele divided by twice the number of individuals with
an observed genotype. WQS C2 was utilized rather than WQS C0 or C1
because samples from the earlier cycles of selection did not include
enough individuals for reliable estimates of allele frequencies. SNP-
specific FST values based on a comparison of C2 and C5 were computed

according to Fst ¼ s2=ðp�ð1� p�Þ þs2=rÞ; where s2 is the sample vari-
ance of allele frequency between populations, p� is the mean allele
frequency across populations, and r is the number of populations (Weir
and Cockerham 1984).

Significance thresholds were determined via drift simulations of
the demographic history of the WQS population, assuming linkage
equilibrium between markers. Simulations were conducted within R
(R Core Team 2014). For each SNP in C2, a simulated allele frequency
in C5 was created according to the WQS selection protocol, incorpo-
rating generations of selfing, crossing, evaluating, and recombining
based on the precise number of individuals utilized at each step in
the WQS program. Allele frequencies in C2 and C5 were used to
calculate simulated FST values for each SNP. The maximum FST value
observed across SNPs was recorded. This process was repeated 1000
times. The 95% quantile of maximum FST values observed from sim-
ulations was taken as a simulated 95% significance threshold that
accounts for multiple testing across all 17,590 SNPs. The R script used
for simulations is provided (Supporting Information, File S1).

The above simulations assumed linkage equilibrium. This is
a conservative approach because it allows for more independent tests
than may truly be appropriate; since SNPs are inherited in linked
segments, the true number of independent loci may be lower than the
number of SNPs. To explore this possibility, the effective number of
markers (Meff), were computed with the simpleM software (Gao et al.
2008). The above simulation strategy was again used, but with the
results of simpleM incorporated. To achieve this, the C2 starting pop-
ulation was simulated by samplingMeff SNPs, whereMeff was obtained
utilizing the parameters PCA_cutoff = 0.99 and 0.95. Ultimately, uti-
lizing theMeff SNPs instead of the total number of SNPs did not result
in a substantive difference in the estimated significance threshold.
Therefore, thresholds obtained via linkage equilibrium simulations
were utilized throughout this experiment.

We also performed an enrichment analysis to assess if there is an
excess of loci displaying a large change in allele frequency. This was
achieved by using the previously described simulations to identify the
expected 95% and 99% quantiles of FST over the course of the experi-
ment. Then, the observed proportion of loci exceeding these quantiles
was computed. Theoretically, 5% and 1% of loci will exceed these
quantiles, assuming no selection.

Gene diversity (D; i.e., expected heterozygosity) was estimated for
each SNP and for each selection cycle from WQS C2 through C5
using D̂lc ¼ 12 ðp̂2lc þ q̂2lcÞ, where D̂lc is the gene diversity estimate
for the lth SNP in the cth selection cycle, p̂lc is the allele frequency of
that SNP, and q̂lc ¼ 12 p̂lc (Weir 1996).

RESULTS

Association mapping
A total of 648 individuals from the WQS population were genotyped
for this study. Most individuals came from WQS C2 to C5, whereas
only 16 individuals were genotyped from WQS C0 and C1 (Table 1)
because of germination problems most likely a result of seed source
age. Both genotype and phenotype data were available for between 240
and 300 families from WQS C1 to C4, depending on the trait.

Trait means and ranges are displayed in Table 2 to provide an
overview of the phenotypic data analyzed for the association analysis.
The range in silage yield within a given cycle was, on average, 45% of
the mean. On the other extreme, the range in IVTD within a given
cycle was, on average, 8.5% of the mean. Broad-sense heritabilities on
a family-mean basis for each cycle were mostly moderate to high
(Table 3). An exception was the H for yield in WQS C2. Broad-sense
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heritability was generally higher for dry matter and starch, and lower
for ADF and NDF. The h2G within cycles was mostly low except for dry
matter, CP in WQS C2, and starch WQS C4. The h2G across cycles was
also low. This indicates that while the genotype accounts for a fair
proportion of the phenotypic variation within a given cycle or year
of evaluation, little of the variation is captured by an additive relation-
ship matrix.

