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Abstract We sought to determine whether dual-energy com-
puted tomography (DECT) measurements correlate with pos-
itron emission tomography (PET) standardized uptake values
(SUVs) in pancreatic adenocarcinoma, and to determine the
optimal DECT imaging variables and modeling strategy to
produce the highest correlation with maximum SUV
(SUVmax). We reviewed 25 patients with unresectable pancre-
atic adenocarcinoma seen at Mayo Clinic, Scottsdale, Arizo-
na, who had PET–computed tomography (PET/CT) and en-
hanced DECT performed the same week between March 25,
2010 and December 9, 2011. For each examination, DECT
measurements were taken using one of three methods: (1)
average values of three tumor regions of interest (ROIs)
(method 1); (2) one ROI in the area of highest subjective
DECT enhancement (method 2); and (3) one ROI in the area
corresponding to PET SUVmax (method 3). There were 133
DECT variables using method 1, and 89 using the other
methods. Univariate and multivariate analysis regression
models were used to identify important correlations between
DECT variables and PET SUVmax. Both R2 and adjusted R2

were calculated for the multivariate model to compensate for
the increased number of predictors. The average SUVmax was
5 (range, 1.8–12.0). Multivariate analysis of DECT imaging
variables outperformed univariate analysis (r=0.91; R2=0.82;
adjusted R2=0.75 vs r<0.58; adjusted R2<0.34). Method 3
had the highest correlation with PET SUVmax (R2=0.82),
followed by method 1 (R2=0.79) and method 2 (R2=0.57).

DECT thus has clinical potential as a surrogate for, or as a
complement to, PET in patients with pancreat ic
adenocarcinoma.
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Abbreviations

CfsSubsetEval Correlation-based feature subset selection
evaluation

CT Computed tomography
DECT Dual-energy computed tomography
PA Pancreatic adenocarcinoma
PET Positron emission tomography
ROI Region of interest
SUV Standardized uptake value
SUVmax Maximum standardized uptake value
VIF Variance inflation factor

Introduction

Single-energy computed tomography (CT) is commonly used
for the diagnosis, staging, and follow-up of patients with
pancreatic cancer [1]. Single-energy CT utilizes Hounsfield
unit attenuation of lesions to infer tumor viability. These
attenuation measurements, however, can be inaccurate due
to volume averaging, beam hardening, or the presence of
high-density blood products, protein, or calcification [2]. Al-
though positron emission tomography (PET) is generally not
as effective as CT for locoregional and nodal staging of
pancreatic cancer [3], it can be used for preoperative diagnosis
of pancreatic adenocarcinoma (PA) when CT and/or biopsy
are nondiagnostic or when the patient has concurrent chronic
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pancreatitis and/or cystic tumors. It can also be used for
detection of distant metastases, for differentiation of
radiation-induced fibrosis from tumor recurrence, and, accord-
ing to some preliminary findings, for monitoring of therapy [4,
5]. PET, however, is expensive, time-consuming, and less
widely available than CT.

Dual-energy CT (DECT) is an imaging technique approved
by the US Food and Drug Administration that uses two
different energies (usually 80 and 140 kVp) instead of a single
energy to produce CT images. Scanning at different radio-
graphic energies facilitates differentiation of materials such as
calcium, uric acid, iodine, and water, which can be helpful in
various clinical applications (e.g., evaluating renal stone com-
position [6, 7] or differentiating cysts from solid tumors [8]).
Specifically, in cases of PA, DECT has shown excellent
differentiation of tumors from normal pancreas [9], and it
may even allow for the elimination of noncontrast acquisition
[10]; the DECT technology, by separating out the iodine-
loaded images, allows one to generate a “virtual noncontrast”
image. Intravenous contrast is still necessary. Recently, high
correlation was demonstrated between positron emission to-
mography (PET) maximum standardized uptake value
(SUVmax) and DECT iodine values in nonsmall-cell lung
cancer [11]. If high correlations between DECT and PET
signals are observed in other cancers, then DECT may reduce
the need for more costly and time-consuming PET imaging.

The purpose of this study was to determine which DECT
imaging variables and which modeling strategy would pro-
duce the highest correlation with PET SUVmax in patients with
unresectable PA.

Materials and Methods

This retrospective study was approved by the Mayo Clinic
Institutional Review Board, which waived the need for signed,
informed consent because this retrospective review was
deemed minimal risk.

