
Original article

Using Ontology Fingerprints to disambiguate

gene name entities in the biomedical literature

Guocai Chen1, Jieyi Zhao1, Trevor Cohen1, Cui Tao1, Jingchun Sun1,

Hua Xu1, Elmer V. Bernstam1, Andrew Lawson2, Jia Zeng3,

Amber M. Johnson3, Vijaykumar Holla3, Ann M. Bailey3,

Humberto Lara-Guerra3, Beate Litzenburger3, Funda Meric-Bernstam3

and W. Jim Zheng1,*

1Center for Computational Biomedicine, School of Biomedical Informatics, University of Texas Health

Science Center at Houston, Houston, TX 77030, USA, 2Department of Public Health Science, Medical

University of South Carolina, 135 Cannon Street, Suite 303, Charleston, SC 29425, USA and 3Department

of Investigational Cancer Therapeutics, Institute for Personalized Cancer Therapy, UT-MD Anderson

Cancer Center, 1400 Holcombe Blvd., FC8.3044, Houston, TX 77030, USA

*Corresponding author: Tel: (713) 500 3641; Fax: 713-500-3907; Email: wenjin.j.zheng@uth.tmc.edu

Citation details: Chen,G., Zhao,J., Cohen,T., et al. Using Ontology Fingerprints to disambiguate gene name entities in the

biomedical literature. Database (2015) Vol. 2015: article ID bav034; doi:10.1093/database/bav034

Received 31 August 2014; Revised 16 March 2015; Accepted 17 March 2015

Abstract

Ambiguous gene names in the biomedical literature are a barrier to accurate information

extraction. To overcome this hurdle, we generated Ontology Fingerprints for selected

genes that are relevant for personalized cancer therapy. These Ontology Fingerprints

were used to evaluate the association between genes and biomedical literature to disam-

biguate gene names. We obtained 93.6% precision for the test gene set and 80.4% for the

area under a receiver-operating characteristics curve for gene and article association.

The core algorithm was implemented using a graphics processing unit-based

MapReduce framework to handle big data and to improve performance. We conclude

that Ontology Fingerprints can help disambiguate gene names mentioned in text and

analyse the association between genes and articles.

Database URL: http://www.ontologyfingerprint.org

Introduction

Personalized cancer therapy (1–3) relies on extensive

knowledge of cancer genes, their variants and treatments

that target these variants. Although most of this knowledge

can be extracted from the biomedical literature, identifying

genes and their associated publications with high precision

is still a daunting task, often challenging due to ambiguous

gene names in the text (4).

One way to disambiguate gene name is through gene

normalization—the task of mapping a named entity in text

(in this case a gene) to an identifier in a database (5).

However, many genes have multiple names or aliases (6).
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As an example, both genes AKT1 (7) and PTK2B (8) are

called PKB, even though they are two distinct genes with

different functions. Developing new methods to distinguish

these ambiguous gene names will significantly improve

the accuracy of information retrieval and other research-

enabling applications.

Numerous researchers have investigated gene name en-

tity normalization and recent publications reported impres-

sive performance. GNAT (9, 10) normalizes genes based

on the species referred by the text and the context in which

the gene occurs in the literature. In GNAT, contextual fea-

tures include summaries, GeneRIFs, chromosomal location

from EntrezGene and diseases, functions, tissues, key-

words, protein length and mass, mutations, domains from

UniProt as well as interaction partners and Gene Ontology

(GO) terms. The shortest path via the lowest common an-

cestors of the GO terms associated with the genes is also

used to calculate the similarity. Xu et al. described a gene

symbol disambiguation algorithm based on gene profiles in

text (11). In this algorithm, the contextual words around

the candidate gene name in the medical articles, the UMLS

Concept Unique Identifier, GO (12) annotations and

Medical Subject Heading terms are all assumed to be

related to the candidate gene name and thus coded as the

profile of that gene. In this case, vectors of all the profile

terms, scaled using Term Frequency/Inverse Document

Frequency are compared to determine the similarity be-

tween the context and the candidate gene name(s).

Although these supervised methods are effective, they

require manually curated training data sets. In addition,

bias may be introduced if the training set is not comprehen-

sive and/or representative. We recently developed a non-

supervised approach to create ontology profiles termed

Ontology Fingerprints for genes from the literature (13).