Using phenotypic data from historical field trials, an association
analysis was performed to identify important genomic regions control-
ling variation for these yield and compositional traits. Unfortunately, no
statistically significant associations (P , 1024) were made for any trait
(Figure S1).

Selection mapping
A wide range of FST values was observed between SNPs. Since the
selection protocols and number of selected individuals at each generation
were recorded throughout this experiment, this enabled a simulation-
based approach for identifying significance thresholds for the bound-
aries of FST expected to result from drift alone. The 20 S2 families
selected within each cycle led to a strong bottleneck that the popula-
tion repeatedly experienced, resulting in a high significance threshold.
To obtain 95% and 99% probabilities of no false positives, respectively,
significance thresholds were set at FST = 0.743 and 0.707.

There were no SNPs that exceeded these significance thresholds
(Figure 2). Often, much more lenient outlier thresholds are utilized for
selection-mapping experiments. Outlier thresholds involve comparing
the observed data with its own empirical distribution, thereby
guaranteeing that a specified proportion of the data is identified as
candidates for selection. Utilizing a 99% outlier threshold in this
study would have meant setting the significance threshold at FST =
0.340 and identifying 175 “significant” SNPs. Simulations demon-

strated that this significance value is substantially lower than the
effects of drift may allow.

Additionally, by evaluating drift simulations without accounting
for multiple testing, we determined that it is expected that 5% and 1%
of SNPs will exceed FST values of 0.214 and 0.328, respectively, due to
drift alone. We used these values to assess whether there is enrichment
for high-FST SNPs in the data. We observed that 6.139% and 1.137%
of SNPs exceed these uncorrected thresholds, respectively, indicating
there is little evidence of enrichment for SNPs displaying high FST.

Reduction of gene diversity
Despite no strong signatures of selection and marker-trait associations,
an examination of D for each locus shows that reductions were not
uniform across the genome (Figure 3). A large reduction in D was
observed in regions on chromosomes 2 (�132 million bp), 3 (�55
million bp), and 4 (�78 million bp). These regions of relatively greater
loss in diversity were defined visually by examining the D plots in
Figure 3. Average D across all loci was reduced from 0.352 in C2 to
0.285 in C5. Although average genome-wide D was only reduced by
19% from C2 to C5, average D in these regions on chromosomes 2, 3,
and 4 was reduced by 62%, 79%, and 67%, respectively. The large
region on chromosome 2, for example, had an average D of 0.355 in
C2, which is very close to the average genome-wide D in C2. By C5,
however, the average D was only 0.135, which is well below 1 SD of D
(genome-wide SD = 0.131).

DISCUSSION
The first objective of this study was to identify loci controlling
variation for traits important to silage breeding using a combination of
association and selection mapping. Despite moderate to high entry-
mean heritabilities within cycles (Table 2) and documented genetic

n Table 1 Individuals with genotypic and phenotypic data included in the evaluation of the WQS population

Both Phenotypic and Genotypic Data

Cycle Silage Yield Dry Matter NDFa ADFa IVTDa CPa Starch Genotypic Data

WQS C0 0 0 0 0 0 0 0 5
WQS C1 6 6 6 0 6 6 6 11
WQS C2 0b 60 60 60 60 60 60 163
WQS C3 80 80 79 79 79 79 79 88
WQS C4 154 154 114 114 114 114 114 170
WQS C5 0 0 0 0 0 0 0 211
Total 240 300 259 253 259 259 259 648

Population was selected for five cycles for silage yield and compositional traits.
a

NDF, neutral detergent fiber; ADF, acid detergent fiber; IVTD, in vitro true digestibility; CP, crude protein.
b

Data for silage yield from WQS C2 was not included because of zero heritability (see Table 2).