Patient Selection

Inclusion criteria included a diagnosis of pathologically prov-
en unresectable PA and PET/CTand contrast-enhanced DECT
conducted within the sameweek betweenMarch 25, 2010 and
December 9, 2011. All patients were adults.

A total of 25 patients with a diagnosis of PAwere identified
whomet study criteria: 17men and 8 women, with a mean age
of 65 years (range, 50–81 years). The average time between
PET and DECT was 1 day (range, 0–7 days). The mean
maximum axial diameter of the lesions was 4.3 cm (range,
1.5–8.4 cm). Pancreatic cancers were located in the uncinate
process (n=4), the head (n=7), the neck/body (n=10), and the
tail (n=8) (some cancers were present in more than one
region). All patients had unresectable or metastatic disease at
the time of DECT. Of the 25 patients, 13 had hepatic metas-
tases, 12 had nodal metastases, and 21 had vascular involve-
ment of the mesenteric vessels or portal vein. All had patho-
logically proven PA.

CT Protocol

All DECT examinations were performed as part of a standard
biphasic pancreatic CT protocol on a 64-slice single-source
DECT scanner with fast kilovolt switching (CT750 HD; GE
Healthcare, Milwaukee, Wisconsin). This protocol consisted
of a single-energy pancreatic phase (approximately 40 s after
injection of a contrast agent) and a dual-energy portal venous
phase (70 s after injection of contrast), using a body weight-
based volume (1 mL/kg) of low molecular weight, nonionic,
iodinated contrast medium at 4 mL/s. Specific imaging pa-
rameters are shown in Table 1. The DECT portal venous data
produced monochromatic images from 40 to 140 keV, and
iodine and water (virtual precontrast) basis pairs, as well as
other basis pairs (eg, calcium–iodine) more commonly used
for other applications such as distinguishing kidney stones.

PET Protocol

All PET scans were performed on a combined 16-slice PET/
CT scanner (GE Discovery 600 PET/CT; GE Healthcare)
within 7 days of the DECT scan. The PET scan used 3.27-
mm slices and a three-dimensional acquisition with the VUE
Point HD reconstruction filter. Image matrix was 192×
192 pixels. A total of seven to nine 15-cm bed positions were
acquired at 2 min per bed position if bodymass index was <35
or at 3 min per bed position if body mass index was ≥35. A
simultaneous noncontrast CT was performed at 120 kVp,
100 mA to 120 mA, nonhelical, with 3.75-mm slice thickness.
Coregistration between PET and noncontrast CT was per-
formed using MIMvista software (MIMvista 5.2.3; MIM

Table 1 Pancreatic and venous phase protocols

Series Speed, mm/rot Pitch Collimation, mm Slice thickness, mm Reconstruction interval, mm kVp Min/max, mA

Pancreatic 39.38 0.98 0.625 2.50 2 120 150–450

DECT venous 39.38 0.98 0.625 3.75 3 80,140 630

DECT dual-energy computed tomography, Max maximum, Min minimum, rot rotation
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Software Inc., Cleveland, Ohio). The PET SUVmax within the
tumor was used for analysis.

DECT Region of Interest Selection

All DECT monochromatic images were sent to an offline
computer workstation (GE Advantage Workstation, version
4.5; GE Healthcare) for image analysis using a commercially
available viewer software (Gemstone Spectral Imaging View-
er, version 2.0; GE Healthcare).

In this study, three different DECT measurement methods
(method 1, method 2, and method 3) were evaluated. All
regions of interest (ROIs) were placed by a single board-
certified radiologist (J.O.) for this early pilot study. For meth-
od 1, a total of three ROIs were manually drawn in three
different locations of tumor heterogeneity in the solid enhanc-
ing tumor on the DECT images (Fig. 1). The three different
slices were selected manually to be within the substance of the
tumor in areas that appeared visually similar to the rest of the
tumor and were located on different image slices. For method
2, a single ROI was drawn in the area of the tumor with the
highest visible DECT enhancement (Fig. 2a). For method 3, a
single ROI was drawn at DECT (Fig. 2b) in the area of the
tumor corresponding to the highest PET SUVmax (Fig. 2c).
Each ROI covered as much tumor as possible without includ-
ing adjacent vessels or structures. The observer had access to
the PET/CTscanner at the time of ROI selection, but it was not
used for methods 1 and 2.

