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Abstract

Whether novel risk variants of Alzheimer’s disease (AD) identified through genome-wide 

association studies (GWAS) also influence MRI-based intermediate phenotypes of AD in the 

general population is unclear. We studied association of 24 AD risk loci with intracranial volume 

(ICV), total brain volume (TBV), hippocampal volume (HV), white matter hyperintensity (WMH) 

burden, and brain infarcts in a meta-analysis of genetic association studies from large population-

based samples (N=8,175–11,550). In single-SNP based tests, AD risk allele of APOE (rs2075650) 

was associated with smaller HV (p=0.0054) and CD33 (rs3865444) with smaller ICV (p=0.0058) 

In gene-based tests, there was associations of HLA-DRB1 with TBV (p=0.0006) and BIN1 with 

HV (p=0.00089). A weighted AD genetic risk score was associated with smaller HV (beta±SE=

−0.047±0.013, p=0.00041), even after excluding the APOE locus (p=0.029). However, only 

association of AD genetic risk score with HV, including APOE, was significant after multiple 

testing correction (including number of independent phenotypes tested). These results suggest that 

novel AD genetic risk variants may contribute to structural brain aging in non-demented older 

community persons.
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1. INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia and represents a major public 

health burden (Ballard, et al., 2011). Converging evidence suggests that pathological 

Chauhan et al. Page 2

Neurobiol Aging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processes leading to this progressive neurodegenerative disorder start many years before 

clinical diagnosis of dementia (Sperling, et al., 2011). MRI-markers of brain aging, 

including total brain volume (TBV) and hippocampal volume (HV), and markers of vascular 

brain injury, including white matter hyperintensities (WMH) and brain infarcts, are powerful 

predictors of dementia and may, at least in part, represent intermediate markers reflecting 

pathological processes leading to AD (Debette and Markus, 2010, Jack, et al., 2013, Jack, et 

al., 2010, Kaye, et al., 1997, Sperling, et al., 2011, Vermeer, et al., 2007). Intracranial 

volume (ICV), an imaging marker reflecting brain growth during development and 

maturation, was suggested to be correlated with resilience to brain damage (Negash, et al., 

2013).

Recently, large scale genome-wide association studies (GWAS) and candidate gene based 

studies have identified novel susceptibility loci for late-onset AD (Boada, et al., 2013, 

Carrasquillo, et al., 2009, Harold, et al., 2009, Hollingworth, et al., 2011, Jonsson, et al., 

2012, Jonsson, et al., 2013, Lambert, et al., 2009, Lambert, et al., 2013, Naj, et al., 2011, 

Seshadri, et al., 2010). These AD risk variants have recently been used to examine the 

genotypic overlap between AD and other types of dementia (Carrasquillo, et al., 2014). 

Some of these variants have been studied with respect to various MRI measures in a mixed 

study sample of AD patients, mildly cognitive impaired and healthy controls (Biffi, et al., 

2010, Furney, et al., 2011). They could also be implemented to explore the impact of genetic 

determinants of AD on MRI-markers of structural brain changes in non-demented 

community persons. Indeed, this could provide important information on the disease 

mechanisms through which these genes affect the risk of AD, and could be of interested for 

the design of preventative interventions. Whether all previously and newly discovered AD 

risk loci influence brain structure in advance of clinically detectable dementia has never 

been systematically investigated in large community samples to our knowledge. Our aim 

was to study association of known AD GWAS loci with ICV, TBV, HV, WMH burden and 

brain infarcts in non-demented participants from 10 population-based studies.