n Table 2 Mean, minimum, and maximum of each trait in each year (cycle) of evaluation

WQS C1 WQS C2 WQS C3 WQS C4

Trait Units Mean Min Max S/sP
a Mean Min Max S/sP Mean Min Max S/sP Mean Min Max S/sP

Silage yield Mg ha21 7.2 5.7 8.5 0.74 8.9 8.5 10.5 0.24 9.7 5.3 12 1.17 8.7 6.1 10.5 0.81
Dry matter % 32.1 26.6 42.0 0.07 39.5 33.5 49.2 20.34 34.1 29.3 39.8 0.44 36.9 30.1 43.7 0.31
NDF % 53.3 48.2 58.5 20.23 50.5 46.7 55.4 21.11 46.9 42.9 51.1 20.35 44.8 42.0 49.3 0.23
ADF % —b — — — 26.2 23.6 29.7 21.04 24.7 22.1 27.7 20.42 23.0 21.4 25.8 0.24
IVTD % 70.9 65.9 75.0 0.26 82.4 80.0 86.2 1.07 78.6 76.1 81.5 0.26 81.1 78.2 83.7 20.33
CP % 7.2 6.3 8.0 20.18 8.0 7.2 8.8 0.15 7.0 6.2 8.1 20.24 6.9 6.2 7.5 0.51
Starch % 21.9 12.7 30.6 20.01 27.9 20.8 33.7 0.61 30.5 20 34.9 0.37 31.4 25.2 35.7 0.04
a

A standardized selection differential was calculated for each cycle by dividing the selection differential by the phenotypic SD.
b

ADF was not measured in WQS C1.
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gain for silage yield and composition in WQS (Frey et al. 2004;
Gustafson et al. 2010), no significant results were obtained.

The genetic complexity underlying silage quality and yield is
antagonistic to identifying loci contributing to variation and therefore
selection response. Although the genetics underlying mechanisms
involved in cell wall digestibility could be complex, the dependence of
silage quality on grain content, which is related to grain yield, surely
makes silage quality increasingly complex. Grain is highly digestible
and accounts for approximately 50% of total dry matter of silage
(Coors and Lauer 2001). Also, variation in the effectiveness of the ear
as a sink can influence stover composition through its effect on dry
matter partitioning and transport of sugars to the ear (Coors et al.
1997). Stage of plant development at which plants are harvested con-
tributes to variation in silage quality (Jung and Casler 2006). If genetic
variation for time to maturity exists within a population, then this
variation will be confounded with variation for stover quality. Finally,
plant components vary for digestibility and fiber concentrations, and
genetic variation exists for digestibility of specific plant components
(Hansey et al. 2010). Therefore, the genetic complexity of silage quality
on a whole-plant basis could easily equal that of grain yield given its
dependence on grain yield and plant morphology.

Because starch content in silage and sink-source dynamics are
important contributors to quality, and genotype-by-environment
(G·E) interactions are an important source of variation for grain yield,
it is not surprising that silage compositional traits are highly influenced
by G·E interactions, which has been observed in previous studies
(Argillier et al. 2000; Mechin et al. 2001). This source of variation
reduces the contribution of the genetic signal to the total variation,
decreasing power to detect marker-trait associations and selection sig-
natures across years. On top of possible strong G·E effects, epistatic
interactions could reduce the contribution of main allelic effects, and
thus result in a loss of power for making associations. Although com-
paring variance components and thus heritabilities is fraught with
issues because of high standard errors, examination of Table 3 shows
that the proportion of variation accounted for by the additive genomic
relationship matrix is low relative to the entry-mean broad-sense her-
itability in most cases. This suggests the importance of interactions
underlying the variability for these traits, both epistatic interactions
within cycles as well as G·E interactions across cycles. Another con-
founded source of variation is allele-by-tester interactions. As noted in
Materials and Methods, different testers were used in the different
cycles, opening the possibility for tester interaction to dilute the main

n Table 3 Broad-sense heritability on a family-mean basis (H) and genomic heritability (h2G) for each trait in each selection cycle of the WQS
selection program and h2G across cycles