DECT Measurements

Methods 1, 2, and 3 provided 133, 89, and 89 variables,
respectively, for analysis (Table 2). These included means,

minima, maxima, and SDs of ROIs generated using different
basis pairs (of which there were 5 pairs of materials, producing
10 sets of images, and 1 for effective Z, or atomic number) and
keV settings (of which there were 11, from 40 to 140 keV in
10-keV increments). Methods 2 and 3 produced four variables
to analyze (mean, minimum, maximum, and SD), and method
1 produced six variables (as both maxima and minima could
be either the maximum or the minimum of the three ROIs, or
their average). Each method included a variable for the pa-
tient’s mass, which impacts standardized uptake value (SUV):

SUV g
.
mL

� �
¼

localconcentration g
.
mCi

� �

injecteddose mCið Þ
.
weight gð Þ

The analysis software saved all data to Excel (Microsoft
Inc; Redmond, Washington) files at every kiloelectronvolt in
10-keV increments from 40 to 140 keV. There were multiple
CT data sets, but the radiologist only drew his ROIs on the
standard 70 keV data set. Since the images are reconstructed
from the same pair of high-energy and low-energy images,
which are perfectly registered because they are acquired at the
same time, the ROI is simultaneously applied to all data sets.
Measurements were reported in Hounsfield units for mono-
chromatic kiloelectronvolt images and in microgram per mil-
liliter (iodine) and milligrams per milliliter (water) for basis
pairs.

Statistical Analysis

Univariate analysis was conducted first to determine the cor-
relation between each DECT variable and PET SUVmax.

Fig. 1 Pancreatic
adenocarcinoma regions of
interest on CT. Method 1 used
three regions of interest (a–c,
circles) in separate areas of tumor
heterogeneity, each in a different
slice

Fig. 2 Regions of interest on methods 2 and 3 (CT and PET/CT). a
Region of interest corresponding to maximum computed tomography
(CT) attenuation. b Region of interest corresponding to maximum

positron emission tomography (PET). c PET of the same tumor. All
images are from the same patient
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Multivariate analysis was then performed to jointly consid-
er the predictive power of multiple features. Because of the
large number of DECT variables, we usedWeka 3.2 (Waikato
Environment for Knowledge Analysis, University ofWaikato,
Hamilton, New Zealand) [12], an open-source machine-
learning software, for variable selection. This process may
improve the interpretation and predictive accuracy of statisti-
cal model development [13]. A linear forward feature selec-
tion method (using the linear forward feature selection option
from the CfsSubsetEval [correlation-based feature subset se-
lection evaluation] method withinWeka) was applied to select
subsets from the original DECT variables by removing un-
correlated, redundant, and noisy data. A list of features was
then selected in order of importance for correlation with
SUVmax.

For each ROI method, the statistical modeling software
Minitab 16 (Minitab Inc; State College, Pennsylvania) was
used to model the correlations between the SUVmax and the
selected variable subsets. Addressing the issue of potential
multicollinearity among the selected features was done by

developing a forward statistical model by adding one
feature at a time. The variance inflation factor (VIF) was
then calculated to assess possible correlations between
features. VIF is a common index for measuring the sever-
ity of multicollinearity in statistical models, and VIF >10
indicates that a model has multicollinearity issues [2].
Using this guideline, we developed the regression models
for first order, second order, and second order with inter-
action effects. For model performance, we calculated both
R2 and adjusted R2.

R2, also known as the coefficient of determination, is a
measure of the proportion of the total variation in a variable
that is explained by a given model. It is defined as

R2≡1− SSres=SStotð Þ

where

SStot ¼
X

i
yi−ȳð Þ2 andSSres ¼

X
i
yi− f ið Þ2

Table 2 Differences among region-of-interest placement methods and the total number of DECT variables measured

Method 1a Method 2 Method 3

No. of DECT ROIs used Three ROIs in areas of the greatest tumor heterogeneity
(variables averaged across all three)

One ROI corresponding to the
highest CT attenuation

One ROI corresponding to area
of the highest SUVmax

No. of image contrasts 22 Images: 1 effective Z image + 11 keV images (40–140 keV in 10-keV increments) + 10material images: two images per
basis pair × five basis pairs: (1) I-water, (2) Ca-I, (3) Ca-water, (4) HAP-I, and (5) HAP-Ca

