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Abstract Nucleotide repeat expansions underlie numerous
human neurological disorders. Repeats can trigger toxicity
through multiple pathogenic mechanisms, including RNA
gain-of-function, protein gain-of-function, and protein loss-
of-function pathways. Traditionally, inference of the underly-
ing pathogenic mechanism derives from the repeat location,
with dominantly inherited repeats within transcribed noncod-
ing sequences eliciting toxicity predominantly as RNA via
sequestration of specific RNA binding proteins. However,
recent findings question this assumption and suggest that
repeats outside of annotated open reading frames may also
trigger toxicity through a novel form of protein translational
initiation known as repeat-associated non-AUG (RAN) trans-
lation. To date, RAN translation has been implicated in 4
nucleotide repeat expansion disorders: spinocerebellar ataxia
type 8; myotonic dystrophy type 1 with CTG•CAG repeats;
C9orf72 amyotrophic lateral sclerosis/frontotemporal demen-
tia with GGGGCC•GGCCCC repeats; and fragile X-
associated tremor/ataxia syndrome with CGG repeats. RAN
translation contributes to hallmark pathological characteristics
in these disorders by producing homopolymeric or dipeptide
repeat proteins. Here, we review what is known about RAN
translation, with an emphasis on how differences in both
repeat sequence and context may confer different require-
ments for unconventional initiation. We then discuss how this
new mechanism of translational initiation might function in
normal physiology and lay out a roadmap for addressing the
numerous questions that remain.
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Introduction

Nucleotide repeat expansions underlie over a dozen human
neurological diseases, ranging broadly in severity, symptoms,
sites of pathology, and prevalence [1, 2]. Repeat expansions
are thought to elicit toxicity via 3 nonexclusive mechanisms.
Repeats can alter transcription in cis, leading to suppressed
RNA and protein expression from the gene in which they
reside [3, 4]. Alternatively, transcribed repeats as RNA can
bind to and sequester RNA binding proteins and prevent them
from performing their normal functions [5, 6]. Lastly, trans-
lated repeats can alter the normal functions of the proteins in
which they reside while also directly eliciting toxicity via
alterations in proteostasis [5, 7].

The dominant mechanisms by which a given repeat acts to
elicit toxicity is dependent on numerous variables, including
the length of the repeat, its sequence context, and the native
functions of the protein-coding gene with which it is associ-
ated. For example, large CGG repeat expansions (>200 re-
peats in length, i.e., “full mutations”) in the 5’ untranslated
region (UTR) of FMR1 elicit transcriptional and translational
silencing of the FMR1 locus (loss-of-function) resulting in
absent expression of the fragile X protein (FMRP) [8]. The
absence of FMRP leads to fragile X syndrome, a common
cause of intellectual disability and autism. In contrast, moder-
ate CGG expansions in FMR1 (50–200 repeats, i.e.,
“premutations”) are actively transcribed, allowing the CGG
repeat as RNA to bind to a number of key RNA-binding
proteins and alter their functions [9–12]. For example, the
microRNA biogenesis-associated proteins DGCR8 and
DROSHA are sequestered by the expanded CGG repeat,
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subsequently eliciting alterations in microRNA abundance
[12]. Similarly, expanded CUG repeats in the 3’UTR of
DMPK mRNA bind to muscleblind-like protein splicing fac-
tors, leading to alterations in alternative splicing of
muscleblind-like protein target transcripts [5, 13–21]. For
trinucleotide repeat expansions located within canonical open
reading frames (ORFs), as occurs with CAG repeats in HTT,
the repeat is translated into the native protein. In Huntington’s
disease, this leads to an expanded polyglutamine repeat within
the Huntingtin protein that aggregates in affected tissues and
that elicits toxicity via alterations in both proteostasis and in
the native functions of the protein [22–26].

