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We investigated the potential of pooling DNA from nasopharyngeal specimens to reduce the cost of real-time PCR (RT-PCR) for
bacterial detection. Lyophilization is required to reconcentrate DNA. This strategy yields a high specificity (86%) and a high sen-
sitivity (96%). We estimate that compared to individual testing, 37% fewer RT-PCR tests are needed.

Real-time PCR (RT-PCR) is an essential tool for routine diag-
nostics and large epidemiological studies of infectious diseases

(1, 2). However, its cost remains significant and limits its use. To
reduce it, samples can be pooled (3–5). This idea was suggested by
Dorfman in 1943 (6) and has been used for the serological diag-
nosis of infectious diseases. Pooling samples is also an efficient way
to screen for the nucleic acids of viruses, bacteria, or parasites (4, 5,
7–15). However, pooling can decrease the sensitivity of assays due
to the dilution of the samples, which is problematic in clinical
diagnostics (16). Here, we investigated the potential of pooling
DNA from clinical specimens using lyophilization to concentrate
the pooled DNA and maintain the sensitivity of RT-PCR.

We screened 2,380 nasopharyngeal swabs (Remel, USA) by
RT-PCR to detect their rates of Streptococcus pneumoniae, Haemo-
philus influenzae, and Klebsiella pneumoniae carriage. DNA was
extracted using a Macherey-Nagel NucleoSpin-96 kit. A total of
119 pools containing 80 �l of DNA from 20 patients was frozen for
4 h at �20°C, lyophilized using a Lyovac GTZ instrument (Ley-
bold Heraeus, France), and redissolved in 80 �l of sterile water.
The effectiveness of lyophilization was verified with pool controls,
including one positive sample with a known threshold cycle (CT)
value for each bacterium. The specificities of the primers and
probes (17, 18) were verified in silico by conducting a BLAST
search in GenBank and performing RT-PCR on 10 to 15 closely
related bacterial strains present in the respiratory tract (see Tables
S1 and S2 in the supplemental material). RT-PCR was performed
using 5 �l of DNA per reaction and a 7900HT thermocycler (Ap-
plied Biosystems). Nuclease-free water was used as a negative con-
trol, and DNA from a clinical strain was used as a positive control.
The cutoff CT value for positive results was �38. Each sample was
also tested individually. The DNA extraction quality of each pool
was verified by RT-PCR targeting the human beta-actin gene (19).

The prevalences for the individual samples were 9% (215/
2,380) for S. pneumoniae, 7% (169/2,380) for H. influenzae, and
4% (95/2,380) for K. pneumoniae. Among the pools tested, 69%
(82/119) were positive for S. pneumoniae, 53% (63/119) were pos-
itive for H. influenzae, and 53% (63/119) were positive for K.
pneumoniae (Table 1). Among them, 184/357 (52%) were true-
positive results and 142/357 (40%) were true-negative results.
However, 24/357 (7%) were false positives (negative individual
samples), and 7/357 (2%) negative pools contained positive indi-
vidual specimens, yielding false negatives (see Table S3 in the sup-
plemental material). All false-positive and false-negative results
occurred at a CT value of �35.

There was a mean of 3 (range, 1 to 8) positive samples per

positive pool, and the mean CT value of the pools was 32 (range, 22
to 38). This assay had a detection threshold equivalent to that of
individual testing. The CT value of the pool was similar to that of
the individual sample with the lowest CT value in the pool (Spear-
man coefficient, r � 0.93). We detected up to 8 positive samples
per pool, and compared to the individual results, the presence of
several bacteria in the same pool did not inhibit detection.

In this study, a total of 2,623 (37%) tests could have been saved
by pooling groups of 20 samples rather than conducting 7,140
individual tests (Table 2). Time and cost were measured for these
2 strategies by calculating the costs of consumables, reagents, and
personnel. We excluded DNA extraction because this step is com-
mon to the 2 strategies. We estimated that the time needed from
plate preparation to the interpretation of results for one 384-well
plate was 4.5 h; thus, 85 h is needed to test 7,140 individual sam-
ples versus 55 h with pooling, including repeat analysis of individ-
ual samples from positive pools. The cost was evaluated to 1.34
euros/reaction for consumables and reagents and 33 euros/h for a
technician. The cost of performing RT-PCR on a pool of 20 sam-
ples was decreased by 37% compared to that of individual testing
(Table 2).

We showed that this strategy is efficient and yields a high spec-
ificity (86%) and a high sensitivity (96%). Freeze-drying is re-
quired to concentrate pooled DNA because of the very small vol-
umes used for PCRs. The volume of DNA constituting the pools
and the final elution volume were calculated so that after lyophi-
lization, the amount of DNA deposited into each well for RT-PCR
was equivalent to that contained in 5 �l of DNA from individual
samples that are typically used to avoid a loss of sensitivity. Lyoph-
ilization is an easy-to-perform one-step procedure. The main risk
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of this strategy is that PCR inhibitors may be concentrated; how-
ever, in our assay, the pooling of 20 samples did not affect the
detection of bacterial DNA compared to that of the individual
tests.

