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Abstract

Fetal hypoxia triggers compensatory angiogenesis and remodeling through mechanisms not fully 

elucidated. In response to hypoxia, hypoxia inducible factor drives expression of cytokines that 

exert multiple effects on cerebral structures. Among these, the artery wall is composed of a 

heterogeneous cell mix, and exhibits distinct patterns of cellular differentiation and reactivity. 

Governing these patterns are the vascular endothelium, smooth muscle (SM), adventitia, 

sympathetic perivascular nerves (SPN) and the parenchyma. Whereas an extensive literature 

details effects of non-neuronal factors on cerebral arteries, the trophic role of perivascular nerves 

remains unclear. Hypoxia increases sympathetic innervation with subsequent release of 

norepinephrine (NE), neuropeptide-y (NPY) and adenosine triphosphate (ATP), which exert motor 

and trophic effects on cerebral arteries and influence dynamic transitions among smooth muscle 

phenotypes. Our data also suggests that the cerebrovasculature reacts very differently to hypoxia 

in fetuses and adults, and we hypothesize that these differences arise from age-related differences 

in arterial smooth muscle phenotype reactivity and proximity to trophic factors, particularly of 

neural origin. We provide an integration of recent literature focused on mechanisms by which SPN 

mediate hypoxic remodeling. Our recent findings suggest that trophic effects of SPN on cerebral 

arteries accelerate functional maturation through shifts in SM phenotype in an age-dependent 

manner.
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INTRODUCTION

Rates of premature births are increasing globally owing to numerous different causes that 

vary from country to country (1, 2). Despite this heterogeneity, a common feature among 

causes of premature birth, including gestational diabetes, preeclampsia (3) and placental 

insufficiency (4) involves varying severities of hypoxia (5). Exposure to reduced levels of 
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oxygen induces multiple intrinsic compensatory mechanisms geared towards preserving 

oxygen delivery, particularly to the fetal brain and heart (6–8). Persistent exposure to 

hypoxia eventually overwhelms these intrinsic compensations and subsequently results in 

pathophysiological changes in the structure and function of many different tissues (9–11). In 

many cases, fetuses survive initial hypoxic insults but acquire increased long-term risks for 

altered cerebral and / or cardiovascular homeostasis (12–15). Increased long-term 

vulnerabilities to coronary, cerebrovascular, and even metabolic diseases secondary to such 

in utero fetal insults has been defined as fetal programming (14, 16).

Given that the brain has a high oxygen and metabolic demand with no commensurate 

reserves, its vasculature promptly undergoes angiogenesis and remodeling during hypoxic 

episodes (17–19). Several structural (18) and functional (20–22) changes in the cerebral 

vascular network define these remodeling processes. In addition, immaturity of the fetal 

cerebral vasculature increases the extent of remodeling upon exposure to decreased oxygen 

tension (10, 23, 24). Because of the highly heterogeneous mix of cells present in the medial 

layer of the artery wall and their innate plasticity, their reactivity to hypoxia varies 

significantly with artery type, size, and location (25, 26). Several studies have further 

suggested that shifts in smooth muscle phenotype are critically important components of 

vascular remodeling (27–31).

Under normoxic conditions HIF-1α is synthesized but rapidly ubiquitinated and targeted for 

proteosomal degradation (32). However, during hypoxia, the oxygen regulated HIF-1α-

subunit gets stabilized, accumulates and dimerizes with the constitutively expressed HIF-1β-

subunit. The HIF dimer then triggers a cascade of events that culminate in the transcription 

of multiple genes that encode numerous proteins including several angiogenic cytokines (33) 

(34). Coupling between HIF and angiogenic factors such as erythropoietin (EPO), vascular 

endothelial growth factor (VEGF), platelet derived growth factor (PDGF), fibroblast growth 

factor (FGF) and their respective receptors serve to maintain the supply of oxygen and fuels 

to all cells (34). Cellular metabolic status and survival during hypoxia depend heavily on 

how successfully these compensatory changes increase vascular density, oxygen delivery 

and metabolic adaptation to hypoxia.

Previous work characterizing the various cell types in the artery wall reveals that these cells 

are tightly and uniquely organized into distinct phenotypic categories. In turn, the 

characteristics of these cells vary in relation to their relative distances to sources of various 

trophic factors coming from either the parenchyma or the lumen (35). Given that fetal 

vascular smooth muscle cells are largely immature and subject to high rates of 

differentiation, smooth muscle cells in all major phenotypic categories including migratory, 

proliferative, synthetic, and contractile can be found in the fetal arterial wall (Figure 1). In 

contrast, adult smooth muscle cells are more highly differentiated, at least under normoxic 

and non-pathologic conditions (29). Extravascular tissue cells, such as neurons and glia in 

the brain parenchyma, serve as a major source of vasotrophic factors that influence vascular 

differentiation and adaptation to hypoxia (35–38).