However, recent data from multiple laboratories suggest
that nucleotide repeat expansions are capable of eliciting
translational initiation in the absence of a normal ORF or
AUG start codon [27–30]. This process, referred to as
repeat-associated non-AUG (RAN) translation, has the poten-
tial to significantly alter our understanding of nucleotide re-
peat disorder pathogenesis. In this review, we describe the
discovery of RAN translation and its association with neuro-
degenerative diseases. We then discuss how RAN translation
might occur, with specific insights into the roles of sequence
and repeat context, and the potential for similar processes to
expand the functional proteome. Lastly, we highlight specific
questions that the field must address going forward.

Eukaryotic Translation Initiation

Upon transcription and RNA processing (e.g., capping, splic-
ing, and polyadenylation), eukaryotic mRNAs are exported
from the nucleus into the cytoplasm to serve as templates for
translation. The majority of eukaryotic nuclear-encoded
mRNAs rely on cap-dependent translational machinery for
initiation. In this process, the 5’m7GpppG cap acts as a critical
cis-element that recruits the cap-binding protein eukaryotic
initiation factor (eIF) eIF4E into a complex known as eIF4F
to allow unwinding of the mRNA and loading of the 43S
preinitiation complex (PIC; comprised of the small 40S ribo-
somal subunit and the eIF2 ternary complex) on the 5’ end of
the mRNA (reviewed elsewhere [31–33]). This PIC then scans
along the mRNA in a 5’ to 3’ direction with the help of RNA
helicases until it reaches an AUG start codon in an optimal
context (e.g., Kozak sequence) [34–40], at which point the 60S
ribosomal subunit is recruited and translation begins.

Alternatively, some mRNAs utilize a cap-independent
mechanism for translation initiation that allow for internal
ribosome entry of the 43S PIC onto the mRNA at highly
structured elements known as internal ribosome entry sites
(IRES) [41–44]. IRES elements can also sometimes directly
recruit a subset of eIFs to allow for unconventional transla-
tional initiation [43–46]. In one extreme example, the cricket
paralysis virus-IRES initiates translation independent of any

eIFs or initiator tRNA [47–50]. Although initially described
only in viral RNAs, there are now numerous examples of
eukaryotic cellular IRES in transcripts such as c-myc, p53
[51], FGF2 [52], eIF4G/eIF4G1 [53, 54], and Apaf-1 [55].

Additionally, while initiation typically begins at the first
AUG codon in an appropriate sequence context, there are
numerous documented examples where near-cognate start
codons (differ from AUG by one nucleotide, e.g., CUG or
GUG) are utilized [56]. Recent ribosome profiling studies,
which map the position of ribosomes on mRNAs across the
transcriptome, suggest that such near-cognate initiator codon
usage may be quite prevalent [57–59]. These alternative initi-
ation events play important regulatory roles in protein pro-
duction from their associated transcripts, implying that a lack
of stringency may be built into the system [60].

RAN Translation in Neurodegenerative Disease

Thus far, RAN translation has been linked to CTG•CAG,
GGGGCC•GGCCCC, and CGG microsatellite expansions
(Figs. 1 and 2). RAN translation was initially reported by Zu
et al. [27] in association with spinocerebellar ataxia type 8
(SCA8). SCA8 is a dominant, slowly progressive neurode-
generative disorder caused by a CAG•CTG repeat expansion
within the coding sequence of the ATXN8/ATXN8OS gene
[61–63]. Zu et al. [27] found that removal of the only ATG
start codon from a SCA8 minigene construct failed to prevent
production of a poly-Gln protein. Using a series of elegant
epitope-tagged constructs, mass spectrometry, and tritium-
labeling experiments, Zu et al. [27] demonstrated that transla-
tion of CAG repeats could occur without an AUG start codon
in all 3 reading frames to produce poly-Gln, poly-Ala, and
poly-Ser homopolymeric proteins. Immunofluorescence-
based experiments demonstrated accumulation of all 3 RAN
products within a single transfected cell, suggesting that these
processes can occur in parallel. For SCA8 RAN-translated
poly-Ala, mass spectroscopy measurements identified a series
of peptides lacking an N-terminal methionine but with differ-
ing lengths of alanine peptides, suggesting initiation occurring
throughout the GCA repeat itself. Evidence for similar trans-
lation in all 3 reading frames across CUG repeats from the
ATXN8OS transcript was also observed, as was initiation in
alternative ORFs when the repeats were placed within an
AUG-initiated ORF. Zu et al. [27] found that antibodies
targeting the predicted poly-Ala product from the ATXN8
transcript selectively recognized a protein in cerebellum in
human SCA8 cases and SCA8 model mice. A similar ap-
proach provided in vivo evidence of a poly-Gln RAN transla-
tion product from an antisense CAG repeat containing tran-
script associated with theDMPK locus in myotonic dystrophy
type 1 (DM1) (Fig. 1) [27, 64].
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More recently, 2 independent laboratories have reported
pathologic evidence for RAN translation of a GGGGCC
hexanucleotide repeat expansion in intron 1 of C9orf72 [28,
29]. This repeat, which is normally <23 repeats in controls and
is often expanded into the hundreds of repeats in patients, is
the most common known genetic cause of amyotrophic lateral
sclerosis (ALS) and frontotemporal dementia (FTD) [65, 66].
Using antibodies specific for poly-(Gly-Ala), poly-(Gly-Pro),
and poly-(Gly-Arg)—putative dipeptide repeat RAN products
from GGGGCC—Mori et al. [29] selectively detected