To prevent a loss of sensitivity, it may also be necessary to limit
pool sizes to limit sample dilutions (7, 10, 14) or to use special kits
for extracting DNA from larger sample volumes (4, 16). With our
strategy, it is possible to pool a larger number of specimens (up to
20) and to lyophilize DNA specimens to a volume of 1.6 ml, while
commercial DNA extraction kits are limited to 1 ml (4, 16). This
strategy is particularly useful when searching for a large number of

pathogens (�10) in the same clinical specimens compared to
multiplex PCR, for which fewer pathogens can be detected.

The pooling of clinical samples is especially profitable if the
bacterial prevalence is low because each sample in a positive pool
is retested individually; thus, the optimum pool size should be
determined for each study (4). We estimated that 50%, 54%, and
37% of tests could have been saved by pooling 10, 5, and 2 samples,
respectively (Table 2). Pools of 5 samples would likely have been
more profitable for this study.

Our RT-PCR targeting S. pneumoniae also amplified Strepto-
coccus pseudopneumoniae; however, the prevalence of S. pseudo-

TABLE 1 Performance of pooled processed DNA compared to that of individually tested samples

Bacterium

No. of
pools
tested

Total no.
(%) of
presumptive
positives in
the pool

No. of
positive
pools with
positive
individual
results (%
true
positives)

No. of
positive
pools with
negative
individual
results (%
false
positives)

No. of
negative
pools with
negative
individual
results (%
true
negatives)

No. of
negative
pools with
positive
individual
results (%
false
negatives)

Specificity
of pool
(%)

Sensitivity
of pool
(%) PPVa (%) NPVb (%)

S. pneumoniae 119 82 (69) 78 (65) 4 (3) 33 (28) 4 (3) 89 95 95 89
H. influenzae 119 63 (53) 60 (50) 3 (2) 55 (46) 1 (1) 95 98 95 98
K. pneumoniae 119 63 (53) 46 (39) 17 (14) 54 (45) 2 (2) 76 96 73 96

Total 357 208 (58) 184 (52) 24 (7) 142 (40) 7 (2) 86 96 88 95
a PPV, positive predictive value.
b NPV, negative predictive value.

TABLE 2 Evaluation of the number of RT-PCR tests saved by pooling 20 samples and extrapolation of the number of RT-PCR tests saved by
pooling 10, 5, and 2 samples

Value for RT-PCR

Characteristic of RT-PCR tests
performed and saved by pooling
samples S. pneumoniae H. influenzae K. pneumoniae

Total
organisms

Delay in
performing
RT-PCR (h)

Costa (cost of
consumables/personnel
costs) (euros)

No. of individual specimens tested 2,380 2,380 2,380 7,140 85 12,372 (9,567/2,805)
No. (%) of positive individual

specimens
215 (9) 169 (7) 95 (4) 479 (20)

Total no. (%) of tests performed
by pooling 20 samples

1,759 (74) 1,379 (58) 1,379 (58) 4,517 (63) 54 7,834 (6,052/1,782)

Total no. (%) of tests saved by
pooling 20 samples

621 (26) 1,001 (42) 1,001 (42) 2,623 (37)

Extrapolation of total no. (%) of
tests performed by pooling 10
samples

1,470 (62) 1,170 (49) 920 (39) 3,560 (50) 42 6,123 (4,770/1,386)

Extrapolation of total no. of tests
saved (%) by pooling 10
samples

910 (38) 1,210 (51) 1,460 (61) 3,580 (50)

Extrapolation of total no. (%) of
tests performed by pooling 5
samples

1,275 (54) 1,130 (47) 861 (36) 3,266 (46) 40 6,156 (4,376/1,320)

Extrapolation of total no. (%) of
tests saved by pooling 5 samples

1,105 (46) 1,250 (53) 1,519 (64) 3,874 (54)

Extrapolation of total no. (%) of
tests performed by pooling 2
samples

1,575 (66) 1,520 (64) 1,374 (58) 4,469 (63) 54 7,77 (5,988/1,782)

Extrapolation of total no. (%) of
tests saved by pooling 2 samples

805 (34) 860 (36) 1,006 (42) 2,671 (37)

a The costs of RT-PCR were measured by adding the costs of specific consumables and reagents (including plates, plastic film, primers and probes, tips, and PCR mix) based on
prices set by providers in France in January 2014 and the costs of paying personnel.
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pneumoniae in the respiratory tract is low (1% to 12%) (20–22),
and it is more frequently present in sputum than in the nasophar-
ynx (23). Moreover, our purpose here was not to evaluate this
RT-PCR assay but to assess the lyophilization of DNA.

Our assay, which combines pooling and lyophilization of
DNA, is simple, efficient, and cost-effective and increases the fea-
sibility of large epidemiological studies of infectious diseases by
PCR without a loss of sensitivity.
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