2. MATERIALS and METHODS

2.1. Population

Analyses were performed on 8,175 to 11,550 dementia free participants of European 

ancestry with quantitative brain MRI and genome-wide genotypes (N=8,175 for ICV, 

N=8,673 for TBV, N=11,550 for HV, N=9,361 for WMH burden and N=9,401 for brain 

infarcts), from up to 10 population-based cohort studies participating in the Cohorts of Heart 

and Aging Research in Genomic Epidemiology (CHARGE) consortium: Aging Gene-

Environment Susceptibility (AGES)–Reykjavik Study, Atherosclerosis Risk in Communities 

Study (ARIC), Austrian Stroke Prevention Study (ASPS), Cardiovascular Health Study 

(CHS), Framingham Heart Study (FHS), Rotterdam Study (RS), Erasmus Rucphen Family 

(ERF) study, Religious Order Study (ROS) & Rush Memory and Aging Project (MAP), 

Tasmanian Study of Cognition and Gait (TASCOG) and the 3C-Dijon study. Each study 

secured approval from institutional review boards, and all participants provided written 

informed consent for study participation, brain MRI, and use of DNA for genetic research. 

Individual studies are described in the Supplementary Appendix.
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2.2. MRI scans

In each study, MRI scans were performed and interpreted in a standardized fashion, without 

reference to clinical or genetic information. Details on MRI parameters and phenotype 

definition are provided in the Supplementary Appendix. Briefly, automated or semi-

quantitative post-processing software was used to measure ICV and TBV. TBV was 

expressed as percentage of ICV to correct for differences in head size (Ikram, et al., 2012). 

HV was evaluated using operator-defined boundaries drawn on serial coronal sections or 

automated methods (Bis, et al., 2012). WMH burden was estimated on a quantitative scale 

using custom-written computer programs in AGES-Reykjavik, ASPS, FHS, and RS; in 

ARIC and CHS, WMH burden was estimated on a semi-quantitative scale (Fornage, et al., 

2011). Brain infarcts were defined as areas of abnormal signal intensity in a vascular 

distribution that lacked mass effect, ≥ 3–4 mm, distinct from dilated perivascular spaces 

(Debette, et al., 2010).

2.3. AD GWAS loci

We manually scanned the GWAS catalog (http://www.genome.gov/gwastudies/) and 

Alzgene (www.alzgene.org/) for GWAS on AD. We only chose studies performed on 

European subjects, including a replication stage, examining single marker based associations 

and having loci reaching genome wide significance (P<5.0×10−8). This led to the 

identification of 24 independent loci. Effect estimates for SNPs with the lowest p-value in 

each locus (defined as the index SNP of the locus) are presented in Supplementary Table 1. 

We included the CD33 locus (rs3865444) despite absence of replication in the latest AD 

GWAS meta-analysis;(Lambert, et al., 2013) this locus was previously replicated in several 

AD GWAS,(Hollingworth, et al., 2011, Naj, et al., 2011) and recent functional studies 

provide strong evidence for involvement of rs3865444 and CD33 in AD pathology 

(Bradshaw, et al., 2013). For the APOE-ε polymorphism we used rs2075650 as a proxy 

(r2=0.48 with rs429358, the APOE-ε SNP), because APOE-ε genotypes cannot be reliably 

imputed on commercial genome-wide chips. The AD risk variants near HLA-

DRB1(Lambert, et al., 2013), ATP5H/KCTD2 (Boada, et al., 2013), in TREM2,(Jonsson, et 

al., 2013), and APP(Jonsson, et al., 2012) were not included for single-SNP based 

association and genetic risk score based association as no index SNP or proxy (r2>0.3) was 

available among the genome-wide genotypes for MRI-markers of brain aging.

2.4. Power calculation

Quanto software (Gauderman, 2002a, Gauderman, 2002b) was used to compute power of of 

the five MRI marker studies assuming additive model of inheritance at α=0.0025 

(Supplementary Figure 1). Power for the quantitative traits (ICV, TBV, HV, WMH burden) 

was computed for different percentage variance explained while for brain infarcts, a 

dichotomous trait, it was computed for different odds ratios at different allele frequencies.

2.5. Correlation between phenotypes and equivalent number of independent phenotypes

Correlation between the five MRI phenotypes in 3C-Dijon and FHS was calculated based on 

Pearson’s correlation using the “rcorr” function in R. These correlations were used to 

compute the equivalent number of independent phenotypes using the online tool matSpDlite 
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(http://neurogenetics.qimrberghofer.edu.au/matSpDlite/). MatSpDlite which is based on the 

same principles used to identify number of independent SNPs in a locus, gives the 

equivalent number of independent variables in a correlation (r) matrix, depending upon the 

ratio of observed eigenvalue variance (after spectral decomposiiton) to its theoretical 

maximum (Nyholt, 2004).