proteins in postmortem brain samples with the C9orf72 ex-
pansion mutations by slot-blot analysis and immunohisto-
chemistry. Similarly, Ash et al. [28] detected GGGGCC
RAN-positive proteins in C9orf72 mutated samples, but not
control tissues via immunohistochemistry [28]. Both groups
found that poly-(Gly-Ala), poly-(Gly-Pro), and poly-(Gly-
Arg) co-localize with p62-positive, TDP-43-negative cyto-
plasmic inclusions—a hallmark in C9orf72-related FTD. In
both cases, the proteins appeared to be either too large or too
insoluble to enter into polyacrylamide gels, making sizing

Fig. 1 Repeat-associated non-
AUG (RAN) translation at CAG,
CUG, and GGGGCC repeats. (a)
Spinocerebellar ataxia type 8
(SCA8) results from a CAG•CTG
expansion in exon A of the
ATXN8 gene, with an expanded
CAG repeat in the sense transcript
and CUG repeat in the antisense
transcript, ATXN8OS. RAN
translation produces poly-Gln-,
poly-Ala-, and poly-Ser-
containing proteins from ATXN8
and potentially poly-Ala-, poly-
Cys-, and poly-Leu-containing
proteins from ATXN8OS. The
box in the ATXN8 sense
transcript represents the open
reading frame (ORF). The CAG
repeat comprises the entire ORF.
(b) Myotonic dystrophy type 1
(DM1) results from a CTG•CAG
expansion in the 3’ untranslated
region (UTR) of DMPK, where
the CUG repeat resides in the
3’UTR and the CAG repeat is part
of an antisense transcript of
unknown function. In vivo
antibody-based evidence suggests
that a poly-Gln RAN product is
produced in a DM1 mouse model
and human tissues. (c) RAN
translation of the expanded
GGGGCC repeat located in
intron 1 of the C9orf72 transcript
results in 3 dipeptide repeat
proteins: poly-(Gly-Pro),
poly-(Gly-Ala), and poly-(Gly-
Arg). In addition, an antisense
transcript (containing GGCCCC
repeats) also acts as a substrate for
RAN translation, producing
poly-(Gly-Pro), poly-(Pro-Ala),
and poly-(Pro-Arg) dipeptide
repeat proteins. *Evidence of
production in vitro. ‡Evidence of
production in vivo in patient
tissues.
? = possible RAN products
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analysis and quantitation challenging. One of the groups
provided at least a hint at how an intronic repeat might get
translated by demonstrating an increase in intronic retention in
some cases [29]. Moreover, as occurred with CAG repeats
[27], in transfected cells GGGGCC RAN translation in each
reading frame exhibited different repeat size requirements
before they became detectable by Western blot [29].