No. of variables measured
per image contrast

Six variables: mean, SD, mean–max, mean–min, max–
max, min–min

Four variables: mean, SD, max, min

Total No. of DECT
variables

133 Variables: (22 image contrasts × 6 variables per
contrast) + mass

89 Variables: (22 image contrasts × 4 variables per contrast) +
mass

Ca calcium, CT computed tomography, DECT dual-energy computed tomography, HAP hydroxyapatite, I iodine, max maximum, min minimum, ROI
region of interest, SUV standardized uptake value
a In method 1, three ROIs were measured, resulting in three maxima and three minima. “Max–max” refers to the highest of the three maxima, “mean–
max” to their arithmetic mean. Similarly, “min–min” is the lowest of the three minima, whereas “mean–min” is their arithmetic mean

Fig. 3 Multivariate and
univariate correlations.
Multivariate analysis of methods
1 to 3 outperformed the highest
correlations with univariate
analysis. MONO_50_max,
MONO_60_max, and
MONO_70_max refer to maxima
at 50 keV, 60 keV, and 70 keV, the
best correlated single variables
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where “yi” is each individual observation, “fi” is the predicted
observation due to the model, and “y” is the overall mean of all
observations.

Adjusted R2 is meant to counterbalance the tendency of R2

to rise as additional predictors are added. Adjusted R2 is
defined as

AdjustedR2 ¼ R2− 1−R2
� �

p= n−p−1ð Þ

where “n” is the sample size and “p” is the number of
predictors.

R2 is known to increase with the addition of predictors to
the model, whereas adjusted R2 compensates for the number
of predictors and thus adjusts for this inflation. For compari-
son purposes, we transformed R2, obtained from the multivar-
iate regression models, to r to compare against the perfor-
mance of univariate analysis.

The “r” is the coefficient of correlation between two vari-
ables, measuring the strength of a linear association. It is
calculated as

r ¼
X

i
X i−X
� �

Y i−Y
� �� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
X i−X
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
Y i−Y
� �2q� �

for a single variable, R2=r2.

Results

DECT and PET/CT Correlation Results

Univariate modeling resulted in only three DECT variables
(the maximum values of 50, 60, and 70 keV monochromatic)
with a correlation of r>0.50 with SUVmax. The greatest of
these was r=0.58. Multivariate analysis of DECT imaging
variables outperformed univariate analysis (Fig. 3), achieving
r=0.91 (R2=0.82) compared to r=0.58 (R2=0.34) with uni-
variate analysis. Table 3 lists the R2 between DECT variables
and SUVmax for the three different ROI methods and multi-
variate modeling strategies. For each ROI placement method,
the most complex modeling strategy (second order with inter-
actions) produced the highest correlations. Overall, the highest
correlation obtained between DECT variables and SUVmax

was found in method 3 (R2=0.82), followed by method 1
(R2=0.79) and method 2 (R2=0.57). The area of highest
PET SUVand of highest visible DECTenhancement correlat-
ed in 20 of the 25 cases.

The DECT variables that correlated best with SUVmax from
method 3 (P<0.05) are shown in Table 4. In addition, the
coefficient, P value, and VIF are provided. The first order, the

second order, and the second order with interactions models
included 3, 6, and 7 variables, respectively. As shown in
Table 4, all predictors in the three models proved to be
significant (P<0.05). In addition, when a predictor had VIF
<10, it had relatively little correlation with other predictors
(although not necessarily no correlation).

Since method 3 requires the use of PET/CT to fully
investigate the clinical use of DECT as a surrogate for
PET/CT, we report the best model (second order with
interactions) from method 1, which provides comparable
results to those from method 3 (Table 5). We observed
high multicollinearity among the features, both in meth-
od 1 and in method 2. Although reports in the medical
literature indicate that multicollinearity does not reduce
the predictive power of the model as a whole [14], it
does increase the standard errors of estimates of the
coefficients, thus complicating interpretation of the mod-
el. To remove multicollinearity from the model, we first
identified the highly correlated features as a group, then
introduced a novel composite feature (as described in
Table 5) as a linear combination of the correlated fea-
tures. As a result, the regression model showed R2=0.79
and adjusted R2=0.75, with all predictors (including the
composite feature) being significant (P<0.05) with VIF
<10.