The Ontology Fingerprint for a gene or disease is a set of

ontology terms that occur more commonly in the

MEDLINE/PubMed abstracts about the gene or disease

than would be expected by chance. Each term in the

Ontology Fingerprint has an enrichment P value indicating

the degree to which it is overrepresented in the literature

about the gene or the disease (13). Ontology Fingerprints

have been successfully used to prioritize genes for Genome

Wide Association studies (13), to infer active signaling

pathways in cancer cells (14), and to develop biological

networks (15). Inspired by the Ontology Fingerprint con-

cept, we used this methodology to identify the associations

between genes and published articles, as well as to disam-

biguate variants of gene name entities in the biomedical lit-

erature. The method is implemented using a graphics

processing unit (GPU)-based MapReduce framework to

improve performance. MapReduce, introduced by Google,

is a software framework to process datasets in a distributed

fashion over several machines. The idea is mapping data to

a collection of key/value pairs so that they can be distrib-

uted to different computers for processing, then reducing

the results by merging all pairs of results with common

keys. The determinant factor for using MapReduce for an

algorithm is that all date should be able to map into the

key/value format.

Methods

Overview

We first used the ABGene/GNAT to identify gene names

from PubMed abstracts, and matched the names to the

gene name or alias of known genes. The ambiguous names

were then assessed by evaluating the degree to which the

abstract matched the Ontology Fingerprints of the genes.

Figure 1 shows the workflow of the method.

Data source and hardware

We focused on genes targeted by therapeutics for personal-

ized cancer therapy. Eleven of these genes and relevant

PubMed articles were selected and marked by oncologists

and research staff from the Institute for Personalized

Cancer Therapy at the UT MD Anderson Cancer Center.

These genes are AKT1 (Entrez Gene ID: 207), BRAF

(Entrez Gene ID: 673), FGFR1 (Entrez Gene ID: 2260),

FGFR2 (Entrez Gene ID: 2263), KIT (Entrez Gene ID:

3815), KRAS (Entrez Gene ID: 3845), NRAS (Entrez Gene

ID: 4893), MET (Entrez Gene ID: 4233), PDGFRA

(Entrez Gene ID: 5156), PIK3CA (Entrez Gene ID: 5290)

and PTEN (Entrez Gene ID: 5728).

Our main test corpus was the PubMed XML repository

as of 21 November 2013, which consists of baseline files

and updated files. The baseline files include Medline as

well as completed and quality reviewed non-Medline re-

cords found in PubMed, which are generated annually in

December. The updated files contain new, maintained and

deleted records after the baseline files were generated

(http://www.nlm.nih.gov/bsd/licensee/baseline.html). We

also downloaded the gene2pubmed file from NCBI (http://

www.ncbi.nlm.nih.gov/) for reference. Gene information

was downloaded from the NCBI repository as the diction-

ary to map the gene IDs, gene symbols and their alias and

synonyms. We used ABGene (16) and GNAT to extract

gene names from all PubMed abstracts and only focused

on those articles in which the synonyms or aliases of these

11 genes appear. For the purpose of assessment, we

ignored articles that have existing candidate gene mapping

in gene2pubmed. We obtained 90 candidate gene names

from the Medline articles detected by ABGene and 35 gene
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names by GNAT. In general, one Medline abstract corres-

ponds to one controversial gene name.

In order to improve performance, we used a GPU-based

MapReduce framework to implement part of the algo-

rithm. The software was run on a Dell Precision

Workstation T3600, with an nVidia GTX Titan GPU that

has 2.5 GB graphic memory.

Enrichment test

An enrichment test measures the probability of successes

in number of draws without replacement from a

finite population containing a certain number of

successes (http://en.wikipedia.org/wiki/Hypergeometric_

distribution).

For each gene, there is a set of associated GO terms and

their ancestors defined by biologists, which as a whole are

presumably representative of that gene [12]. One way to

measure the significance of those GO terms and thus to

quantitatively represent the target gene is through an en-

richment test: in the Medline corpus, an abstract contain-

ing both the gene name and an associated term is literally

considered as a citation for the gene, which implies the as-

sociation of that term and the gene. Counting the number

of associations indicates the significance of the term to the

gene.

The enrichment P value for each term can be calculated

using the hypergeometric test shown in Equation (1). In

this project, we used the Ontology Fingerprint generated

based on the Medline corpus before 20 December 2009.