Since these initial reports, multiple laboratories have inves-
tigated how GGGGCC RAN translation affects toxicity and
pathogenesis. Using similar strategies that defined GGGGCC
RAN proteins from the C9orf72 sense transcript, multiple

independent reports have recently confirmed dipeptide repeat
RAN proteins in vivo—including poly-(Gly-Pro), poly-(Pro-
Ala), and poly-(Pro-Arg)—originating from the C9orf72 an-
tisense transcript [67–69]. Mori et al. [68] and Zu et al. [69]
demonstrated that RAN products from both the sense and
antisense transcript can be found in individual hippocampal
neurons in C9orf72 patients. Interestingly, while GGGGCC
RAN proteins are produced from expanded repeats, Macken-
zie et al. [70] showed that poly-(Gly-Ala) aggregate distribu-
tion within the central nervous system of C9orf72 FTD/ALS
patients is similar across clinical phenotypes and is

Fig. 2 Repeat-associated non-AUG (RAN) translation at CGG repeats in
fragile X-associated tremor/ataxia syndrome. (a) Cap-dependent transla-
tional initiation at a canonical AUG start codon in FMR1 mRNA is likely
required for production of fragile X protein (FMRP) in the setting of both
normal and premutation repeat expansions. (b) Working model of RAN
translation at CGG repeats. Premutation length repeats (50–200 repeats)
form large thermostable hairpins or G-quadruplexes in FMR1 mRNA that
stall scanning preinitiation complexes (PICs) [74]. Mutational analysis in
the sequence upstream of the repeat suggests that initiation occurs at a non-
AUG start codon just upstream of the repeat to produce FMRpolyG [30].
However, initiation in a different reading frame is not affected by place-
ment of a stop codon just upstream of the repeat, suggesting that
FMRpolyA initiation occurs within the repeat itself in a process that
exhibits different repeat size requirements [30]. Of note, neither of these

RAN products are fused to FMRP, as they exist in different open reading
frames. (c) The mechanism of CGG RAN translation remains to be
determined. Many open questions remain: 1) Is RAN translation cap-
dependent or does it involve a previously defined internal ribosome entry
site (IRES)?; 2) How does the initiation of FMRpolyG and FMRpolyA
translational differ?; 3) What initiation codons are used to generate each
RAN product?; 4)What role do trans-acting factors, such as G-quadruplex
destabilizing proteins hnRNPA2 and CArG-box binding factor A (CBF),
and other RNA helicases, play in RAN translation?; 5) Is the antisense
transcript ASFMR1 through the repeat subject to RAN translation?; 6) Are
FMRpolyA and FMRpolyG functional or pathogenic?; 7) What impact
does RAN translation have on the production of FMRP? Transcript is not
drawn to scale. *Evidence of production in vitro. ‡Evidence of production
in vivo in patient tissues. ? = possible RAN product
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anticorrelated with both cytoplasmic TDP-43 aggregate for-
mation and neuronal loss. One possible explanation for this
finding is that GGGGCC RAN proteins, or at least poly-(Gly-
Ala), do not play an active role in pathogenesis. Alternatively,
the formation of detectable aggregates may play a protective
role, with “surviving” neurons being marked by their ability to
efficiently form inclusions of these potentially toxic proteins,
as has been reported for polyglutamine proteins [71]. Consis-
tent with this concept, cell culture-based experiments in
HEK293T cells show a strong correlation between cellular
toxicity and increased production of GGGGCC RAN prod-
ucts from both the sense and antisense transcript, specifically
poly-(Gly-Pro) and poly-(Pro-Arg) [69]. Conversely, studies
using RNA based knockdown of C9orf72 in patient-derived
induced pluripotent stem cells primarily support a RNA gain-
of-function toxicity mechanism associated with the expanded
GGGGCC allele, although these studies did not control for
potential differences between soluble and insoluble RAN
protein toxicity [72, 73]. The more difficult experiments
aimed at testing the relative toxicity of GGGGCC•GGCCCC
RAN proteins in animal models at physiologic concentrations
in the absence of repeat RNA await.