Optimal Models

Optimal models themselves are as follows. For method 3, the
optimal first-order model was the following:

SUVmax ¼ 0:029� 90 keV mean−0:017� iodine calciummin

þ 0:019� weight

The optimal second-order model was the following:

SUVmax ¼ 0:024� 90 keV mean−0:025� iodine calciummin

þ 0:024� iodinecalciummax−0:116� iodine water SD

þ 0:00185� calcium iodine max2 þ 0:0016243

� 90keVmean2

The optimal second-order model with interactions was the
following:

SUVmax ¼ 0:026� 90 keV mean−0:0142� iodine calciummin

þ 0:0107� iodine calciummaxþ 0:01� weight

þ 0:00162� calcium iodinemax� weightþ 0:00147

� 90 keV mean� iodine calciummin−0:000605

� iodine calcium max2

828 J Digit Imaging (2014) 27:824–832



For method 1, the optimal model was the following:

SUVmax ¼ 9:871� effectiveZSD−0:001608� 100 keV meanmax

� 140 keVmeanmax−0:12867� 140 keV meanmax

� effectiveZ meanmaxþ 0:751� composite

with the composite defined as in Table 5.

Discussion

The first goal of this study was to identify the correlations
betweenDECT variables obtained via three different measure-
ment methods and PET SUVmax. Method 3 provided the

highest correlation (R2=0.82) between DECT variables and
PET signal, which is not surprising since DECT data were
obtained at the site of maximal fluorine 18 (18F)
fluorodeoxyglucose uptake. However, it required manually
coregistered DECT and PET scans. In clinical practice, a
PET scan may not always be available or desired. In that case,
method 1, which required three ROIs in the area of greatest
tumor heterogeneity in the DECT scan, performed nearly as
well (R2=0.79). Conversely, method 2, a single ROI in the
area of highest DECTenhancement, was not as effective (R2=
0.57), although the selected variables overlapped consider-
ably, with measurements corresponding to SUVmax.

As a result, in order tomakemaximum use of DECT results
to properly model the effects of PET/CTwithout performing a
PET/CT scan, it may be necessary to take multiple

Table 3 Summary of the coefficient of determination (R2) for the three ROI placement methods and different models

ROI placement No. of variables First-order model Second-order model Second-order model with interactions

Method 1 133 0.65 0.76 0.79

Method 2 89 0.36 0.36 0.57

Method 3 89 0.55 0.68 0.82a

ROI region of interest
a The best result (highest correlation) in each row and column was using method 3

Table 4 Multivariate models for methoda,b

Features Coefficient P value VIF

First-order model 90 keV mean 0.029 0.006 1.207

R2=0.55 Iodine–calcium min −0.017 0.04 1.080

R2 (adjusted)=0.39 BMI 0.019 0.005 1.144

Second-order model 90 keV mean 0.024 0.008 1.269

R2=0.68 Iodine–calcium min −0.025 0.01 1.944

R2 (adjusted)=0.57 Iodine–calcium max 0.024 0.01 2.912

Iodine–water SD −0.116 0.047 4.812

Calcium–iodine max ^2 0.00185 0.01 1.582

90 keV mean ^2 0.0016243 0.01 1.079

Second-order model with interactions 90 keV mean 0.0263 0.001 1.38

R2=0.82 Iodine–calcium min −0.0142 0.02 1.30

R2 (adjusted)=0.75 Iodine–calcium max 0.0107 0.04 1.63

Weight 0.0100 0.047 1.70

Calcium–iodine max × weight 0.00162 0.001 1.38

90 keV mean × iodine–calcium min 0.00147 0.02 1.20

Iodine–calcium max ^2 −0.000605 0.02 1.51

The significant value p<0.05

BMI body mass index, max maximum, min minimum, VIF variance inflation factor
a Pairs of substances represent the use of proprietary software designed to separate a pair of substances. For example, the iodine–calciummin is the lowest
value pixel (minimum) on an image designed to separate iodine from calcium. On such an image, iodine will have higher values and calcium will have
lower values. Conversely, on the calcium–iodine images, calcium will have higher values and iodine will have lower values. “Effective Z” refers to an
image where the value is an estimate of the effective atomic number (Z); on these images, iodine will be higher than calcium, which will, in turn, be
higher than the hydrogen, oxygen, nitrogen, and carbon that make up most of human tissue
bVariables in italics are used in all three regression models
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measurements of the tumor, as we did in method 1 when
drawing three ROIs, to reflect the heterogeneity of the tumor.
This may reflect linkage between tumor heterogeneity and
metabolic activity, as hypothesized below. Although we ob-
served high correlations among the measures using this ap-
proach (and method 2), the use of composite features formed
by aggregating the highly correlated features (Table 5) en-
abled us to identify the regression model with interpretability.