Another major source of vasotrophic factors is the vascular endothelium, which can exert 

both autocrine and paracrine effects on cerebrovascular smooth muscle and thereby 
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contribute to vascular adaptation to chronic hypoxia (39–41). In addition, vasotrophic 

factors such as VEGF can exert direct angiogenic and remodeling effects on vascular 

smooth muscle cells during exposure to low oxygen tensions (42, 43). During hypoxic 

insults or vessel injury, adventitial fibroblasts can also migrate into the intima as myoblasts, 

which transform into myocytes and finally differentiate into smooth muscle cells (44, 45). 

Additional progenitor cells have also been suggested to migrate into the vascular medial 

layer during hypoxic exposure where they transform and differentiate into smooth muscle 

cells (46, 47).Other fetal stresses, such as maternal food restriction, also can exert trophic 

influences that alter the structural and functional characteristics of cerebral arteries (48). 

During maternal food restriction in particular, stress-induced maternal glucocorticoid release 

can downregulate mediators of fetal angiogenesis and remodeling, including VEGF and its 

receptors (49). Further studies have implicated glucocorticoids as mediators of smooth 

muscle redifferentiation toward a non-contractile phenotype, as indicated by an increased 

colocalization of smooth muscle alpha actin with non-muscle myosin heavy chain II (48).

In addition to humoral mechanisms, a broad variety of evidence supports a major role for the 

sympathetic autonomic nervous in hypoxic cerebrovascular remodeling (50–52). 

Sympathetic nerves express receptors for VEGF (53) that stimulate proliferation and 

differentiation of neural cells consequently increasing the release of vasotrophic factors (53) 

(54). This review focuses on the role of the sympathetic autonomic system in hypoxic 

remodeling, particularly in the fetal cerebral vasculature. The main hypothesis addressed 

here is that the sympathetic perivascular innervation contributes to both structural and 

functional hypoxic remodeling of the fetal cerebrovasculature through a combination of 

adrenergic and non-adrenergic mechanisms.

Neuronal Pathways of Hypoxic Remodeling

Hypoxia upregulates sympathetic perivascular innervation in fetal cerebral arteries

Cerebral blood flow is regulated by numerous factors, including locally produced 

metabolites, circulating neurohormones, intrinsic myogenic mechanisms, and perivascular 

nerves (55–57). Under hypoxic conditions, the contribution from perivascular sympathetic 

nerves can become increasingly important, particularly at the limits of cerebral 

autoregulation (58). Correspondingly, hypoxic acclimatization can significantly increase the 

density of the sympathetic innervation (50, 59–61). Consistent with these and other findings 

(62–64), reactivity to electrical nerve stimulation after 110 days of altitude hypoxic 

acclimatization was significantly increased in fetal cerebral arteries, even though it was 

significantly depressed in adult cerebral arteries (Figure 2). This high degree of age-

dependence could be accounted for by differences in sympathetic nerve density, 

neurotransmitter content, quantal release (64), reuptake capacity, cleft width or rates of 

neurotransmitter degradation (65). Alternatively, dynamic transitions between synthetic and 

contractile phenotypes during hypoxia may also be age-dependent (29, 66–69). In support of 

this latter possibility, adult vascular smooth muscle is more resistant to extraneous factors 

that induce phenotypic transformation, whereas fetal smooth muscle typically exhibits 

enhanced sensitivity to vasotrophic factors (70–72). Closely related to this concept is the 

finding that sympathetic nerve endings are typically more diffusely distributed throughout 
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the medial smooth muscle layer in fetal than in adult cerebral (73) and non-cerebral (74) 

arteries.

To further explore the effects of postnatal maturation and chronic hypoxia on the 

characteristics of the sympathetic cerebrovascular innervation, we have recently examined 

immunoreactivity for tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DβH), the 

rate-limiting enzyme in the biosynthesis of norepinephrine (Figure 3). In adult cerebral 

arteries, immunostaining for both TH and DβH revealed well-developed nerve terminals at 

the medial-adventitial junction with long axes of medial smooth muscle nuclei oriented 

circumferentially around the lumen. In contrast, immunostaining of fetal arteries 

demonstrated an adrenergic innervation that was diffuse, was less well organized, and 

extended significantly into the medial layer. Although smooth muscle cells were more 

abundant in the fetal arteries, they were more poorly organized and their nuclei were more 

heterogeneously shaped and oriented than in adult arteries. In the adventitial layer, the 

density of cell nuclei, which presumably includes fibroblasts and other smooth muscle 

precursor cells, was relatively sparse in adult arteries but much greater in fetal arteries 

(Figure 3). These age-related differences in the patterns of cell size and organization in the 

artery wall emphasize the important effects of maturation on arterial structure and function. 