RAN Translation at CGG Repeats: Insights
into Mechanism

Recent work form our laboratory described RAN translation
at expanded CGG repeats in the 5’UTR of FMR1, which
underlie the neurodegenerative disorder fragile X-associated
tremor/ataxia syndrome (FXTAS) [30] (Fig. 2). Experiments
in both flies and mammalian cells show RAN translation in 2
reading frames: GGC (+1, poly-Gly) and GCG (+2, poly-
Ala). Using antibody-based analyses akin to those described
above, we demonstrated that the predicted poly-Gly contain-
ing protein, which we termed FMRpolyG, was present in
neuronal intranuclear inclusions in human FXTAS brains.
Importantly, FMRpolyG production elicited intranuclear in-
clusions in transfected cells, and modulating its production
altered CGG repeat-associated toxicity in both cell culture and
fly models of disease, providing direct in vivo evidence that
RAN translation products can elicit toxicity [30].

Studies in cell culture provide some mechanistic insights
into what cis factors influence when RAN translation occurs at
CGG repeats. In the +1 (GGC, Gly) frame, initiation appears
to occur predominantly outside of the repeat itself [30]. Plac-
ing a stop codon 12 nucleotides, but not 21 nucleotides,
upstream of the repeat blocked detectable FMRpolyG produc-
tion. As a stop codon would not halt or interfere with the
scanning PIC, but world terminate translation if initiation was
already established, we reasoned that RAN translation in this
reading frame must initiate upstream of the repeat. Yet serial
mutation of near-cognate start codons or removal of this entire

region (the 48 nucleotides just upstream of the repeat) hin-
dered, but did not abolish, RAN translation. However, impor-
tantly, at least 1 in-frame near-cognate initiation codon was
always required [30]. Thus, FMRpolyG translation is not
strictly dependent on the sequence at the site of initiation,
but does require something that looks like an AUG start codon
and a secondary structure in the CGG repeat that is predicted
to stall a scanning ribosomal PIC [74, 75]. A similar observa-
tion was seen with stalling of the PIC by a stable hairpin and
initiation at non-AUG codon or an AUG codon in a nonopti-
mal context [35, 74, 75]. This model is further supported by
ribosome profiling studies [57], which demonstrate ribosome-
protected fragments over numerous near cognate start codons
just upstream of the CGG repeat in both human cell lines and
mouse embryonic stem cells [30].

However, these rules for one form of RAN translation
effectively do not apply to the other CGG repeat reading
frames. For example, while RAN translation in the +1 (Gly)
frame occurs even at shorter CGG repeat sizes (25–30 repeats)
within the “normal” range in humans, RAN translation in the
+2 (GCG, Ala) frame was observed only at larger (>70 CGGs)
repeat sizes. Moreover, placement of stop codons just prior to
the repeat in this +2 (Ala) frame had no impact on translation,
suggesting initiation within the repeat [27]. Further, even at
larger repeat sizes (100 CGGs), no products were detectable in
the +0 (CGG, Arg) reading frame. Consistent with this, there
is no evidence for an N-terminal extension on FMRP in
patients with large, unmethylated repeat expansions, and
FMRP is not found in the ubiquitinated inclusions in patients
[76], both of which would be predicted if such a product were
made. Thus, the mechanisms by which translation initiation
occurs at each repeat and, indeed, each reading frame of each
repeat, may be different and interdependent on numerous
factors, including the surrounding sequence context, the ami-
no acid produced, and the length of the repeat expansion.

What other cis factors are required for RAN translation at
different repeats remains unexplored. The FMR1 locus may
provide some early insights.While in vitro studies suggest that
the primary mode of FMR1 mRNA translational initiation is
5’-cap-dependent [77], the FMR1 5’UTR does contain a func-
tional IRES upstream of the CGG repeat [78, 79]. Interesting-
ly, Ludwig et al. [77] also showed that replacement of the
CGG repeat with a stable hairpin blocked translation in a
synthetic 5’UTR, but not in FMR1 5’UTR containing mRNA.
This lack of blockade resulted from translation initiation at a
near-AUG start codon (GUG) within the synthetic hairpin
itself [77], suggesting the secondary structure within the
FMR1 5’UTR is somehow permissive of nonconical transla-
tion initiation. Other components of the FMR1 5’UTR may
also modulate FMRP translation. Premutation length repeats
confer a propensity towards a different transcription start site
than that typically used at normal length repeats [80, 81]. Use
of this alternative transcription start site is associated with less
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efficient FMRP translation independent of repeat length [77].
These findings suggest that the FMR1 5’UTR may contain
independent cis-elements that favor translational initiation at
non-AUG start codons and RAN translational events, even at
normal repeat sizes. However, the functional roles that these
specific alternative transcriptional initiation sites and IRES
sequences play in CGG RAN translation remain untested.