This allows us to evaluate our method by predicting gene-

article association published after 2009.

Abs (gene) Abs (no gene) Subtotal

Abs (GO term) k — K

Abs (no GO term) n � k — N � K

Subtotal n Otherwise N

PðX¼kÞ ¼

K

k

 !
N � K

n� k

 !

N

n

 ! (1)

where N is the size of the corpus, K is the number of cit-

ations with the specific term, n is the number of citations

with the specific gene and k is the number of citations with

both of the term and gene.

K

k

 !
;

N

n

 !
;

N � K

n� k

 !
are binomial coefficients, which indi-

cate the number of combinations of k, n and n � k element

subsets in the element set K, N and N � K, respectively

Ranking PubMed articles by enrichment P value

for a specific gene

The ranking index (Ri) of an article is specific to a gene.

For that gene, the ranking index of an article is based on

PMID
9368760 PKB

Irrelevant Gene 
(UID: 2185)

Cancer Related 
Gene (UID:207)

Ontology
Fingerprint

>UID 2185
GO:0004717
GO:0019912
GO:0030295

…

ABGene/GNAT

Match

1.470.0
Yes No

Ontology
Fingerprint

>UID 207
GO:0007548
GO:0048477
GO:0007283

…

Figure 1. A diagram illustrates the process of assessing articles selected for a specific candidate gene name. In this example, ABGene or GNAT identi-

fied the candidate gene name pkb from the abstract with PMID 9368760. The identified gene name pkb matches the gene name or alias of both a can-

cer-related gene AKT1 and another gene PTK2B. We used the Ontology Fingerprints for both AKT1 and PTK2B to calculate a similarity score for the

abstract. Because AKT1 has a higher score than PTK2B, this abstract was assigned to gene AKT1 rather than gene PTK2B.
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the logarithmically scaled P values of the GO terms in that

article (a.k.a. entropy, see Equation 2).

Riðx¼jÞ ¼
Xn

t¼0
� log ðPtjÞ (2)

where Ptj is the enrichment P value for term t for gene j

and n is total number of terms occurred in article i.

The highest-ranked genes (largest Ri) are returned as

the result of this method.

As an example (Figure 2), the article contains three GO

terms associated with gene AKT1: Sex Differentiation,

Oogenesis and Spermatogenesis; the rank (Ri) of this art-

icle is 1.47.

Assessment of association of genes and articles

The disambiguation of a named entity (gene) in this project

depends on the measurement of association between

the gene and Medline articles using Ontology

Fingerprints; therefore, it is very important to validate this

measurement.

The gene2pubmed file is a well-developed and widely

recognized gene-publication association document.

Therefore, we can use the gene-publication association

in this file for validation purpose. However, the file is

not exhaustive. Thus, the absence of a gene-publication

association in the gene2pubmed file does not necessarily

indicate that the gene and the publication are not asso-

ciated. To overcome this limitation of gene2pubmed,

we manually reviewed all the Medline abstracts for

which the annotations differ from the gene2pubmed re-

cords (represented by the bars with slash red lines in

Figure 3).

Receiver-operating characteristics

To evaluate our method by the area under a receiver-

operating characteristics (ROC) curve (AUC), we defined

the 11 genes to be the positive class and the other human

genes that have synonyms with any of the 11 genes as the

negative class. Any other genes outside of the positive and

negative classes were ignored.

If the designated gene ID in the positive class was one of

the IDs for that article in gene2pubmed, it was marked as

a true positive. Otherwise, if one of the negative gene

symbols occurred in gene2pubmed in that article, it was

marked as a false positive.

Figure 2. An example of a PubMed abstract (PubMed ID: 9368760) that contains three GO terms for gene AKT1. The Ontology Fingerprint of the gene

and the calculation of the gene’s rank are illustrated.
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Cross-validation

To further validate the Ontology Fingerprint based disam-

biguation method for the gene and article association ana-

lysis, we selected an additional 223 human genes relevant

to cancer with valid Ontology Fingerprints as test gene sets

from the MD Anderson cancer gene list. We used the

Ontology Fingerprints generated from the publications be-

fore 20 December 2009 for these genes to predict the asso-

ciation of these genes with papers published after 2009.