These differences also reinforce the view, particularly in fetal arteries, that smooth muscle 

cells of all major phenotypes including migratory, proliferative, synthetic and contractile, 

(29) are simultaneously present together with adrenergic nerves in both mature and 

immature cerebral arteries (Figure 1). Together, these results are highly consistent with the 

findings that activation of perivascular adrenergic nerves is far more efficacious in adult 

than in fetal cerebral arteries (75).

Preliminary studies recently undertaken in our laboratory have examined the effects of 

chronic hypoxia on the abundance and organization of the sympathetic perivascular 

innervation in ovine fetal cerebral arteries. These studies suggest, through measurements of 

both immunostaining and immunoblotting for DβH, that chronic hypoxia dramatically 

increases the density of sympathetic innervation in ovine cerebral arteries, as reported in 

other preparations (50). Whereas our model is unique in that hypoxia is imposed in a large 

mammal by acclimatization at high altitude (3820m) for 110 days (43, 68), the results add 

further support to the concept that chronic hypoxia induces expansion, and presumably 

efficacy, of the perivascular sympathetic innervation.

Sympathetic perivascular nerves influence cerebrovascular structure and function

The sympathetic autonomic nervous system is a key regulator of cerebral blood flow (76), 

particularly under conditions of hypoxia and hypercapnia (77). Sympathetic activation 

during hypoxia can significantly increase contractile tone, decrease arterial diameter, and 

enhance wall thickness (78). Such increases in wall thickness may afford protection against 

elevated wall stress in cerebral blood vessels (79). Importantly, the character and extent of 

the sympathetic innervation pattern is highly dynamic (80) and subject to modulation during 

the physiological processes of ageing and development as well as pathophysiological 

processes such as hypertension and chronic hypoxia (64, 81). In turn, sympathectomy 

promotes remodeling of the extracellular matrix and promotes redifferentiation of smooth 
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muscle toward non-contractile phenotypes (82). These findings are highly consistent with 

our preliminary findings that chronic hypoxia upregulated contractile responses to 

sympathetic activation in fetal cerebral arteries (Figure2).

Sympathetic nerves can also exert potent long-term trophic effects on arterial structure and 

function (78, 83–85). Some of these changes include increases in arterial wall stiffness 

secondary to either surgical or chemical sympathectomy in multiple models (86, 87) 

suggesting that sympathetic nerves mediate preferential decreases in the ratio of collagen to 

elastin (88). Whereas adult subjects appear relatively resistant to effects of surgical or 

chemical denervation, fetuses respond more robustly via marked changes in arterial wall 

composition (71) and distensibility (86). Importantly, most changes in arterial structure and 

function resulting from sympathectomy are directly attributable to changes in the release, 

reuptake and degradation of the multiple neurotransmitters released by the sympathetic 

perivascular innervation (89).

Norepinephrine released from sympathetic nerves exerts trophic effects on arterial 
smooth muscle

Norepinephrine is the main neurotransmitter released from post-ganglionic sympathetic 

nerve terminals that innervate vascular smooth muscle cells. In turn, hypoxic upregulation of 

sympathetic nerve activity increases the local release and activity of norepinephrine (89, 90). 

The immediate effects of norepinephrine involve induction of contraction in most artery 

types, including cerebral arteries (91, 92). In contrast, the long-term effects of sympathetic 

nerve activation include trophic effects of arterial smooth muscle that alter the function of 

contractile proteins (93) and electrical behavior of the smooth muscle membrane (94). Not 

surprisingly, the magnitude of norepinephrine induced trophic effects on the artery wall 

correlate with mass of norepinephrine released (90), access to its receptors (95), adrenergic 

receptor type and density (92, 96, 97), rates of reuptake, and synaptic cleft width (98)} (64, 

99, 100). As indicated by denervation studies, the sympathetic perivascular innervation also 

influences artery wall thickness, rates of hyperplasia and hypertrophy, and remodeling of the 

adventitial matrix (72). Norepinephrine released from sympathetic nerves also can exert 

paracrine trophic effects and induce secretion of other trophic factors (101) that alter arterial 

phenotype in the cerebral vasculature (102). Together, these results highlight the important 

role of the sympathetic perivascular innervation, and norepinephrine in particular, on the 

maturation and differentiation of arterial smooth muscle (54).