Trans-acting factors, such as specific initiation factors,
RNA helicases, and other RNA-binding proteins, may be
critical for RAN translation and may also differ between
repeats. Interestingly, a few trans-acting factors, including
hnRNPA2/B1 and CArG-box binding factor A, bind to
CGG repeats (as either G-quadruplex [82–86] or hairpin
structures [87, 88]) and augment translation of reporters
placed downstream of the FMR1 5’UTR both in vitro and in
cell culture systems [85, 89]. Although production of the +1
CGGRAN product and initiation at the downstream canonical
AUG start codon appear to track together in cell-based sys-
tems [30], it is unknown whether the interaction of these RNA
binding proteins might enhance or impair CGG RAN transla-
tion. Given that hnRNPA2/B1 overexpression suppresses
CGG repeat-associated toxicity in Drosophila [10], these re-
lationships deserve further exploration.

Impact on the Proteome and Translation Regulation

RAN translation has the potential to significantly contribute to
proteome diversity by increasing the number of potential
proteins generated from each transcript. The human genome
harbors more repetitive elements than previously predicted
[90], including microsatellites, and is pervasively transcribed
[91–94]. Furthermore, there is evidence from many emerging
techniques that generation of alternative protein products from
noncanonical ORFs is common, even in some annotated
“noncoding” RNAs [57, 59, 95, 96]. Ribosomal profiling
studies suggest a significant underestimation of non-AUG
ORFs and upstream ORFs (uORFs) in previous genome an-
notation [57, 97], and the use of these alternative uORFs
appears to be a regulated event, given that alterations in
internal states or environmental conditions can lead to shifts
in ribosomal positioning on mRNAs in a transcription-
independent manner [58]. If a portion of these uORFs initiate
via a RAN translation-like mechanism, then understanding
how they work may have a broader impact on our compre-
hension of the genome’s coding potential.

Additionally, RAN translation may play specific regulatory
roles in certain sequence contexts [98]. In FMR1, translation
through the repeat (the uORF) may assist in destabilizing the
inhibitory CGG repeat RNA structure, allowing for normal
scanning of subsequent ribosomes and proper initiation of the
canonical ORF (Fig. 2) [30]. This is a particularly intriguing
mechanism to consider for 3 reasons. First, uORFs within

FMR1 appear to be conserved, given that the FMR1 5’UTR
(outside of the repeat) is surprisingly invariant in humans [99],
that ribosomal profiling peaks reveal multiple uORFs in mice
just proximal to the CGG repeat, and that noncanonical up-
stream initiation occurs in association with dfxr, the
Drosophila homolog of FMR1 [30, 100]. Second, the inhibi-
tory effects of the FMR1 5’UTR on translation are not as
significant as would be predicted based on RNA secondary
structure modeling. Specifically, the GC rich repeat and sur-
rounding sequence, even at “normal” repeat sizes, has a pre-
dicted minimal free energy in excess of hairpins that
completely impair ribosomal scanning [35, 74, 101, 102]. This
suggests that something (perhaps RAN translation?) must
assist in unwinding this hairpin to allow FMRP production.
Third, FMRP translation is itself a highly regulated event that
is critical for appropriate spatiotemporal regulation of transla-
tion within neuronal dendrites [103], where it acts as a sup-
pressor of translation [104]. In response to activation of me-
tabotropic glutamate receptors, it is rapidly phosphorylated
and degraded, allowing translation of the transcripts with
which it is associated [105, 106]. Additionally, FMRP itself
is rapidly synthesized by mGluR activation, and this appears
critical for maintenance of normal synaptic responses
[107–109]. However, how FMR1 translation is initiated and
regulated remains poorly defined. CGG RAN translation may
offer a mechanism by which the repeat and 5’UTR could
allow for such regulation, and similar mechanisms may exist
for other neuronal or cellular transcripts to provide a previ-
ously unappreciated level of translational regulation.

