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SUMMARY

There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer 

patients. While most efforts are directed at inferring drug response phenotype based on genotype, 

there is very focused and useful phenotypic information to be gained from directly perturbing the 

patient’s living cancer cell with the drug(s) in question. To satisfy this unmet need we developed 

the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at 

the mitochondrion (‘priming’) induced by chemotherapeutic agents in cancer cells, not requiring 

prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced 

death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many 

cancer types and many agents, including combinations of chemotherapies. We propose that 

Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict 

cytotoxic response of cancers to chemotherapeutics in vivo.
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INTRODUCTION

A fundamental challenge across medicine is to assign to a patient the drug or combination of 

drugs that will be of greatest benefit. In oncology, this choice has historically been driven by 

the anatomic location and histology of the tumor. Later, therapeutic decision-making was 

assisted by immunohistochemistry, cytogenetics, flow cytometric analysis of cell surface 

antigens. In more recent years, there are examples where gene expression signatures and 

specific genetic alterations have been essential to therapeutic decisions (Chapman et al., 

2011; Paez et al., 2004). However, true personalization of therapy remains an elusive goal in 

most cases. In all too many cases, cancer patients show little benefit from therapy. 

Moreover, it is likely that many tumors have unrecognized sensitivity to agents for which 

there is simply no useful predictive biomarker to inform therapy decisions (Garraway and 

Janne, 2012; Haibe-Kains et al., 2013). In this era of growing therapeutic options, there is a 

comparable growing need for predictive biomarkers (Sawyers, 2008; Yaffe, 2013).

A feature common to nearly all of the biomarkers in use or in development in oncology is 

that they are studies performed on dead cancer cells. They are attempts to predict cancer cell 

behavior based on detailed analysis of components of the cell, such as DNA, RNA, or 

proteins (Barretina et al., 2012). In some cases, abnormalities in single genes are studied. 

There are spectacular examples of success with this approach, such as the use of EGFR 

mutations to guide treatment with EGFR inhibitors in lung cancer (Paez et al., 2004), or 

BRAF mutations to guide treatment with vemurafenib in melanoma (Chapman et al., 2011), 

or c-Kit mutations to guide treatment with imatinib in GIST (Joensuu et al., 2001). 

However, most drugs in development or approved for cancer lack a simple genetic predictor, 

which impedes their clinical development (Sikorski and Yao, 2010). One popular approach 

to this problem is to identify signatures based on huge amounts of information based on 

genomes, transcriptomes, or proteomes (Barretina et al., 2012; Garraway and Janne, 2012). 

These strategies are relatively early in development and their power remains to be seen. 

Despite the abundance of information these strategies provide, they still share a weakness, 

that they are all studies of dead cancer cells. They lack a measure of cancer cell function or 

response to perturbation. Studies of complex systems in and out of biology are often greatly 

augmented by observations of responses to strategic perturbations. Here we present results 

of strategic perturbations of cancer cells with drugs and their mitochondria with peptides in 

a strategy we call Dynamic BH3 Profiling (DBP).

DBP interrogates the BCL-2 family of proteins that regulates commitment to the 

mitochondrial pathway of apoptosis, the program of cell death that is commonly used by 

cancer cells in response to most chemotherapeutic agents. The BCL-2 family of proteins 

controls mitochondrial outer membrane permeabilization (MOMP) (Certo et al., 2006; 

Chipuk et al., 2010). The effector proteins BAX and BAK, when activated, oligomerize to 

form pores in the mitochondrial outer membrane that induce release of cytochrome c and the 

loss of mitochondrial transmembrane potential, as well as release of SMAC/DIABLO and 

other proteins that trigger apoptosome formation, caspase activation and finally apoptosis 

(Kluck et al., 1997; Wei et al., 2001). These effector proteins can be activated by the BH3-

only proteins BIM, BID (and perhaps PUMA), also known as activators (Sarosiek et al., 

2013). Both effectors and activators can be inhibited by the anti-apoptotic members of the 
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family, including BCL-2, BCL-XL, MCL-1 and others (Certo et al., 2006). There is a fourth 

group of proteins, called sensitizers (comprising proteins like BAD, BMF, NOXA, HRK and 

others) that by themselves are not able to induce BAX and BAK oligomerization, but instead 

selectively inhibit the anti-apoptotic members of the family, thus indirectly promoting 

MOMP (Letai et al., 2002). The BH3 domain is a roughly 20-amino acid amphipathic alpha 

helix that is necessary for most of the hetero-dimeric interactions of BCL-2 family proteins 

that regulate apoptosis. Synthetic BH3 domain oligopeptides can execute most of the pro-

apoptotic functions of pro-apoptotic BCL-2 family proteins (Certo et al., 2006).

BH3 peptides are thus a convenient, titratable reagent that can be exploited to systematically 

study mitochondrial readiness to undergo apoptosis. This understanding of the BCL-2 

family of proteins and their interactions allowed the development of the BH3 profiling 

technique (Ryan et al., 2010) that identifies cancer cells’ selective dependence on anti-

apoptotic proteins, and also measures overall apoptotic sensitivity or ‘priming for death’ 

(Deng et al., 2007a). “Priming” is a measure of how close a cell is to the threshold of 

apoptosis. Procedurally, priming corresponds to the sensitivity of mitochondria to BH3 

peptides. The more sensitive mitochondria are to BH3 peptides, the more primed they are. 