Neuropeptide-Y (NPY) released from sympathetic nerve terminals exerts trophic effects on 
arterial smooth muscle

In addition to norepinephrine, sympathetic perivascular nerves release other vasoactive 

compounds, and careful analysis reveals that adrenergic receptors cannot mediate all the 

effects of sympathetic nerve activation (103–105). To probe the potential involvement of 

molecules other than norepinephrine in the effects of sympathetic stimulation on cerebral 

arteries, we recently examined the effects of transmural stimulation on cerebral artery 

contractions before and after depletion of norepinephrine with guanethidine. Our results 

demonstrated a significant guanethidine, non-adrenergic component that in fetal but not 

adult arteries was significantly greater than the norepinephrine component and was 
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enhanced by hypoxia (Figure4). These findings suggest, at least in fetal cerebral arteries, 

that non-adrenergic factors released from sympathetic nerves may play an important role in 

hypoxic cerebrovascular remodeling.

Aside from norepinephrine, Neuropeptide-Y (NPY) is the most potent vasoconstrictor 

released from sympathetic post-ganglionic nerve terminals (106–108). Composed of 36 

amino acids NPY exerts direct vasoconstrictor effects through activation of Y1 receptors 

(109) on many blood vessel types (103, 110), including cerebral arteries (103, 106) (110–

113). Although NPY does not initiate phasic contractions or induce spontaneous rhythm 

contractility, it can enhance the tone and frequency of phasic contractions produced by 

norepinephrine (114). NPY also potentiates the vasoconstrictor effects of norepinephrine 

(115) and is an important mediator of the contractile response to high frequencies of 

sympathetic nerve stimulation (116).

In addition to its acute contractile effects, NPY also has potent trophic and mitogenic effects 

on arterial smooth muscle (104). Of the 6 known subtypes of NPY-Y receptors, NPY exerts 

its most potent trophic effects through activation of its Y-1 receptors, which appear the 

subtype preferentially expressed by vascular smooth muscle (109, 117). Activation of Y1 

receptors, in turn, promotes both angiogenesis and remodeling via cellular adhesion, 

migration, proliferation, and differentiation in the cerebral vasculature during periods of 

hypoxia (106). In addition, however, activation of Y2 and Y5 receptors can also promote 

angiogenesis (117). Through actions on these receptors, NPY can promote phenotypic 

transformation of arterial smooth muscle in both mature and immature arterial smooth 

muscle (118).

Adenosine Triphosphate (ATP) released from sympathetic nerve terminals exerts trophic 
effects on arterial smooth muscle

Together with norepinephrine and NPY, sympathetic nerves also release adenosine 

triphosphate (ATP) (105, 119–121). The idea that norepinephrine, NPY and ATP are 

released simultaneously (119, 122, 123) has evolved over the years into the more recent 

concept that ATP is released much earlier than norepinephrine (124, 125). In this way, ATP 

induces the initial phasic vasoconstriction and norepinephrine initiates more slowly 

developing and longer-lasting tonic contractions (124–127). ATP effects are largely 

mediated by the P2 class of purinergic receptors, which are coupled to the smooth muscle 

interior through either ion channels (P2X) or G-protein coupled receptors (P2Y), both of 

which can be found in cerebral arteries (52, 128). In smooth muscle, both classes of P2 

receptors can mediate short-term effects on contractile tone, and also potent long-term 

mitogenic and trophic effects (104). Depending on the vessel type and receptor activated, 

ATP can promote cellular proliferation, migration or apoptosis (52, 121). These effects must 

be transduced very rapidly, however, because ATPases (124, 125, 129) and ADPases (130) 

are concurrently released with ATP and truncate its duration of effects. Even so, the 

characteristics of ATP render it a strong candidate for contribution to cerebrovascular 

remodeling, particularly under conditions of hypoxia that promote expansion of the 

sympathetic perivascular innervation. The exact role played by ATP in this capacity, 

however, remains largely unexplored in cerebral arteries of any age.
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Overview

Vasotrophic factors that govern the growth and differentiation of cerebrovascular smooth 

muscle arise from many sources, including the neurons and glia of the brain parenchyma 