We used 200 relevant Medline articles published after

2009 and their associated genes from the gene2pubmed file

as the positive class. As a control, we randomly selected

the same number of Medline articles that do not contain

any of the test gene names or their aliases, and are not

related to the 233 test genes in the gene2pubmed file. For

each article in the two groups, we measured its association

for all the test genes using Equation (2) and plotted the

precision with an increasing threshold to evaluate the

performance.

Implementing core algorithm using a GPU-based

MapReduce framework

As we plan to apply our method to large-scale data, we

need to develop a scalable implementation. We took

advantage of recently developed big data architecture and

developed a GPU-based MapReduce framework for our

algorithm.

The MapReduce framework (17) was developed by

Google for web search applications on clusters. The

framework reduces the complexity of parallel program-

ming and makes it easier to employ the computational

power of a large number of computing nodes. MapReduce

is also widely used in massive Natural Language

Processing data processing and bioinformatics.

GPUs are massively parallel processors with more com-

putational power and higher memory bandwidth than

Central Processing Units (CPUs) (18)—the brain of the

computer. In addition, GPUs with the same capacity as

CPUs cost less. Using MapReduce on GPU also avoids the

overhead in distributing data to different computer nodes

on clusters with a large number of computer nodes. On a

single server, workstation or desktop computers, we can

improve the performance by taking advantage of GPU and

make it possible to shorten the data processing time

dramatically.

We implemented our core algorithm on a GPU-based

MapReduce framework (Figure 4), improved from the

MARS system (19). The core algorithm performs the en-

richment test and ranks PubMed articles. One novel aspect

of our algorithm is to put the GO data into graphics mem-

ory so different threads running on the GPU can share the

data. These data sharing in GPU memory overcome the

limitation that a GPU’s graphics memory available to each

core is relatively small compared with the main memory

available to the CPU.

While implementing the algorithm in the GPU-based

MapReduce framework, we used the PubMed ID of the

articles to be analysed as the key, where the hashing tech-

nique can use gene ID or PubMed ID according to the

Figure 3. Annotation results for gene symbols in six groups, which contain common synonyms in each group. The blue bars indicate the correctly

annotated genes referring to gene2pubmed, and the bars with slash red lines indicate all the annotations that do not match any gene2pubmed

records.
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configuration. In the Map task, the algorithm first calcu-

lates the enrichment P value and then returns ranking indi-

ces for the articles. For the Reduce task, the algorithm

finds the largest rank value for the genes that will then be

sorted. A final output table is generated for further

analysis.

Results

First, we provide an overview of the ambiguities relevant

to the 11 genes that occurred in the PubMed articles.

Figure 3 illustrates the annotation results for gene names

relevant to 6 of the 11 genes in each group the genes have

common alias.

Disambiguation of gene name entities

As described in the Methods, when a candidate name is

designated as a negative gene, the incorrectly annotated

gene name is considered as a false positive. Table 1 shows

the results for six ambiguous groups. We obtained a preci-

sion of 93.6% in this project under the convention speci-

fied in the Methods section. We manually reviewed 94

Medline abstracts, identified that 75 of them mentioned

the gene subunits without specifically pointing to a gene, 8

of them refer to the gene pathways instead of the gene

names and 11 of them are mis-annotated.

Association of gene and PubMed articles

To better illustrate how our method determined the associ-

ation of a gene with a published article, we used a threshold

to filter the normalized rank of a gene for a PubMed article.

In other words, if for the article, the normalized ranking

value of the top ranked gene was less than the threshold,

then the annotation of the gene is discarded. Using this

method, we drew the ROC curve (AUC¼ 80.4%; Figure 5).

In the cross-validation test, the majority of the negative

class (152 of the 200 articles) does not contain any GO

terms associated with the test genes. Figure 6 shows the

precision changes over the increasing threshold starting

from 0. The highest precision is 92.7%.

Performance of the GPU-based MapReduce

framework

We compared the performance of the GPU-based

MapReduce framework implementation with the Lonestar

supercomputer cluster at the Texas Advanced Computing

Center (20). The Lonestar Linux Cluster consists of 1888

computer nodes, with two 6-core processors per node for a

total of 22 656 cores.

When we ran our algorithm on CPU, we used the

Lonestar cluster for parallel computing. For our analysis,

we used 144 computer nodes and over 300 GB memory.