A Roadmap Forward in RAN Translation

Our understanding of how RAN translation occurs and what
roles it plays in neurodegeneration and normal physiology is
still in its infancy. Already, it is clear that there may well be
multiple types of RAN translation, with different initiation
requirements and pathologic consequences for each repeat—
or, more specifically, for each reading frame associated with
each transcript (sense and antisense) produced from each
repeat [110–112]. For all of these, it will be important to
address the following 3 questions.

First, what are the critical cis and trans factors that allow
for RAN translational initiation to occur at repetitive RNA
sequences? For each repeat in a setting as close as possible to
its native context, we must evaluate what the key steps are in
translational initiation, from whether the transcript must be
capped and spliced to what impact neighboring sequence
differences play, to what initiation factors are utilized to ac-
complish initiation of the translational event. Additionally, for
certain repeat contexts, evenmore complicated questions must
be answered. For example, the GGGGCC repeat-associated
with C9orf72 is in an intron, which predicts that it should
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normally be rapidly targeted for degradation and excluded
from the cytoplasm. Are introns retained in select mRNAs
and exported from the nucleus, or is RAN translation a unique
form of nuclear translation [113, 114]? Recent work from
Haeusler et al. [115] demonstrates that both GGGGCC repeat
DNA and RNA form G-quadruplex secondary structures, as
well as RNA–DNA hybrids, which stimulate the accumula-
tion of repeat-containing abortive transcripts. One intriguing
possibility is that such transcripts might bypass typical intron
degradation machinery, allowing for subsequent nuclear ex-
port and RAN translation [115].

One important question that has not been addressed is
whether the canonical initiator tRNA (Met-tRNAMet

i) is re-
quired, and, if so, how it is delivered to the PIC and non-AUG
start codon. As part of the initiating ternary complex, Met-
tRNAMet

i is typically delivered to the 40S subunit by eIF2–
guanosine triphosphate to form the canonical PIC. Important-
ly, the eIF2–guanosine triphosphate-bound PIC has very low
selectively for non-AUG start codons [116–121], which may
be inconsistent with the relatively high levels of RAN prod-
ucts seen in cell culture and fly models [27–30, 68, 69].
However, multiple translation factors—such as eIF2A [122,
123], eIF5B [124–127], and eIF2D [128, 129]—have been
noted to bind and deliver Met-tRNAMet

i to the 40S subunit,
although still preferentially initiating at AUG start codons.
Nevertheless, this raises the interesting possibility that atypi-
cal eIFs may have a unique role in RAN translation initiation.
Alternative translation initiation approaches bypassing the
need for Met-tRNAMet

i have been reported, particularly for
noncanonical initiation at the cricket paralysis virus–IRES.
Not requiring Met-tRNAMet

i or any known eIF [49], the
cricket paralysis virus–IRES directly recruits the 40S subunit
and allows for the first codon to be decoded by eEF1A-
aminoacyl-tRNA at the A-site [130]. Whether similar mecha-
nisms or translation factors are responsible for RAN transla-
tion remains to be determined.

Once a clearer picture of the minimal requirements for
RAN translation emerges, we can begin to address questions
related to the apparent differences between repeats [110–112].
Identifying the critical cis-elements and trans-factors that play
roles in RAN translationmay elucidate a core RAN translation
machinery. In addition, determining what drives the nonuni-
formity in repeat length dependence between reading frames
of a single transcript will provide crucial mechanistic insight.