We have previously found that the state of “priming’ prior to therapy was an excellent 

predictor of chemotherapeutic response in vivo (Ni Chonghaile et al., 2011; Vo et al., 2012). 

Differences in priming between cancer cells and normal tissues also provide an explanation 

for the therapeutic index of conventional chemotherapeutic drugs that target ubiquitous 

elements such as DNA and microtubules.

The main principle of Dynamic BH3 Profiling is to expose cancer cells to short incubations 

with drugs of interest and measure whether the drug exposure induces an increase in priming 

compared to an untreated control. In this paper we use DBP to test the hypothesis that early 

death signaling predicts cytotoxicity, even when the cell death does not occur until days 

after the death signaling is measured. Our results support the model that initiation of death 

signaling is the main regulator of eventual commitment to cell death. Moreover, we show 

that we can perform these measurements on primary patient cancer cells in a way that 

predicts clinical response to therapy.

RESULTS

Dynamic BH3 profiling predicts chemotherapy sensitivity in Non-Small Cell Lung Cancer 
cell lines

Our strategy rests upon the hypothesis that it is the initiation of death signaling that 

distinguishes cells destined to be killed by an agent from those destined to survive.

We therefore rigorously tested the hypothesis that measurement of early death signaling by 

Dynamic BH3 Profiling (DBP) (Figure 1A) could predict a cytotoxic response that did not 

occur until several days later. We first used Non-Small Cell Lung Cancer (NSCLC) cell 

lines derived from PC9. This cell line has an exon 19 deletion in the EGFR gene rendering it 

sensitive to EGFR-specific tyrosine kinase inhibitors (TKI) like erlotinib or gefitinib. 

PC9GR was obtained by continuously exposing PC9 to increasing concentrations of 

gefitinib (Ercan et al., 2010), selecting for a T790M mutation in EGFR that renders it non-
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sensitive to gefitinib, but still sensitive to the mutant selective EGFR TKI WZ4002 (Zhou et 

al., 2009). A third cell line, PC9WZR, was similarly selected for resistance to WZ4002. It 

possesses an EGFR T790M mutation and a MAPK1 amplification conferring resistance to 

both gefitinib and WZ4002. However, PC9WZR is sensitive to the combination of WZ4002 

with the MEK inhibitor CI-1040, by completely blocking the MAPK pathway (Ercan et al., 

2012). This set of cell lines provided a useful initial model of differential sensitivity to 

targeted therapies upon which to test our strategy.

We performed DBP on each of the cell lines using a 16 hour treatment with gefitinib, 

WZ4002, CI-1040 or the combination WZ4002 plus CI-1040. 16 hours was chosen after 

empirically testing 4, 8, 16, 24, and 48 hours as it was the earliest time point that reliably 

provided a significant change in priming in PC9 cells treated with gefitinib. After testing 

several BH3 peptides, including BIM, HRK, and PUMA BH3, we found that BIM BH3 

concentrations of 0.3 and 1 μM provided the most useful dynamic range (Figure 1 and 

Figure S1). Drug concentrations were chosen based on our and others’ prior experience, and 

the dose required for a complete blockade of the MAPK pathway (Ercan et al., 2012; Ercan 

et al., 2010). We observed an increase of priming induced in PC9 by gefitinib, WZ4002 and 

WZ4002 + CI-1040, as shown by the increase in BIM BH3-induced mitochondrial 

depolarization (Δ% priming). In PC9GR cells, WZ4002, but not gefinitib, increased 

priming. In PC9WZR cells, only the WZ4002 + CI-1040 increased mitochondrial priming 

(Figure 1B). We next measured cell death at 72 hours for the same cell lines following the 

same treatments using FACS analysis of Annexin V/PI staining (Figure 1C). When we 

compared Δ% priming and Δ% cell death, we observed an excellent correlation between 

both measurements (Figure 1D. left). The Receiver Operating Characteristic was also 

excellent, performing perfectly in this small number of tests.(Figure 1D, right). Note that 

DBP was performed at 16 hours when no significant cell death was evident, whereas cell 

death was analyzed more than two days later (Figure S2). Thus, the early priming increase 

measured by DBP provided accurate, drug-specific predictions about cytotoxicity even 

though the death took place days later.

DBP should only be predictive if the mitochondrial apoptosis pathway is being engaged. To 

confirm this engagement, we analyzed PARP cleavage, as well as levels of BIM, BCL-2 and 

BCL-XL proteins following 24h of drug treatment. When cytotoxicity was observed, PARP 

cleavage was detected. In addition, cytotoxicity correlated with either increases in BIM, 

decreases in anti-apoptotic proteins, or a combination of both effects, supporting the 

simultaneous participation of multiple BCL-2 family proteins in the determination of cell 

fate.(Deng et al., 2007b; Faber et al., 2011) (Figure 1E).