The enrichment test and ranking computation took

33 min, with an additional 40 min of queuing time. We can

gain the same magnitude of speed when using the GPU-

based MapReduce framework. The same analysis took

75 min on a single nVidia GTX Titan GPU with 2.5 GB

graphic memory. The I/O time between GPU and CPU is

very short because the GO data need to be transferred only

twice and shared by multiple threads in GPU.

Figure 4. The architecture of the GPU-based MapReduce framework for literature ranking.

Table 1. True and false positives for the six genes

5290 207 4233 4893 2260 5728

TP 24 26 40 9 1 2

FP 7 0 0 0 0 0
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Discussion

We investigated the feasibility of using Ontology

Fingerprints to discover associations between genes and

PubMed articles, as well as to disambiguate gene name

mentions. We obtained 93.6% precision for gene name dis-

ambiguation and 80.4% AUC for gene and PubMed article

association. The Ontology Fingerprint method can im-

prove gene normalization and the analysis of gene and

article association.

We employed GPU-based MapReduce framework to

make execution of our program more convenient and af-

fordable, especially on a workstation with an appropriate

graphics card. This could be a significant advantage for

NLP labs that do not have access to large computer clusters

but need to process large amounts of literature. In addi-

tion, although using publicly available clusters is possible,

an analysis performed in such an environment will have

difficulty complying with HIPPA regulations. The GPU-

based framework has no need to distribute the data to

large a number of computer nodes and can run on a stand

alone computer in a lab, thus making HIPPA compliance

much easier.

Notably, the major ambiguity was among four genes

PIK3CA (Entrez ID: 5290), PIK3CB (Entrez ID: 5291),

PIK3CD (Entrez ID: 5293) and PIK3CG (Entrez ID:

5294), where 5290 has 206 associated GO terms, 5291 has

74, 5293 has 63 and 5294 has 380 GO terms, respectively.

For those GO terms, PIK3CA shares 60 (81%) common

GO terms with PIK3CB, 48 (76%) with 5293 and 88

(43% for 5290) with 5294. The functional similarity and

the evolutionary relationship of the sibling genes determine

the similarity of their semantic circumstances and hence

the difficulty of disambiguation, which may stymie an on-

cologist. As a typical negative case, Figure 7 shows that the

abstract (PMID 20809254) refers to the subunits p110 in-

stead of a specific gene, without looking into the full paper

in which p110y is mentioned. Additionally, propagative

errors from third parties’ NER (name entity recognition)

programs also comprised part of the failures. For example,

some of the pathways are detected as gene names.

The Ontology Fingerprint for a gene consists of its associ-

ated GO terms and their ancestor, hence lack of associated

GO terms for those less-studied genes will lessen their associ-

ation to the articles. However, our study for personalized

therapy is based on the human cancer genes which have been

extensively studied. Moreover, we focused only on a small

number of cancer-related genes relevant to personalized can-

cer therapy. The limited size of the experimental dataset may

limit the generalizability of the results. Nonetheless, the

evaluation based only on these genes serves as a proof of

concept, and highlights the potential of the technique.

This method is based solely on Ontology Fingerprints,

which makes it straightforward to implement. In compari-

son to a supervised method, our method does not require

human intervention for training data preparation, feature

selection or optimization, which are the essential require-

ments of a supervised system. Thus, it largely eliminates

the system error from the preliminary steps and improves

the accuracy. By the same token, our method has less com-

putational cost for training than supervised methods, and

therefore can be repeatedly applied without training

resources. In the future, we will test this method on larger

datasets, and attempt to find novel (previously unanno-

tated) relationships between articles and genes.

Figure 7. A negative case with a gene name pi3k annotated as gene PIK3CA by our method, and NCBI designated it as PIK3CG.
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In previous work, Dr Xu reported excellent precisions

of disambiguation of debatable gene terms on three differ-

ent test sets: 0.939 for mouse genes, 0.778 for fly genes

and 0.895 for yeast (11). For normalizing all human genes,

the improved GNAT achieved a precision of 0.901 and re-

call of 0.816, which was ranked as the best in BioCreative

II. On the other hand, our approach achieved the precision

of 0.936 for the human genes we analysed. Although these

projects have different goals and the testing data that make

it difficult to compare directly, our results demonstrate

the feasibility of employing the Ontology Fingerprint to

improve the performance of gene name disambiguation.
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