Second, what are the normal physiologic functions, if any,
for RAN translation? Although most RAN products appear at
first glance to be purposeless, it is premature to assume that
they lack normal functions. Characterization of their
interacting partners and distribution within cells may provide
insights into both their direct roles in toxicity and their native
roles, if any [110–112]. Furthermore, it will also be important
to define what roles RAN translation plays in regulating
translation from other ORFs found in the same transcripts in

which it occurs. A broader question is whether these same
RAN translational mechanisms might mediate the use of non-
AUG codons throughout the transcriptome on highly struc-
tured RNAs. While identifying such genes will not be trivial,
characterizing the minimal cis elements that are required for
RAN translation may allow for in silico identification of
additional genes that harbor similar elements. Likewise,
RAN translation-specific trans-acting factors could allow for
identification of target transcripts from which RAN products
might be produced. Together, such approaches may shed light
on the prevalence of RAN translation and its potential roles in
cellular homeostasis [110–112].

The repetitive nature of the RAN homopolymeric and
dipeptide repeat proteins pose some specific challenges in
terms of questions related to relative abundance, toxicity,
stability, and cellular clearance. For example, degradation
pathways such as the N-end rule pathway (reviewed in [131,
132]) can strongly influence the half-life of a given protein.
Certain N-terminal amino acids, such as Arg and Gln, target
proteins for rapid turnover [133, 134]. Thus the N-terminal
amino acid utilized during RAN translational initiation may
influence both the relative stability of the protein and its
potential for cellular function. Such pathways could explain
why, for example, no CGG RAN product is observed in the
Arg (+0) frame [30], despite evidence for accumulation of
RAN translation products in all other reading frames tested to
date. Alternatively, some of the RAN proteins may be partic-
ularly resistant to endoproteolytic cleavage owing to a lack of
enzymes that recognize the specific repetitive motifs they
present. Detailed biochemical analysis of each RAN protein
N-terminus and degradation pathways will likely be revealing.

Third, what is the pathological consequence of RAN trans-
lation and is its correction a meaningful therapeutic target? The
accumulation of RAN translation products in aggregates in
human disorders suggests that they may be pathologic, but
the evidence for their direct roles in pathogenesis are largely
lacking, especially in vivo in mammalian systems. To achieve
this, it will be necessary to dissociate the toxicity associated
with repeats as RNA from the potential toxicity of RAN prod-
ucts as protein. Given that many of these repeats exist in RNAs
that are of low abundance (introns in pre-mRNAs and antisense
transcripts typically are present at a fraction of the sense
mRNAs with which they are associated), it will be important
to study these processes at physiologic concentrations. Howe-
ver, if they are highly toxic, even low-level production and
accumulation may contribute meaningfully to pathogenesis.

As is true for many inherited neurodegenerative disorders,
there is a decades-long delay between the initial expression of
the toxic mutated genes and the subsequent development of
clinical symptoms in FXTAS and ALS/FTD. If RAN proteins
contribute meaningfully to neurodegeneration, then it will be
important to determine if their delayed toxicity reflects a loss
of a compensatory mechanism for dealing with toxic proteins
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or instead whether there are tissue-specific changes in the
relative production of RAN proteins. For example, ribosome
profiling of nonlog phase yeast demonstrates a dramatic in-
crease in nonconical translation, suggesting that different cel-
lular conditions might be more or less permissive of alterna-
tive translational initiation mechanisms [58]. Could the aging
brain provide a similarly permissive environment for RAN
translation?

If RAN products are important, then RAN translation may
serve as a novel therapeutic target. The feasibility of such an
approach will depend heavily on what native roles RAN
translational initiation processes underlie and whether they
are mechanistically separable from those involved in the
translation of most mammalian proteins. However, it is tempt-
ing to speculate that if these translational events are truly
aberrant, then identifying agents that can selectively block
them is a potentially fertile area for drug development.

Conclusion

Discovery of RAN translation has shed light on a new facet of
eukaryotic translation initiation and human disease. With fur-
ther mining into the mechanism, a novel therapeutic target for
multiple neurodegenerative disorders is plausible. It will be
critical to determine how prevalent RAN translation is across
the transcriptome and whether it contributes to normal cellular
functions and human diseases.
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