In order to determine if this predictive capacity of DBP could be generalized to other 

NSCLC models, we treated 8 different NSCLC cell lines with gefitinib, WZ4002, AZD6244 

(MEK inhibitor), BEZ235 (PI3K/mTOR inhibitor) and the combination AZD6244 + 

BEZ235, that was previously described to treat murine lung cancers harboring the KRas 

G12D mutation (Engelman et al., 2008; Faber et al., 2009). We chose drug concentrations 

that had previously demonstrated in vitro cytotoxicity. Again, we compared the priming 

increase measured by DBP after 16h of treatment with cell death observed at 72 h (Figure 

S3A). Some of the cell lines analyzed had a tendency to show less cytotoxicity than would 
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be expected by DBP for a few drugs. It is possible that measurement of cell death at longer 

time points would reduce such disagreements. Nonetheless, we observed a significant 

correlation between Δ% priming and Δ% cell death when all cell lines and treatments were 

considered (Figure S3B). To assess if DBP provided a useful binary predictor of 

cytotoxicity, we performed Receiver Operating Characteristic (ROC) curve analysis 

(Pencina et al., 2008). Typically, a random classifier would present an AUC of 0.5, while a 

perfect classifier would have a AUC of 1. In this case, the area under the ROC curve is 

0.895 (Figure S3C), comparing favorably with the ROC performance of many clinically 

used predictors (Burstein et al., 2011). Note that this analysis relies not simply on 

measurements of the baseline priming, but rather on the degree to which drugs increase 

priming from that baseline.

DBP predicts cytotoxicity in breast cancer cells

To test the generalizability of our hypothesis in a different type of cancer, we performed a 

similar set of experiments with 5 different human breast cancer cell lines treated with 

gefitinib, lapatinib (HER2 inhibitor), MK-2206 (AKT inhibitor), AZD6244 (MEK 

inhibitor), BEZ235 (PI3K/mTOR inhibitor), dinaciclib (SCH 727965, CDK inhibitor), 

ABT-888 (PARP inhibitor) and the combination AZD6244 + BEZ235, as previously 

described (Faber et al., 2009). Again we observed a significant correlation between Δ% 

priming after 16h of treatment and Δ% cell death at 96 h (Figures 2A, 2B). The area under 

the ROC curve for this set of cell lines is 0.93 (Figure 2C), thus objectively DBP is an 

excellent binary predictor for breast cancer cell lines’ response to chemotherapy.

Selecting the optimal kinase inhibitor using Dynamic BH3 profiling

In clinical practice, an important application of a potentially powerful, widely applicable 

predictive biomarker would be to choose from among a panel of possible therapies 

(Sawyers, 2008). This is the central goal of what is currently commonly termed “precision 

medicine”. We hypothesized that if we could compare the death signaling induced by 

several different agents in a cancer cell, we could pick the ones that would work best. To test 

this principle, we selected 10 different cancer cell lines, chosen simply by variety and 

availability. For drugs, we chose 9 kinase inhibitors, for their diversity of targets and known 

in vivo activity. We chose kinase inhibitors because of their known use of the mitochondrial 

apoptotic pathway to kill cancer cells (Bhatt et al., 2010; Faber et al., 2011). Our question 

was, among these diverse cell lines and drugs, could DBP at an early time point be used to 

make individualized choices of the drugs most likely to kill each cancer cell line.

For this purpose we selected drugs targeting either key membrane receptor tyrosine kinases 

like geftinib (EGFR inh), imatinib (ABL inh.), lapatinib (HER2 inh.), PD173074 (FGFR 

inh.) and TAE684 (ALK inh.); or important intracellular serine/threonine kinases including 

MK-2206 (AKT inh.), PLX4032 (BRAFV600E inh.), AZD6244 (MEK inh.) and BEZ235 

(PI3K/mTOR inh.). All of the compounds tested previously demonstrated cytotoxicty in 

cancer cell lines and/or murine cancer models, including hematological malignancies (Bhatt 

et al., 2010) and solid tumors (Maertens et al., 2013). We tested the panel of kinase 

inhibitors on several human hematological cancer cell lines: K562 (acute myelogenous 

leukemia), DHL6 (diffuse large B-cell lymphoma), LP1 (multiple myeloma), DHL4 (diffuse 
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large B-cell lymphoma) and AML3 (acute myelogenous leukemia). First we performed DBP 

after 16 hour exposure to the different treatments (Figure 3A). We compared the DBP 

results to cell death achieved at 72 hours, expressed as Δ% Cell death (Figure 3A). Each cell 

line demonstrated a distinct pattern of drug induced priming increase, a distinct fingerprint 

of pathway addiction just as there was a distinct pattern of cytotoxic response to the drug 

panel. Most importantly for our question however, there was an excellent correlation of DBP 

with cytotoxicity days later (Figure 3B). For this set of hematological cell lines, predictive 

power of DBP was demonstrated by an AUC of the ROC curve of 0.83 (Figure 3C). Note 

that DBP identified the agent causing greatest cytotoxicity in 4 out of 5 cell lines. In the one 

exception, LP-1, there was little cytotoxicity induced by any of the drugs.

We next examined the predictive capacity of DBP with several diverse human solid tumor 

cell lines: MCF7 (Breast Cancer), PC9 (Non-Small Cell Lung Cancer), Sk-mel-5 

(Melanoma), HCT116 (Colon carcinoma) and MDA-MB-231 (Breast Cancer). We exposed 

the cells to the different treatments for 16 hours and performed DBP (Figure 4A), comparing 

it with the cell death observed at 72–96 hours (Figure 4A). In some cases, a 96 hour time 

point was required due to slow kinetics of cytotoxicity. Similarly as observed for 

hematological malignancies, the different cell lines responded differently to the drugs tested, 

but a significant correlation between DBP and cytotoxicity was detected (Figure 4B). Sk-

mel-5 was the only one sensitive to PLX4032, as expected for a BRAFV600E expressing 

melanoma cell line, but was also sensitive to MEK (AZD6244) and PI3K/mTOR (BEZ235) 

inhibition, correlating with the cell death detected three days later, at 96 hours. On the other 

hand, PC9, as shown previously (Figure 1 B–C), responded to gefitinib (Ercan et al., 2010; 

Faber et al., 2011), but also to lapatinib and TAE684; correlating with cell death at 72 hours. 