With univariate analysis, the best single DECT predictors
that correlated with PET SUVmax (the ROI maxima at 50, 60,
and 70 keV) were from lower energy levels (in this study, 50,
60, and 70 keV). However, multivariate analysis of DECT
imaging predictors significantly outperformed univariate anal-
ysis (r=0.91 [R2=0.82] vs r<0.60 [R2<0.36]) in our particu-
lar model. In other words, analysis using combinations of
multiple imaging variables correlated with PET better than
using only single variables such as iodine values or a 70-keV
monochromatic Hounsfield unit. However, our results were
different from those of a prior study of DECT and PET in
small cell lung cancer [10] that found a univariate correlation
(r=0.88) between SUVmax and iodine-related enhancement
(equivalent to an iodine–water basis pair). One explanation
may be the lower SUVs in pancreatic cancers (mean, 5 [our
study]), whereas the aforementioned lung cancer study report-
ed a high mean SUVof 14. Although precise cutoffs vary, an
abnormal SUV for pancreatic cancer is considered to be above
2 to 3 [15–18].

The authors of the lung cancer study did not perform
multivariate correlation for comparison. Correlation of a sin-
gle DECT value would be simple to apply in clinical practice,
but in pancreatic cancer, it may not be as accurate as more
complex multivariate models. The practical clinical applica-
tion of a multivariate model (e.g., from method 1) will likely
require the complexity to be hidden by implementation in an
easy-to-use computer program. Such a program could poten-
tially produce a “virtual PET SUV value” in response to
placement of a DECT ROI and thus greatly enhance the use
of DECT for diagnosis of PA. It is our intention to create a

“virtual PET SUVmax” as the subject of future research and to
test its applicability in the clinical setting.

The second goal of this study was to identify the DECT
imaging variables and modeling strategy that produced the
highest correlations with SUVmax. With method 3, weight was
positively correlated with SUVmax. The model also showed
that some of the most significant variables correlated to im-
ages with lower iodine, such as 90 keV (positive correlation)
and iodine–calcium minimum (negative correlation). At
90 keV, the image is more heavily weighted toward water
because iodine is the brightest at a lower keV (e.g., 40 keV)
and lowest at a higher kiloelectronvolt (e.g., 140 keV) (Fig. 4).
The exact correlation between the keV and the iodine and
water basis pair images is shown in Fig. 5 for a typical ROI.
Conversely, the iodine–calcium image would be weighted
more heavily toward iodine. The fact that the method 3 model
showed a significant negative correlation to an iodine–calci-
um minimum implies that a lower iodine concentration visu-
alized on DECT correlates with a higher PET SUV. The
correlation with images associated with low iodine suggests
that precontrast images may be more relevant in pancreatic
cancer than previously thought. Although prior CT investiga-
tions of the pancreas without intravenous contrast demonstrat-
ed no clinically significant difference in noncontrast density
[19–21], some authors have noted that PA is denser than
healthy tissue [19]. As tumors are effectively treated, they
typically become less dense, breaking up the fibrotic
stroma, and they become less metabolic. This correla-
tion of low iodine and high PET SUV could indicate
that lower Hounsfield unit values at DECT imply denser
tissue and correlate with more aggressive or metaboli-
cally active PA. If so, that could aid the prognosis or
the development of effective treatment strategies not
currently available for similar-appearing hypodense PA.
In the future, it may be possible to evaluate tumor
viability with DECT using this strategy (similar to
PET/CT), but larger studies are necessary to confirm
this hypothesis.