2.6. Association Analyses

Three analytical approaches were taken to examine the associations of interest.

2.6.1. Single-SNP based association analysis—We tested for association of AD 

GWAS loci with MRI-markers of brain aging using association estimates obtained from 

meta-analyses of GWAS for ICV(Ikram, et al., 2012), TBV(Ikram, et al., 2012), HV(Bis, et 

al., 2012), WMH burden (Fornage, et al., 2011) and brain infarcts (Debette, et al., 2010) 

using genotypes imputed on the HapMap2 CEU reference panel. AD risk alleles, as 

described in the latest AD GWAS meta-analysis,(Lambert, et al., 2013) were modeled as the 

effect alleles for associations with MRI-markers of brain aging. Logistic (brain infarcts) or 

linear (ICV, TBV, HV and WMH burden) regression was performed within each study, 

adjusting for age, gender, and principal components of population stratification, and for 

familial relationships or study center if relevant. For WMH burden, data was log 

transformed to achieve normal distribution and associations were additionally adjusted for 

ICV (except for studies measuring WMH burden on a semi-quantitative visual scale, visual 

grades being inherently normalized for brain size)(Fornage, et al., 2011). For most 

phenotypes (ICV, TBV, HV, and brain infarcts) meta-analyses were performed using fixed 

effects inverse variance weighted meta-analysis. For WMH burden, meta-analysis was 

performed using effective sample size weighted meta-analysis, because WMH burden was 

measured on different scales across studies. If the lead SNP at a specific AD GWAS locus 

was not available, a proxy SNP (r2>0.70 in 1000G CEU) of the lead SNP was used to check 

single-SNP based association results (Supplementary Table 1). After Bonferroni correction 

for testing 20 independent loci, p<0.0025 was considered significant for single-SNP based 

associations. However, application of a more stringent threshold additionally accounting for 

the number of independent phenotypes tested led to a Bonferroni correction of p<0.000625.

2.6.2. Gene-based association analysis—Gene-based association tests can be more 

powerful in comparison to single-SNP based association tests when there are many causal 

variants in a gene with small effects (Liu, et al., 2010). Single-SNP based association results 

from the respective MRI-marker GWAS meta-analysis were used to compute gene-based 

association results using the Versatile Gene-Based Association Study2 (VEGAS2) software 

(https://vegas2.qimrberghofer.edu.au/) (Liu, et al., 2010). The gene annotations and LD 

calculation in VEGAS2 are based on 1000 genomes (phase 1 version 3). This tool annotated 

all but one gene (MS4A4E) within 50KB of the index SNPs. The test incorporates 

information from all markers within a gene and accounts for linkage disequilibrium (LD) 

between markers by using simulations from the multivariate normal distribution. Gene-

based association analyses were performed for all protein coding genes (N=65 genes) which 

lie within a 50kb distance of index SNP of the AD risk loci. Gene boundaries were defined 

as 50kb upstream and downstream of the start and end of gene (Liu, et al., 2010). The choice 
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of 50 KB boundary to cover a gene was chosen as a trade-off between a longer boundary 

which would have caused excess overlap between nearby genes and a shorter boundary 

which would have ignored potential regulatory regions (Liu, et al., 2010). Maximum 

permutation limits were set to 1000,000. After correcting for the number of genes (N=65) 

tested the multiple testing threshold was p<0.00077. A more stringent correction 

additionally accounting for number of independent phenotypes (N=4) tested, lead to a 

multiple testing threshold of p< 0.00019 for gene based association.