For this set of solid tumor cell lines the AUC of the ROC curve was 0.96 (Figure 4C). In 

three out of five cell lines, DBP clearly predicted the most cytotoxic drug. In the other two 

MCF7 and HCT116, there was nearly equal maximum response of the same two drugs in 

both DBP and cytotoxicity.

Throughout this paper, we use loss of fluorescence from an indicator compound, JC-1, that 

is sensitive to the electropotential gradient across the inner mitochondrial membrane. We 

have previously shown that this JC-1 signal provides a good surrogate for permeabilization 

of the outer mitochondrial membrane (Ryan et al., 2010). To verify that this surrogacy is 

maintained in DBP, we compared measuring MOMP by JC-1 or by efflux of cytochrome c 

as read on a flow cytometer (Ryan and Letai, 2013) (Figure S4). Our results show good 

agreement between the two techniques, supporting the use of JC-1 fluorescence as a 

surrogate for MOMP in the context of DBP.

To test the generalizability of the principle that early drug-induced priming changes predict 

eventual cytotoxicity across a wide variety of both solid and liquid cancers and a wide 

variety of agents, we combined the data of Figure 1, 2, 3, 4 and Figure S3. We observed that 

there is a significant correlation between Δ% priming and Δ% Cell Death (figure 5A). Note 

that liquid tumors in general have a greater cytotoxic response per change in priming, 

perhaps explained by the higher baseline mitochondrial apoptotic priming we observe in 

hematologic cancer cell lines compared to solid tumor cell lines. In addition, the ROC 

analysis suggests that DBP could be a good binary predictor for cytotoxicity across a wide 
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range of pathway inhibitors and cancer, with an AUC for the ROC curve of 0.89 (Figure 

5B). These results suggest the most significant hurdle that must be cleared for a drug to 

cause cytotoxicity is simply the initiation of death signaling. Regardless of the pathway 

inhibited and regardless of the cell of origin of the cancer, early drug-induced death 

signaling predicts later cytotoxicity.

Choosing the best treatment among several options

A predictive biomarker can be used to identify the best therapy among many treatment 

options for a single patient. To test the ability of DBP to identify the most effective therapy 

among a myriad of treatment options we turned to an allograft melanoma model. Mouse 

melanomas harboring compound mutations in Braf and Nf1 readily grow as allografts and 

are resistant to selective BRAF inhibitors, but sensitive to (combined) MEK/mTORC1 

inhibition (Maertens et al., 2013). To ask whether DBP could discriminate among the in 

vivo efficacy of several therapies on the same tumor model, we exposed Braf/Nf1-mutant 

melanoma cells to different targeted agents for 16 hours: PLX4720 (a PLX4032 analogue 

that inhibits mutant BRAFV600E), PD0325901 (referred to as PD-901, a MEK inhibitor), 

GDC-0941 (a PI3K inhibitor) and rapamycin (an mTORC1 inhibitor), as single agents or in 

combination. Of all the treatments tested, PD-901 in combination with rapamycin induced 

the greatest increase in priming (Figure 6A). These findings correlate well with the 

preclinical data previously generated using this tumor model (Figure 4C Maertens et al., 

2013). More specifically, of all (combination) therapies tested in vivo the PD-901/rapamycin 

combination caused the greatest tumor shrinkage, as summarized in Figure 6B. Across all of 

the treatments, we observed a significant correlation between DBP results and the in vivo 

data obtained in the Braf/Nf1-mutant allografts (Figure 6C). These results suggest that DBP 

can be used as a predictive biomarker to select among treatment options to identify 

treatments that will provide best in vivo benefit.

Identifying the best-responding patients to a single therapy in a patient cohort

Predictive biomarkers can also be used to stratify likelihood of response to a single therapy 

among many patients. This can be described as a companion diagnostic use. Having 

thoroughly supported the hypothesis that early death signaling detected by DBP predicts 

cytotoxicity in vitro, it was important to test whether our tool can likewise discriminate 

between clinical sensitivity and resistance to anti-cancer therapies using primary patient 

samples. We chose treatment of CML with imatinib as a first test of this principle. CML 

cells possess a t(9;22) translocation creating a BCR-ABL fusion protein that results in 

constitutive active ABL kinase activity. CML is typically sensitive to inhibitors of ABL 

kinase including imatinib (Sawyers, 1999).