Table 5 Second-order with interactions model from method 1

Features Coefficient P value VIF

Second-order interaction Effective_Z SD 9.871 0.001 1.35

R2=0.79 100 keV meanmaxa × 140 keV meanmax −0.001608 0.03 8.43

R2 (adjusted)=0.75 140 keV meanmax × effective_Z meanmax −0.12867 0.003 9.59

Compositeb 0.7510 <0.001 6.27

VIF, variance inflation factor
a The term “meanmax” refers to the mean of the maxima of the three regions of interest (ROIs) drawn. The term “maxmax” refers to the highest of the
maxima of the three ROIs drawn (i.e., the highest pixel value among the three ROIs)
b Composite = −0.1432981 × 90keV_maxmax + 0.2718076 × 100keV_meanmax + 17.3583 × effective_Z_meanmax −0.458754 ×
calcium_NaUrate_meanmax −1.167255×effective_Z_standard deviation×90 keV_maxmax+2.309526×effective_Z_standard deviation×
100keV_meanmax
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Limitations of this study include its retrospective design,
use of a single observer, and small sample size (n=25).
Replicating this study with a larger sample size and multiple
observers would be a logical next step. In addition, the ROIs
were placed subjectively, which might have impacted the
reproducibility of the results. At the time of this study, no
automated or semiautomated software programs were avail-
able to measure pancreatic tumors during DECT to decrease
measurement variability. Additionally, SD and SUVmax are
relatively crudemeasures of heterogeneity; more sophisticated
measures of tumor texture, such as those based on the
Stockwell transform [22, 23] could be used as well. A more
objective measurement approach such as texture analysis may
ultimately achieve more reliable and reproducible results than
our subjective placement of ROIs; however, these techniques
are not currently commercially available. Some authors have
already shown the predictive value of baseline texture param-
eters and resulting changes in chemotherapy for renal cell
carcinoma [24]. Similarly, texture analysis has been used to
classify lung tumors [25] and head and neck tumors [26], so

these techniques might also be useful in pancreatic cancer.
Another direction for future study would be to investigate
changes in the correlation of DECT with PET/CT over time,
looking specifically at patients with high SUVs who are
treated with chemotherapy.

Another potential limitation is that reconstruction algo-
rithms might produce different results from different vendor
scanners. Our results only represent those from a single ven-
dor scanner (General Electric). Currently, this type of DECT
analysis is not automated or routinely available clinically. If
these results are confirmed in larger groups of patients, it may
be possible to develop a “virtual PET”DECT image or results.

DECT has many potential advantages over PET/CT in
terms of imaging time, cost, and spatial resolution that make
it an attractive option. DECT image acquisition takes less than
1 min compared with 120 min for the PET scan and a
noncontrast CT acquisition. DECT can cost $300 to $500,
whereas PET can cost $1,000 or more. The disadvantages of
DECT are similar to those of PET/CT: it is a less accessible
modality than single-energy CT and it requires similar radia-
tion doses. Whereas there is an increasing number of DECT
scanners available in the USA, compelling clinical uses have
been lacking, unlike those for PET/CT, which has been shown
to provide valuable additional clinical information.

In summary, we note that our results demonstrated that
univariate analysis does not perform as well as multivariate
analysis in terms of correlating quantitative DECT values to
PET SUVmax in patients with PA. Additionally, multivariate
analysis reveals that noncontrast images may contain impor-
tant predictive information, an interesting finding that should
be followed up in future studies with larger sample sizes.
Enhanced DECT shows a moderate correlation with SUVmax

when measured on the area of the tumor correlating to the
highest SUVmax, or, if one wishes to avoid performing PET/
CTaltogether, when taking three measurements in the greatest

Fig. 5 Correlation of image
value with iodine member of
iodine–water basis pair for a
typical region of interest

Fig. 4 Pancreatic adenocarcinoma on DECT at different simulated keV
levels. Same pancreatic tumor as in Fig. 2 at (a) 40 keVand (b) 140 keV.
Note that, at the lower energy, the iodine attenuation is enhanced
(arrows). At the higher energy, the water attenuation is dominant,
appearing like a precontrast image
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areas of tumor heterogeneity (which is almost as effective in
mimicking PET). In the future, if these results are confirmed
in larger studies and the interface for acquiring this informa-
tion is simplified, DECT could serve as a useful complement
or alternative to PET/CT imaging for PA.

Conclusion

We have demonstrated that DECT can, under certain condi-
tions, serve as a surrogate for a PET scan in terms of estimat-
ing SUVmax. DECT thus has clinical potential as a surrogate
for, or as a complement to, PET in patients with PA. In this
case, DECT might be able to be used in place of PET in
locations without access to a PET scanner, or to improve
diagnosis and/or prognostication in centers with access to a
PETscanner. Additionally, the future use of more complicated
texture parameters may further improve the diagnostic and
prognostic ability of DECT, and may help to investigate
response to therapy for cancers where PET is presently used.
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