2.6.3. Construction of genetic risk score—We constructed a genetic risk score 

comprising all selected AD risk variants from 20 independent AD risk loci to estimate joint 

effect of these SNPs on MRI-markers of brain aging. Methods have been recently developed 

to apply a genetic risk score to meta-analysis summary estimates without requiring access to 

raw data from individual studies (Dastani, et al., 2012). For each MRI-marker of interest, the 

beta-coefficient for a given SNP, as obtained from the GWAS meta-analysis for this MRI-

marker, was weighted with the published AD beta-coefficient for the given SNP. The 

weighted sum of beta-coefficients for all 20 SNPs (Formula-i(a)) was used as the beta-

coefficient of the genetic risk score. Similarly, for each MRI-marker of interest, the inverse 

of the variance for a given SNP (from the GWAS meta-analysis for this MRI-marker) was 

weighted by the square of the published AD beta-coefficient for the given SNP. These 

weighted inverse of variances were then summed and the inverse of this sum was used as the 

variance of the genetic risk score (Formula-i(b)). The Wald statistic was used to test for 

significance of associations between the genetic risk score and each MRI-marker (Dastani, 

et al., 2012). For WMH burden, betas and standard errors were estimated from Z-statistics 

provided by the effective sample size weighted meta-analysis using Formula-ii. AD beta-

coefficients used as weights for the score were all drawn from the discovery stage of the 

recent largest AD GWAS meta-analysis (17,008 AD cases and 37,154 controls, 

Supplementary Table 1) (Lambert, et al., 2013). Associations with p<0.05 were considered 

significant for genetic risk score based associations.

Formula – i(a)

Formula – i(b)

βgrs=beta of genetic risk score; SEgrs=SE of genetic risk score; w=weight applied (=SNP-

specific beta of AD GWAS); β=SNP specific beta of association with MRI-phenotype; SE= 

SNP-specific SE of association with MRI-phenotype

Formula – ii(a)

Formula – ii(b)
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VP=phenotypic variance (approximated to 1); ES=Effective sample size; p=Minor allele 

frequency; q=Major allele frequency.

After correcting for four independent phenotypes tested, the multiple testing threshold for 

genetic risk score association was P<0.0125.

3. RESULTS

3.1. Correlation and heritability of the five MRI traits

Based on data from two studies which were part of the original meta-analysis the two MRI 

markers of structural brain aging, ICV and TBV showed high correlation with each other but 

were only moderately correlated with HV (Supplementary Table 2). The two MRI markers 

of vascular brain aging WMH burden and brain infarcts showed low correlation with each 

other and very little or no correlation with the three markers of structural brain aging. 

Depending upon this correlation the equivalent number of independent phenotypes 

calculated using matSpDlite was four for both studies. Published literature showed that the 

five MRI markers had moderate to high heritability (Supplementary Table 3).

3.1. Single-SNP based associations

In total 9 out of 20 AD risk variants that could be analyzed showed association with at least 

one MRI-marker at p<0.05 (Table 1). With only 2 exceptions (CD33 locus with brain 

infarcts (p=0.048) and PTK2B locus with ICV (p=0.028)), betas were in the expected 

direction i.e. the AD risk allele was associated with increased risk for brain infarcts and with 

lower ICV, TBV and HV. The most significant associations were for APOE-rs2075650 with 

HV (beta±SE=−0.042±0.015, p=0.0054) and CD33-rs3865444 with ICV (beta±SE=

−5.209±1.886, p=0.0058) (Table 1). However, none of the single-SNP based associations 

were significant after correcting for multiple testing. None of the AD risk variants showed 

associations with WMH burden.

3.2. Gene-based associations

Out of the 24 loci investigated, 23 had at least one protein coding gene within 50kb distance. 

Only rs3851179 (11q14) had no protein coding gene within 50kb and was not represented in 

the gene-based association analysis (nearest genes: PICALM 87.72kb downstream and EED 

86.95kb upstream). In total, 65 protein coding genes from 23 independent loci were assessed 

for gene-based association analyses (Supplementary Table 4).

A total of 27 protein coding genes within 50kb of 15 index SNPs were associated with ICV, 

TBV, HV or brain infarcts at p<0.05 (Table 2). For ICV we observed association with 13 

genes within 50kb of five index SNPs (MEF2C, NME8, PILRB, PILRA, ZCWPW1, MEPCE, 

PPP1R35, C7orf61, MS4A6A, PVRL2, TOMM40, APOE, APOC1; p-range: 0.04–0.0078). 