To demonstrate the correlation between imatinib’s inhibition of ABL and an increase in 

apoptotic priming, we treated two human CML cell lines with different concentrations of 

imatinib. After 16 hours of treatment, we observed that the dephosphorylation of ABL, and 

its downstream target CRKL correlated with an increase in priming. Note that frank cell 

death began days later, at 72 hours (Figure S5).
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We treated bone marrow cells obtained from 24 CML patients for 16 hours with imatinib, 

performed DBP, and recorded the change in priming induced. Initial resistance to imatinib is 

very rare in CML, so we compared samples of patients who were newly started on imatinib, 

all of whom entered at least a complete hematologic remission (“sensitive”, Figure 7A) with 

samples from patients obtained when they were known to be refractory to imatinib 

(“resistant”, Figure 7A). Samples from patients that were sensitive to imatinib showed a 

significantly higher Δ% priming compared to those that did not respond (Figure 7A). We 

next tested the ability of DBP to segregate clinical sensitivity and resistance in a binary 

fashion. with ROC analysis (Figure 7B). The area under the ROC curve was 0.89, p=0.016, 

supporting the ability of DBP to discriminate clinical sensitivity and resistance. There was 

variability in the quality of the tracings obtained, likely due to variability in the viability of 

the thawed patient samples. When we applied criteria only to accept tracings for which there 

was at least a difference of 100 relative fluorescent units between our positive control 

(FCCP) and negative control, we observed similar results, with an AUC of 0.88. This came 

at the cost of excluding 7 samples from analysis based on the criteria (Figure S6). Basically, 

every newly diagnosed patient with CML will be started on imatinib or another tyrosine 

kinase inhibitor, and nearly all will have at least a complete hematologic remission. Thus, 

there is little need for a new predictive biomarker to guide administration of tyrosine kinase 

inhibitors in CML. Nonetheless, this study demonstrates the principal that DBP can 

distinguish clinical sensitivity and resistance to a targeted agent.

Dynamic BH3 profiling predicts carboplatin response in ovarian cancer patients

Although our testing was focused on using DBP with targeted agents, pro-death signaling 

resulting from treatment with classical cytotoxic chemotherapies should be predictive of 

cellular response since these drugs also largely kill via the mitochondrial apoptotic pathway. 

We obtained 16 primary ovarian adenocarcinomas from surgical resection. We treated a 

single cell suspension of these tumors with carboplatin, the standard front-line therapy, ex 

vivo for 16 hours and performed DBP. We detected a robust Δ% priming (≥ 20%) in 6 of the 

patient specimens.

All analyzed patients were then treated with carboplatin in combination with taxol in the 

clinic. We then collected and analyzed the clinical data on the patients to assess progression 

free survival using an abnormal and rising CA-125 as an index for progression. Patients with 

ovarian adenocarcinomas that exhibited a robust Δ% priming (≥ 20%) experienced a 

significantly longer progression free survival to those patients who did not (Figure 7C).

DISCUSSION

Here we tested and supported the hypothesis that the initiation of death signaling is 

sufficient to determine eventual commitment to cell death. By detecting early death 

signaling, DBP can predict in vitro and in vivo cytotoxic response in varied cancers to 

varied classes of chemotherapeutic agents, agents which have in common only their ability 

to kill cancer cells via the mitochondrial pathway of apoptosis. While this provides basic 

mechanistic information about the events between drug treatment and commitment to cell 

death, we anticipate that its greatest utility might be in prediction of cancer patients’ 
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response to therapy in the clinic. Over the past decade, an ever-growing number of therapies 

have been approved for use in medical oncology. But every tumor is distinct, with its own 

particular signaling network and pathway addiction yielding a distinct pattern of sensitivity 

to cancer therapeutics. The task of precision cancer medicine is to match a tumor to those 

agents that will most effectively eliminate it (Garraway and Janne, 2012; Sawyers, 2008; 

Yaffe, 2013).

An analogous problem was faced in the previous century in the world of clinical 

microbiology. As the number of antibiotics proliferated, it became more challenging to 

identify the best drug for a particular isolate of bacteria. The very practical solution that 

emerged was to simply grow a lawn of bacteria and expose the isolate to all available 

antibiotics in the form of drug-soaked disks. Antibiotics were then chosen from those that 

caused the greatest elimination of bacteria. This practice is still the standard and has not 

been displaced by any modern technology, including genomics, proteomics, or systems 

biology. While this method reveals little about signaling pathways and genetics of bacteria, 

it is supremely useful because it functionally summarizes the contribution of many genes 

and pathways to the phenotype that is most pertinent, the response of the viable bacterium to 

antibiotics. A version of this assay has been the mainstay of clinical microbiology for many 

decades.

Analogous ex vivo approaches have been attempted in oncology, but with little success. A 

typical strategy was to expose a patient’s tumor to drugs and place it into ex vivo culture for 

3–14 days followed by evaluation of cell death, proliferation, or colony formation (Burstein 

et al., 2011). The biggest difficulty was the requirement for ex vivo culture of cancer cells. 

Many cancer cells simply rapidly die in ex vivo culture. Those that survive can undergo 

arrest or other phenotypic changes that accompany the transfer from a comfortable in vivo 

niche to an ex vivo plastic dish in 21% oxygen. In addition, if the culture is prolonged, there 

can be selection for non-tumor cells or clones that are poorly representative of the patient’s 

tumor. The result, in any case, was a series of studies that did not provide sufficient 

predictive power to be clinically useful. Exciting new ex vivo cell culture strategies using 

more modern techniques require weeks to months (Crystal et al., 2014). Their utility in 

guiding patient care will doubtless be tested in the coming years. Patient-derived xenograft 

(PDX) mouse models are being tested as a newer venue for functional assessment of tumor 

cell response to –– therapy (Hidalgo et al., 2014). However, the time (months) and expense 

that are required to establish PDX models may limit their utility in clinical medicine.