Silage Yield Dry Matter NDF ADF IVTD CP Starch

Cycle H h2G H h2G H h2G H h2G H h2G H h2G H h2G
WQS C1 0.43 —a 0.73 — 0.33 — —b — 0.38 — 0.54 — 0.58 —

WQS C2 0 0 0.71 0.53 0.52 0.04 0.49 0.05 0.52 0.01 0.73 0.57 0.71 0.21
WQS C3 0.59 0.16 0.82 0.42 0.34 0 0.35 0 0.48 0 0.60 0.10 0.66 0.31
WQS C4 0.33 0.06 0.64 0.69 0.41 0 0.41 0 0.59 0.27 0.32 0 0.61 0.81
Across cycles — 0.11 — 0.42 — 0.01 — 0.06 — 0.02 — 0.23 — 0.18
a

Not enough individuals were genotyped in cycle 1 to calculate h2G.b
ADF was not measured in WQS C1.

Figure 2 FST values between
WQS cycle 2 and WQS cycle 5,
computed for each SNP. The
dashed green line depicts an
empirical 99% outlier threshold.
Blue and red lines show simula-
tion-based multiple testing cor-
rected significance thresholds,
which control for the magnitude
of drift that could reasonably be
expected according to the se-
lection protocol that was used.
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allelic effects. The testers used were all highly related, being B73 types,
and therefore the importance of this source of variation is likely less
than if unrelated testers were used.

We demonstrate that although significant genetic gain has been
realized for important silage traits within WQS, no strong selection
signature was left on the genome. There are at least two reasons for
this finding. First, the genetic signal underlying variation for silage
yield and composition is highly complex, likely comprising many
small main and interaction effects distributed across the entire
genome. This hypothesis is supported by the lack of marker-trait
associations found in this study. Second, it is possible that selection
acted on standing genetic variation caused by old mutations, meaning
that a casual polymorphism is not necessarily associated with any
particular haplotype. Such soft selective sweeps (Hermisson and Pennings
2005) do not leave a strong selection signature and are difficult to detect
using molecular markers.

The lack of a strong selection signature found by this study is in
good company among other similar findings on complex traits in
agricultural species. Kemper et al. (2014) found little to no signature on
the genome of cattle left by selection for milk yield, despite enormous
genetic gain for this trait, and large differences between cattle breeds.
Likewise, selection for grain yield in maize has left only very subtle, if
any, selection signatures (Gerke et al., in press; Van Heerwaarden et al.
2012). Once again, this is despite substantial genetic gain for grain yield

accomplished within both a recurrent selection program (Gerke et al.,
in press) and commercial breeding (Van Heerwaarden et al. 2012).

Given that genetic gain has occurred (Frey et al. 2004; Gustafson
et al. 2010), these observations indicate that the gain realized has been
accomplished through subtle allele frequency shifts at many loci. It is
encouraging to know that breeders are able to simultaneously increase
the frequency of many small-effect alleles, therefore achieving genetic
gain on highly complex traits. However, great difficulty in figuring out
the causal mechanisms underlying genetic gain for complex traits
limits our understanding of the genetics underlying selection response.
It is clear that new and more powerful methods are required to
identify signatures left by selection on highly polygenic traits.
Researchers in population genomics have realized this and have
begun developing such methods (Berg and Coop 2014).