Eight genes within 50kB of six index SNPs were associated with TBV (CR1, HLA-DRB1, 

HLA-DQA1, HLA-DQB1, TAS2R60, SCARA3, ICT1, CD33; p-range: 0.047–0.0006). BIN1, 

TREML1 and MS4A6A were associated with HV (p=0.00089, 0.03 and 0.048, respectively) 

while MEF2C, AURKA, CSTF1 and TAS2R60showed association with brain infarcts (p-

range: 0.049–0.033). For WMH burden we observed association with three genes from two 
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loci (HLA-DQB1, HMHA1 and ABCA7; p=0.01, 0.046 and 0.049 respectively). If we correct 

for the number of genes tested the association of HLA-DRB1 with TBV remains significant 

but if we additionally correct for the number of phenotypes tested this association is not 

significant.

3.3. Genetic risk score based associations

The AD genetic risk score was associated with smaller HV (beta±SE=−0.047±0.013, 

p=0.00041) (Table 3). This association was also observed after removing the APOE locus 

from the AD genetic score (beta±SE=−0.050±0.023, p=0.029). There was also nominal 

association of the AD genetic risk score with smaller TBV (beta±SE =−0.127±0.064, 

P=0.046) but this association was not significant after excluding the APOE locus from the 

genetic risk score (P=0.13). Only association of the AD genetic risk score with HV 

including APOE locus was significant after correcting for the number of independent 

phenotypes tested.

4. DISCUSSION

We investigated associations of 24 genome-wide significant AD risk loci with five MRI-

markers of brain structure and aging (ICV, TBV, HV, WMH burden and brain infarcts), in 

over 8,000 dementia free older community participants from the CHARGE consortium. 

Although no single SNP-based association met the significance threshold after correction for 

multiple testing, index AD risk variants mapping to eight of the 21 AD risk loci showed 

nominal association with at least one MRI-marker, the most interesting being association for 

APOE (rs2075650) with smaller HV and for CD33 (rs3865444) with smaller ICV. In gene-

based association analyses HLA-DRB1 was significantly associated with TBV after 

correction for number of genes tested. A weighted AD genetic risk score was significantly 

associated with smaller HV.

In Single-SNP based associations none of the associations were significant after correcting 

for multiple testing. Nominally significant associations of an APOE risk variant with HV 

(P=0.0054) and a CD33 variant with ICV (P=0.0058) were observed. Since the mid 1990’s 

(Supplementary Table 5) some studies have described significant associations between the 

APOE-ε4 allele and smaller HV (den Heijer, et al., 2002, Lehtovirta, et al., 1995, Lehtovirta, 

et al., 1996, Lind, et al., 2006, Liu, et al., 2014, Lu, et al., 2011, Morra, et al., 2009, 

O’Dwyer, et al., 2012, Plassman, et al., 1997, Schuff, et al., 2009, Soininen, et al., 1995), 

however other studies did not find such an association (Ferencz, et al., 2013, Khan, et al., 

2014, Reiman, et al., 1998, Schmidt, et al., 1996). Using the largest sample size to date 

(N=11,550), as previously reported by our group, our findings are supportive of an 

association of the APOE-ε4 locus with smaller HV (Bis, et al., 2012). The rs3865444 

(CD33) AD risk allele association with smaller ICV could perhaps be suggestive of an 

involvement of this locus in brain maturation and brain reserve. Recent reports suggest that 

rs3865444 influences CD33 expression, including in young adults in their twenties 

(Bradshaw, et al., 2013), and is associated with diminished internalization of amyloid β42 

peptide, and accumulation of neuritic amyloid pathology and fibrillar amyloid in vivo 

(Bradshaw, et al., 2013).
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Gene-based analyses revealed significant associations of HLA-DRB1 (index SNP 

rs9271192) with TBV. The HLA-DRB1 locus was recently identified to be associated with 

AD in the largest meta-analysis of AD (Lambert, et al., 2013). This locus is part of the major 

histocompatibility complex, class II, and our findings add support to the role of 

autoimmunity in AD. The findings also suggest that the locus may be playing a role in pre-

symptomatic stages of the disease, as we observe association with smaller brain volumes in 

non-demented older community persons.