Here we have taken a different approach. Appreciating the tremendous advantages of 

perturbing the actual patient tumor cell with the actual therapy of interest, we instead have 

prioritized making observations early enough that long term ex vivo culture is not needed. 

While we have found that death signaling can be detected as early as 4 hours after treatment, 

depending on the drug, we have found that a sixteen hour incubation is sufficient for most 

agents to produce measurable death signaling in responding cells. We demonstrated that 

DBP can be exploited to select among many therapies the one that is best for a single tumor 

(Figure 6). We also demonstrated that DBP can select among many patients those that are 

most likely to respond to a single therapy (Figure 7). These are the two major functions of a 

clinically useful predictive biomarker, and it is notable that DBP can perform them both. Of 
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equal importance, the clinical and in vivo experiments of Figure 7 demonstrate that useful 

predictive observations of both liquid (CML) and solid (ovarian) primary human tumors is 

consistent with a simple 16 hour monolayer culture.

We anticipate that DBP may be used to make personalized choices of therapy for patients. 

One could use DBP to choose agents among a panel of candidate drugs for one individual 

patient. Alternatively, one could use DBP to stratify a panel of patients to identify those 

most likely to respond to a individual drug. In the case of drugs that have activity only in a 

subset of a particular disease, we believe DBP can more efficiently stratify patient selection 

for clinical trials or clinical use by prospectively identifying those whose tumors are most 

likely to respond. In addition, while our focus here was on cancer cells, it is important to 

realize that this approach is also applicable to the study of non-malignant cells. As such, it 

can be used as a probe of sensitivities of cells in normal biology to a variety of insults, or as 

a toxicology tool to predict the toxicity of novel agents to normal tissues.

While we have focused mainly on single agent therapies in our proofs of principle studies, a 

strength of this approach is that it should work for both single agent and combination 

therapies. In fact, we explicitly demonstrated this in Figures 1, 2 and S3. Given the nearly 

universal emergence of resistance to single agent targeted therapies, even when there is an 

excellent initial response, strategies for the rational choice of personalized combination 

therapies is of great importance. We can envision two ways DBP could be used to fashion 

such strategies. One is to simply expose tumor cells to the combinations as we did in Figures 

1, 2 and S3. Another is to test a panel of single agents via DBP, and combine two or more 

with good single agent activity.

A tremendous amount of information has been collected on cancer cells in the past few 

years, and the amount is likely to continue to grow exponentially. Much of this information 

is now genetic, with whole cancer genomes being sequenced (Barretina et al., 2012). In 

addition, there are technologies that garner an abundance of gene expression information, 

and those that capture protein expression (Kornblau et al., 2009). It remains to be seen how 

widely these technologies will be useful in better assigning therapy to patients. However, 

despite the huge amounts of information acquired, one common limitation of these studies is 

that they all represent static observations of dead cells. That means that a tremendous 

amount of the functional complexity of the cell has been lost to study. With DBP, we 

anticipate that a small number of strategic perturbations (drug and peptide exposures) on 

viable cells will yield vastly fewer bits of information, but that a great proportion of the bits 

will be clinically actionable.

EXPERIMENTAL PROCEDURES

Cell lines and treatments

RPMI 1640 media supplemented with 10% heat inactivated fetal bovine serum (Gibco) 10 

mM L-Glutamine and 100 U/ml penicillin and 100 μg/ml streptomycin, was used for the 

culture of the cell lines used. The cells were cultured at 37°C in a humidified atmosphere of 

5% CO2.
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Isolation and Treatment of Primary CML Cells

30 primary CML samples from bone marrow biopsies viably frozen in 90% FBS/

10%DMSO were obtained from the the Pasquarello Tissue Bank at Dana-Farber Cancer 

Institute and from Dr. Philip C. Amrein at the Massachusetts General Hospital. Cells were 

thawed and resuspended in complete RPMI media and washed with fresh media, counted by 

trypan blue exclusion and plated in a 12-well plate, 1 million cells/well and treated with 

imatinib 1 and 5 μM. DBP failed on 5 samples due to failure of mitochondria to maintain 

transmembrane polarization. After a 16 h incubation at 37°C in a humidified atmosphere of 

5% CO2, Dynamic BH3 Profile analysis was performed. Clinical response data was 

compiled by clinicians; patients are considered responders when complete hematologic 

response was observed.

Ovarian primary tumors

Fresh primary tumors, prospectively obtained from routine resections after patients signed 

an informed consent approved by the Institutional Review Board (DFCI#02-051), were used 

for preparation of viable single cell suspensions. Tumors were first mechanically dissociated 

and digested for 1 hour at 37°C in 1 mg/mL collagenase/dispase (Roche Diagnostics). Cells 

were then filtered through a cell strainer and cell viability was assessed by trypan blue 

exclusion. Cells were then frozen in freezing buffer (fetal bovine serum with 10% DMSO). 

For DBP, cells were thawed and resuspended in complete RPMI media with 100 U/ml of 

DNAse I and incubated 15 min at room temperature. Then the cells were washed with fresh 

media, counted by trypan blue exclusion and plated in a 12-well plate, 0.2–0.5 M cells/well 

and treated with carboplatin 100 μg/ml. After a 16 h incubation at 37°C in a humidified 

atmosphere of 5% CO2. Dynamic BH3 Profile analysis was performed blinded to clinical 

outcome. Clinical response data was compiled by clinicians 6–24 months after sample 

acquisition.