Another implication of this study is that caution should be taken
when using historical phenotypic data from recurrent selection
programs for association mapping of complex traits. While we
recognized our power was limited because of only modest population
sizes (Table 1), we believed, based on the moderate to highH, the trait
data from individual cycles was of high-enough quality to detect
marker-trait associations. Clearly, that was a wrong assumption. Little
of the phenotypic variance across cycles (and thus years) was additive
genetic variance, with the majority likely being caused by genetic-by-
year interactions given the complexity of the silage compositional

Figure 3 Gene diversity for each SNP evaluated in the Wisconsin Quality Synthetic selection program from cycle 2 (WQS C2) to C5
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traits and their interaction with grain yield. Our experience suggests
that historical data are of limited value for association genetics on
complex traits prone to genotype-by-year interactions. We recommend
that all genotypes be re-evaluated across multiple years and locations to
maximize power for detecting associations. It is recognized that the
dataset size used herein is relatively small compared with some other
historical datasets, and historical data could be useful if vast quantities
are available (Vaughn et al. 2014).

Recurrent selection is a systematic method to increase allele
frequency of a base population, and therefore increases the probability
a superior inbred line is derived from that base population through
selection and inbreeding (Hallauer 1990). Recurrent selection in plant
breeding generally involves the selection of multiple individuals or fam-
ilies (typically 10–50) for recombination each cycle. A theoretical ad-
vantage of recurrent selection compared with simple inbreeding and
selection is that genetic variation is maintained, leading to sustained
genetic gain over time (Bernardo 2010). Response to recurrent selection
has reportedly continued after many cycles (Dudley and Lambert 2004;
Keeratinijakal and Lamkey 1993; De Leon and Coors 2002). Using
molecular markers, several studies on maize populations undergoing
recurrent selection have shown that observed average losses in gene
diversity (i.e., expected heterozygosity) are approximately equal to that
expected by theory assuming genetic drift and a given effective popu-
lation size (Lamkey and Lorenz 2014; Labate et al. 1999; Hinze et al.
2005; Butruille et al. 2004; Romay et al. 2012). None of the aforemen-
tioned studies, however, used marker densities great enough to observe
variation in diversity loss across the genome. By genotyping individuals
from multiple cycles of selection of the WQS with more than 15,000
high-quality, informative SNPs, we were able to assess the degree to
which gene diversity reductions vary across the genome. Very few
studies in maize have examined the effects of recurrent selection using
high-density SNPs (Gerke et al., in press; Beissinger et al. 2014; Hirsch
et al. 2014). Although we observed that most loci followed expectations,
a few genomic regions experienced substantial loss of diversity presum-
ably through the combination of chance and the low number of cross-
overs occurring on each maize chromosome. A similar observation was
made by Gerke et al., in press. Using the same Illumina Infinium array,
these authors observed that a number of large genomic regions within
the BSSS/BSCB1 recurrent selection populations became completely
fixed for one haplotype after 16 cycles of selection. Based on the selec-
tion procedures used, it was difficult to determine if this was caused by
drift or selection. It appears that the regions on chromosomes 2, 3, and
4 are headed for the same fate in the WQS recurrent selection program.

Given the erratic nature of drift in recurrent selection programs with
relatively small effective population sizes, combined with the limited
number of crossovers occurring on any given maize chromosome each
generation, it is entirely possible for a population to become fixed for one
haplotype across a large swath of genomic space. This means that while
genome-wide diversity in a population may be seemingly satisfactory for
continued progress, diversity within specific regions could be inadequate.
If these regions harbor loci important for traits of interest, then genetic
gain would be compromised and the population would be prevented
from reaching its full potential. A major advantage to the routine use of
high-density markers in a breeding program would be the ability to
monitor genomic variability in allelic diversity and, ultimately, to identify
any regions that would benefit from targeted injections of allelic diversity.

CONCLUSIONS
This is the first report of an analysis on genetic gain for silage yield
and composition at the genomic level. No strong genomic signatures
were left by selection on silage yield and quality in the WQS, likely due

to the complexity underlying these traits. The role of selection on
standing genetic variation could also be contributing to the lack of
strong signatures. Variation in loss of diversity through drift was
observed across the genome. A few large regions experienced much
greater loss in diversity than what is expected, indicating limited
recombination and population sizes in recurrent selection programs
could lead to fixation of large swaths of the genome.
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