When combined in a weighted genetic risk score, AD risk variants were associated 

cumulatively with decreased HV. Interestingly the association was maintained with a similar 

effect size, although less significant, after removing the APOE locus from the analysis, 

suggesting that, in aggregate, novel AD risk loci are associated with smaller HV in non-

demented older community persons. The AD genetic risk score also showed nominal 

association with smaller TBV. Although this association was no longer significant after 

removing the APOE locus, other loci were contributing to this association, as the APOE risk 

variant alone was not significantly associated with TBV.

There were fewer associations with WMH burden and brain infarcts. Most associations with 

AD risk variants were observed for ICV, TBV, and HV. This may indicate that, even though 

they are strong predictors of dementia risk,(Debette and Markus, 2010, Vermeer, et al., 

2007) MRI-markers of vascular brain injury could have less shared genetic determinants 

with AD than MRI-markers of brain growth and brain atrophy, as suggested by others (Biffi, 

et al., 2010). Noteworthy, our study only tested for overlap of genome-wide significant AD 

risk variants, did not explore shared heritability and may have been underpowered for less 

common variants with smaller effect size (Supplementary Figure 1).

Our study has limitations. The 24 AD risk loci do not reflect the full spectrum of genetic 

susceptibility to AD and the index SNPs used may not be causal variants. The five GWAS 

of MRI-markers, although the largest of their kind, have fewer samples compared to the AD 

GWAS from which the loci have been obtained (Bis, et al., 2012, Debette, et al., 2010, 

Fornage, et al., 2011, Ikram, et al., 2012, Lambert, et al., 2013). These five GWAS of MRI-

markers were performed using imputed genotypes based on the HapMap2 panel, which has 

fewer markers with limited LD information, does not cover rare variants and has lower 

imputation accuracy, especially for lower allele frequencies, compared to the more recent 

1000 genomes reference panels. We therefore couldn’t analyze rare AD risk variants in the 

present study and we cannot exclude that the more limited LD information might have 

introduced some bias in the results of the gene-based analyses. In addition, despite major 

efforts to harmonize phenotype definitions across studies, there may be some residual 

heterogeneity in methods for quantifying MRI-markers of brain aging. These elements could 

have reduced our power to detect associations of AD GWAS loci with MRI-markers of 

brain aging. The choice of 50 KB window for a gene based test does not account for 

potential regulatory effects on more distant genes. Our findings cannot be generalized to 

populations of non-European ancestry. Ongoing, larger multi-ethnic GWAS of MRI-markers 

of brain aging, as well as sequencing projects searching for rare variants associated with AD 

risk and MRI phenotypes may enable us to expand our findings in the future.
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5. Conclusion

In conclusion, we have shown that novel AD genetic risk variants are associated with MRI-

markers of structural brain aging in older, non-demented community persons. In aggregate, 

novel AD genetic risk variants were associated with smaller brain volumes, especially HV. 

Significant gene-based associations and suggestive single SNP-based associations with ICV, 

TBV and HV also provide interesting hypotheses for mechanisms underlying genetic 

associations with AD

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ERF Erasmus Rucphen Family

FHS Framingham Heart Study

GWAS Genome-wide association studies

HV Hippocampal volume

ICV Intra-cranial volume

LD linkage disequilibrium
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MAP Rush Memory and Aging Project

ROS Religious Order Study

RS Rotterdam Study

TASCOG Tasmanian Study of Cognition and Gait

TBV Total brain volume

VEGAS Versatile Gene-Based Association Study

WMH White matter hyperintensity
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Highlights

1. It is unknown if novel AD risk loci impact brain structure in non-demented 

elderly

2. We performed a meta-analysis of genetic association studies in non-demented 

elderly

3. AD risk variants were associated in aggregate with smaller HV

4. Gene-based tests were significant for HLA-DRB1 with TBV and BIN1 with HV

5. Previously debated association of APOE risk variant with smaller HV was 

observed

6. Novel AD risk loci contribute to structural brain aging in older community 

persons
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