Dynamic BH3 Profiling

2 × 104 cells/well were used for cell lines, 4 × 104 cells/well were used for primary CML 

and AML. 15 μL of BIM BH3 peptide (final concentration of 0.03, 0.1, 0.3, 1 and 3 μM) in 

T-EB (300 mM Trehalose, 10 mM hepes-KOH pH 7.7, 80 mM KCl, 1 mM EGTA, 1 mM 

EDTA, 0.1% BSA, 5 mM succinate) were deposited per well in a black 384-well plate (BD 

Falcon no. 353285). Single cell suspensions were washed in T-EB before being resuspended 

at 4× their final density. One volume of the 4× cell suspension was added to one volume of a 

4× dye solution containing 4 μM JC-1, 40 μg/mL oligomycin, 0.02% digitonin, 20 mM 2-

mercaptoethanol in T-EB. This 2× cell/dye solution stood at RT for 10 min to allow 

permeabilization and dye equilibration. A total of 15 μL of the 2× cell/dye mix was then 

added to each treatment well of the plate, shaken for 15 s inside the reader, and the 

fluorescence at 590 nm monitored every 5 min at RT. Percentage loss of Ψμ for the peptides 

is calculated by normalization to the solvent only control DMSO (0% depolarization) and 

the positive control FCCP (100% depolarization). Individual DBP analysis were performed 

using triplicates for DMSO, FCCP and the different BIM BH3 concentrations used, and the 

expressed values stand for the average of three different readings. In cases were Standard 

Deviation was >10%, the outlying reading was discarded. % priming stands for the 
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maximum % depolarization obtained from the different BIM BH3 concentrations tested; 

typically 0.03, 0.1, 0.3, 1 and 3 μM. Δ% priming stands for the difference between treated 

cells minus non-treated cells (% primingtreated − % primingnon-treated). See also Figure S1.

Cell viability assays

Cells were stained with fluorescent conjugates of Annexin-V (BioVision) and/or propidium 

iodide (PI) and analyzed on a FACS Canto machine (BD). Viable cells are annexin-V 

negative and PI negative, and cell death is expressed are 100%-viable cells. Δ% Cell Death 

stands for the difference between treated cells minus non-treated cells (% Cell Deathtreated − 

% Cell Deathnon-treated).

Immunoblotting

Total cell lysates were prepared in 1% Chaps buffer [5 mM MgCl2, 137 mM NaCl, 1 mM 

EDTA, 1 mM EGTA, 1% Chaps, 20 mM Tris-HCl (pH 7.5), and protease inhibitors 

(Complete, Roche)]. Cells were washed twice, resuspended with 50–100 μL of CHAPS lysis 

buffer, and kept on ice for 30 minutes. Then, the cellular suspension was centrifuged at 

16.100g for 5 minutes, and the supernatant used to perform the immunoblotting analysis.

20 μg of protein was loaded on NuPAGE 10% Bis-Tris polyacrylamide gels (Invitrogen). 

The following antibodies were used to detect proteins on the membrane (dilution 1:1000): 

Actin (Chemicon, MAB1501); PARP-1 (cell signaling, #9542); BCL-2 (Epitomics, 

#1017-1); BIM (Cell Signaling, #2933); BCL-xL (Cell signaling, #2762).

Statistical analysis

Statistical significance of the results was analyzed using Student’s t-tail test using GraphPad 

Prism 5.0 software. *p < 0.05 and **p < 0.01 were considered significant. SEM stands for 

Standard Error of the Mean. For ROC curve analysis cell lines were considered responsive 

to treatment when Δ% cell death > 10 %; CML clinical samples when the patient achieved a 

complete hematologic response after treatment; for ovarian adenocarcinoma biopsies, 

clinical response data was compiled by clinicians 6–24 months after sample acquisition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Dynamic BH3 profiling predicts chemotherapy sensitivity in PC9 cell lines
(A) To perform Dynamic BH3 profiling (DBP) we obtain a single cell suspension from a 

cell line or a primary sample, and we expose the cells to the different drug treatments to be 

tested. After this incubation, we permeabilize, stain with the fluorescent dye JC-1 and 

expose the cells to different BH3 peptides that will promote mitochondrial depolarization 

and MOMP, the ultimate event that triggers apoptosis. By comparing the non-treated cells 

with the treated ones, DBP will determine the Δ% priming for each agent and identify which 

are most effective to induce apoptosis in that particular sample. All this analysis is 

performed in less than 24 hours, minimizing ex vivo culture. (B) DBP was performed on 

three different PC9 cell lines: parental PC9, PC9GR (gefitinib resistant, T790M mutation 

present) and PC9WZR (gefitinib and WZ4002 resistant, T790M mutation present), using a 