(131, 132), smooth muscle progenitors (133–137) and immune cells (138, 139) that reside in 

the adventitia, smooth muscle cells acting through autocrine and paracrine mechanisms in 

the medial layer (140), and the vascular endothelium (141). Adding to this rich mixture are 

perivascular nerve endings at the adventitial-medial border that release an abundance of 

vasotrophic factors including norepinephrine, NPY and ATP (52, 106, 142). The release of 

all these factors is enhanced by fetal hypoxia, due to concomitant increases in VEGF, which 

has potent growth-promoting effects on the sympathetic innervation (54) (Figure 5). The 

combined trophic actions of norepinephrine on α1-adrenergic receptors, NPY on Y1 

receptors, and ATP on P2X/P2Y receptors all promote the contractile differentiation of 

vascular smooth muscle toward the contractile phenotype, particularly in immature arteries 

that are phenotypically highly plastic (101, 104, 143, 144). These effects can enhance fetal 

cerebral artery contractility, but also attenuate artery stiffness (87), probably through 

mechanisms that depress the ratio of collagen to elastin (88). Independent of the sympathetic 

innervation, fetal hypoxia can also increase wall thickness, increase stiffness, and depress 

contractility (6), indicating that the fetal cerebrovascular response is an integration of many 

different and highly dynamic influences. Chief among these is the sympathetic nervous 

system, which acts in a highly age-dependent manner to influence the structural and 

functional maturation of fetal cerebral vasculature, particularly under conditions of hypoxia.
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Figure 1. The Continuum of Vascular Smooth Muscle Phenotypes
The medial layer of arteries consists of a highly heterogeneous mix of cells of diverse 

origins. Many but not all smooth muscle cells begin as adventitial fibroblasts. These 

fibroblasts initially differentiate into myofibroblasts and then into smooth muscle myocytes 

that migrate through the medial layer. Migratory myocytes can then transform into 

proliferative, synthetic and contractile smooth muscle in response to growth factor 

stimulation. These patterns of differentiation are not terminal, and can be reversed when 

certain growth and stress factors are introduced in the local environment. In this manner, the 

artery wall is highly dynamic and heterogeneous in terms of both its structural and 

functional characteristics.
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Figure 2. Chronic hypoxia modulates contractile responses to transmural nerve stimulation in an 
age-dependent manner
Following 110 days of hypoxic acclimatization, reactivity to electrical nerve stimulation in 

ovine fetal cerebral arteries was significantly enhanced compared to normoxic controls. 

Conversely, hypoxic acclimatization modestly depressed contractile reactivity to nerve 

stimulation in adult cerebral arteries. Results are presented as mean ± SEM. For fetal 

normoxic (FN), fetal hypoxic (FH), and adult normoxic (SNC) groups, N=16. For the adult 

hypoxic group (SHC), N=21.
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Figure 3. Dopamine βhydroxylaseand tyrosine hydroxylase staining demonstrate major 
developmental differences
Immunofluorescent staining for both dopamine β hydroxylase (DβH) and tyrosine 

hydroxylasein ovine middle cerebral arteries revealed distinct and well-developed neuronal 

terminals at the medial-adventitial border. In adult arteries, long axes of smooth muscle cell 

nuclei were oriented circumferentially and adventitial cells were relatively sparse. In 

contrast, within fetal arteries the neuronal terminals were much more diffuse with extensions 

well into the medial layer. In addition, adventitial cell density was much greater than in adult 

arteries and smooth muscle nuclei were more abundant but less organized in fetal arteries.
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Figure 4. Chronic hypoxia enhances guanethidine-resistant contractions in fetal arteries
To test the possible involvement of non-adrenergic factors in modulation of arterial 

reactivity during hypoxic acclimatization, electrical nerve stimulation was applied before 

and after catecholamine depletion with guanethidine. The guanethidine-sensitive (GS) 

component was an index of the adrenergic contribution to arterial reactivity whereas the 

guanethidine resistant (GR) component was an index of the sympathetic release of a 

contractile and potentially trophic molecule other than NE. In adult arteries, hypoxia 

decreased only the GS component. Conversely, in fetal arteries hypoxia increased both the 
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GR and GS components, suggesting that hypoxia preferentially enhanced release of a non-

adrenergic transmitter from sympathetic perivascular nerves in fetal arteries. Results are 

presented as mean ± SEM.

Adeoye et al. Page 20

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Overview Schematic
Hypoxic acclimatization induces the release of trophic factors such as VEGF, which 

stimulates growth and expansion of the sympathetic perivascular innervation. These nerves, 

in turn release NE, NPY and ATP, all of which act through their respective receptors to 

promote contractile differentiation of smooth muscle. These phenotypic changes enhance 

contractility but depress stiffness, as shown by denervation experiments. Independent of the 

sympathetic nerves, hypoxia can increase wall thickness and stiffness while also depressing 

contractility. Owing to these opposing effects, the final influence of hypoxia on artery 

structure and function depends on the balance between nerve-dependent and nerve-

independent mechanisms.

Adeoye et al. Page 21

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


