Skip to main content
. 2015 Feb 9;5(4):615–627. doi: 10.1534/g3.114.016261

Table 4. Accuracy and optimal parameters of BLUP|GA for common datasets obtained from the training stage.

Dataset Trait Accuracy BLUP|GA Parameters
GBLUP BLUP|GA top%a weightb nflankc
Loblolly pine Rustbin 0.298 0.385d 0.12 0.140 0
Gall 0.237 0.346 0.32 0.450 0
Density 0.238 0.241 5.00 0.024 0
Rootnum 0.268 0.270 5.20 0.024 0
CWAC 0.475 0.478 0.15 0.006 0
Rootnum_bin 0.288 0.288 0.25 0.005 0
QTL-MAS2012 T1 0.707 0.779 0.40 0.280 5
T2 0.717 0.802 0.20 0.300 5
T3 0.761 0.847 0.20 0.600 5
GSA dataset PolyUnres 0.453 0.454 5.00 0.010 2
GammaUnres 0.442 0.546 0.12 0.123 2
PolyRes 0.390 0.391 6.00 0.010 2
GammaRes 0.410 0.491 0.17 0.175 2

BLUP|GA, best linear unbiased prediction-given genetic architecture; GBLUP, genomic best linear unbiased prediction; GSA, Genetics Society of America; SNP, single-nucleotide polymorphism.

a

Percentage of top SNPs.

b

Overall weight ω for the genetic architecture part while building T matrix.

c

Number of selected flanking SNPs near each top SNPs, the nflank was set to 0 for Loblolly and not chosen in a validation procedure.

d

Scenario with the highest accuracy is shown in bold face.