16 hour incubation of: gefitinib 1μM, WZ4002 100 nM, CI-1040 3 μM (MEK inhibitor) and 
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WZ4002+CI-1040. Results expressed as Δ% priming (increase in priming compared to non-

treated cells). Values indicate mean values ± SEM, at least three independent experiments 

were performed (N≥3). (C) Cell death measurements at 72 hours for the same cell lines 

under the same treatments by FACS using Annexin V/PI staining. Results are expressed as 

increase on cell death or Δ%Cell Death, compared to non-treated cells. Values indicate mean 

values ± SEM, at least three independent experiments were performed (N≥3). (D) Plot 

showing correlation between Δ% priming at 16h and Δ%Cell Death at 72h. Receiver 

Operating Characteristic curve analysis at right. (E) Western Blot analysis, showing changes 

in the BCL-2 family of proteins. See also Figures S1, S2 and S3.
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Figure 2. DBP predicts chemotherapy sensitivity in breast cancer cell lines
(A) DBP was performed in five breast cancer cell lines: BT20, HCC1954, SKBR3, T47D 

and HCC2218 showing different pattern of response to the treatments tested (16 hour 

incubation): 1) gefitinib 1μM, 2) lapatinib 1μM, 3) MK-2206 1μM, 4) AZD6244 1μM, 5) 
BEZ235 1μM, 6) dinaciclib 10 nM (SCH 727965), 7) ABT-888 5μM and the combination 8) 
AZD6244 + BEZ235. Results expressed as Δ% priming (increase in priming compared to 

non-treated cells). Values indicate mean values ± SEM, at least three independent 

experiments were performed (N≥3). Cell death measurements at 72 hours for the same cell 

lines under the same treatments by FACS using Annexin V/PI staining. Results are 

expressed as increase on cell death or Δ%Cell Death, compared to non-treated cells. Values 

indicate mean values ± SEM, at least three independent experiments were performed (N≥3). 
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(B) Plot showing the significant correlation between Δ% priming at 16h and Δ%Cell Death 

at 72h. (C) Receiver Operating Characteristic (ROC) curve analysis.
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Figure 3. Identifying the optimal treatment in hematological malignancies using DBP
We selected several drugs targeting either key membrane receptors: 1) gefitinib 1μM, 2) 
imatinib 1μM, 3) lapatinib 1μM, 4) PD173074 1μM and 5) TAE684 1μM; or important 

intracellular kinases: 6) MK-2206 1μM, 7) PLX4032 10μM, 8) AZD6244 1μM and 9) 
BEZ235 1μM, and we tested them with several human hematological cancer cell lines: 

K562, DHL6, LP1, DHL4 and AML3. (A) DBP (16 hour incubation) results expressed as Δ

%priming and cell death measurements at 72 hours using Annexin V/PI staining expressed 

as Δ%Cell Death. Values indicate mean values ± SEM, at least three independent 

experiments were performed (N≥3) (B) Plot showing the significant correlation between Δ% 

priming at 16h and Δ%Cell Death at 72h. (C) ROC curve analysis shows AUC=0.83.
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Figure 4. Identifying the optimal treatment in solid tumors using DBP
We tested the same panel of kinase inhibitors on several human solid tumor cell lines: 

MCF7, PC9, Sk5mel, HCT116 and MDA-MB-231. (A) DBP (16 hour incubation) results 

expressed as Δ%priming and cell death measurements at 72 or 96 hours (as indicated) using 

Annexin V/PI staining expressed as Δ%Cell Death. Values indicate mean values ± SEM, at 

least three independent experiments were performed (N≥3) (B) Plot showing the significant 

correlation between Δ% priming at 16h and Δ%Cell Death at 72/96h. (C) The ROC curve 

analysis has an AUC=0.96, indicating that DBP is an excellent binary predictor for 

chemotherapy response in solid tumor cell lines. See also Figure S4.
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Figure 5. Dynamic BH3 profiling is a good binary predictor for cell lines
(A) Compilation of Figures 1, 2, 3, 4 and Suppl. Figure 3 results, showing a significant 

correlation between Δ% priming and Δ% Cell Death for all cell lines analyzed. (B) The total 

area under the ROC curve is 0.89, indicating that is a good binary predictor for 

chemotherapy response in all the cell lines and treatments tested.
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Figure 6. DBP can identify the best in vivo treatment among several options
Braf/Nf1-mutant melanoma cells were treated ex vivo with PLX4720 1 μM, PD0325901 

(referred to as PD-901) 0.25 μM, GDC-0941 1 μM, rapamycin 0.1 μM, PD-901 + rapamycin 

and PLX4720 + rapamycin. (A) DBP (16 hour incubation) results expressed as Δ%priming. 

Values indicate mean values ± SEM, at least three independent experiments were performed 

(N≥3) (B) In vivo response for this Braf/Nf1-mutant allograft melanoma model (adapted 

from Figure 4C Maertens et al., 2013), expressed as change in tumor volume (log2) after 7 

days of treatment (C) Correlation between Δ%priming and change in tumor volume.

Montero et al. Page 22

Cell. Author manuscript; available in PMC 2016 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. DBP can stratify in vivo drug response to imatinib in a cohort of CML patients and to 
carboplatin in ovarian adenocarcinoma patients
(A) 24 Frozen Ficoll purified Bone Marrow primary CML samples were treated for 16 hour 

with imatinib 1 and 5 μM, and DBP was then performed. Results are expressed as Δ

%priming. * p<0.05. (B) A ROC curve analysis for this set of samples. The AUC is 0.89. 

(C) 16 ovarian adenocarcinoma patient samples were analyzed by DBP with carboplatin. We 

treated the samples for 16 hours with carboplatin 100 μg/mL, and DBP was then performed. 

Shown is a Kaplan -Meier plot of the patients’ Progression-Free survival in response to 

carboplatin and taxol. A significant difference was observed between those patients whose 
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samples showed a Δ%priming >20% from those that were <20%, as assessed by Mantel-Cox 

statistical analysis. See also Figures S5 and S6, and Table 1.
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