Table 4. Accuracy and optimal parameters of BLUP|GA for common datasets obtained from the training stage.
Dataset | Trait | Accuracy | BLUP|GA Parameters | |||
---|---|---|---|---|---|---|
GBLUP | BLUP|GA | top%a | weightb | nflankc | ||
Loblolly pine | Rustbin | 0.298 | 0.385d | 0.12 | 0.140 | 0 |
Gall | 0.237 | 0.346 | 0.32 | 0.450 | 0 | |
Density | 0.238 | 0.241 | 5.00 | 0.024 | 0 | |
Rootnum | 0.268 | 0.270 | 5.20 | 0.024 | 0 | |
CWAC | 0.475 | 0.478 | 0.15 | 0.006 | 0 | |
Rootnum_bin | 0.288 | 0.288 | 0.25 | 0.005 | 0 | |
QTL-MAS2012 | T1 | 0.707 | 0.779 | 0.40 | 0.280 | 5 |
T2 | 0.717 | 0.802 | 0.20 | 0.300 | 5 | |
T3 | 0.761 | 0.847 | 0.20 | 0.600 | 5 | |
GSA dataset | PolyUnres | 0.453 | 0.454 | 5.00 | 0.010 | 2 |
GammaUnres | 0.442 | 0.546 | 0.12 | 0.123 | 2 | |
PolyRes | 0.390 | 0.391 | 6.00 | 0.010 | 2 | |
GammaRes | 0.410 | 0.491 | 0.17 | 0.175 | 2 |
BLUP|GA, best linear unbiased prediction-given genetic architecture; GBLUP, genomic best linear unbiased prediction; GSA, Genetics Society of America; SNP, single-nucleotide polymorphism.
Percentage of top SNPs.
Overall weight ω for the genetic architecture part while building T matrix.
Number of selected flanking SNPs near each top SNPs, the nflank was set to 0 for Loblolly and not chosen in a validation procedure.
Scenario with the highest accuracy is shown in bold face.