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ABSTRACT There is recent evidence from laboratory experiments and analysis of livestock populations that not only the phenotype
itself, but also its environmental variance, is under genetic control. Little is known about the relationships between the environmental
variance of one trait and mean levels of other traits, however. A genetic covariance between these is expected to lead to nonlinearity
between them, for example between birth weight and survival of piglets, where animals of extreme weights have lower survival. The
objectives were to derive this nonlinear relationship analytically using multiple regression and apply it to data on piglet birth weight and
survival. This study provides a framework to study such nonlinear relationships caused by genetic covariance of environmental variance
of one trait and the mean of the other. It is shown that positions of phenotypic and genetic optima may differ and that genetic
relationships are likely to be more curvilinear than phenotypic relationships, dependent mainly on the environmental correlation
between these traits. Genetic correlations may change if the population means change relative to the optimal phenotypes. Data of
piglet birth weight and survival show that the presence of nonlinearity can be partly explained by the genetic covariance between
environmental variance of birth weight and survival. The framework developed can be used to assess effects of artificial and natural
selection on means and variances of traits and the statistical method presented can be used to estimate trade-offs between environmental
variance of one trait and mean levels of others.
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IN the classic model of quantitative genetics, the phenotype
is assumed to be the sum of an effectively infinite number

of genes and environmental effects; i.e., P ¼ Gþ E (Falconer
and Mackay 1996; Lynch and Walsh 1998). The phenotypic
variance is the sum of the genetic (VG) and environmental
(VE) variance. It is assumed that the environmental variance
is homogeneous across genotypes, but recently there is ev-
idence from laboratory experiments and analysis of livestock
populations that not only the phenotype itself, but also its
VE; is under genetic control (Hill and Mulder 2010). This
might be expressed as genetic heterogeneity in the within-

individual variance of a trait with repeat measurements,
such as weight of individual piglets in a litter or total litter
weight across parities, or as a difference in within-family
variance for traits such as juvenile body weight expressed
once.

The median genetic coefficient of variation for VE

(GCVVE ¼ sAv=VE; where sAv is additive genetic variance
in VE) is �0.3 based on a review of 14 studies with estimates
of genetic variance in VE primarily on livestock populations
(Hill and Mulder 2010). This indicates that VE could be in-
creased or decreased by 30% if changed by one genetic
standard deviation. These analyses were mainly based on
genetic analysis of pedigreed livestock populations; but with
300 isofemale lines of Drosophila melanogaster, thereby
avoiding possible confounding by within-line genetic hetero-
geneity, Mackay and Lyman (2005) showed a significant
genetic variance in CV and VE: In a selection experiment in
rabbits, selection on estimated breeding value for VE of birth
weight successfully changed the within-litter variability of
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birth weight (Garreau et al. 2008). There are more recent data
on genetic control of VE at the level of individual loci from
genome-wide association studies (see review by Geiler-
Samerotte et al. 2013). Those in experimental species are
very clear cut: for example, Jimenez-Gomez et al. (2011)
and Nelson et al. (2013) located QTL for phenotypic vari-
ability in gene expression in Arabidopsis and yeast, respec-
tively, and Shen et al. (2012) identified regions controlling
the phenotypic variability of traits in Arabidopsis. In verte-
brates, the FTO genotype was shown to be associated with
phenotypic variability in body mass index in humans, with
the two homozygotes differing 7% in standard deviation
(SD) (Yang et al. 2012). In laying hens, a QTL region on
chromosome 4 was identified that explained 30% and 16%
of the genetic variance in mean and within-individual SD,
respectively, of egg weight (Wolc et al. 2012); and in dairy
cattle the phenotypic variability of somatic cell score, an
indicator for mastitis, was shown to be determined by many
loci, while that with the largest effect explained �3% of the
genetic variance in VE (Mulder et al. 2013a). It has been
argued that findings such as those of Yang et al. (2012)
can also be explained in terms of a scale effect (Sun et al.
2013), but the extreme transformations required are not
biologically plausible (Shen and Rönnegård 2013).

In agriculture, there is interest in reducing phenotypic
variance to improve uniformity of animals and animal
products. For instance, penalties are imposed by slaughter-
houses for meat animals delivered with excessive variability
because uniform products are demanded by retailers and
packing efficiency of products is higher (Hennessy 2005). It
has been shown both in theory (SanCristobal-Gaudy et al.
1998; Sorensen and Waagepetersen 2003; Mulder et al.
2007, 2008) and from experiment (Garreau et al. 2008) that
uniformity can be increased by selection.

Before implementing selection to reduce VE in livestock
breeding programs it is necessary to know what correlated
changes in means of the target trait and other traits of
interest would be expected. A particular concern is that
animals with small VE would not have the capacity to
react to unpredictable environments, i.e., have reduced
plasticity. There is some evidence that plasticity and VE

are positively correlated, i.e., that genotypes with higher
VE have higher plasticity (Mulder et al. 2013b; Tonsor
et al. 2013). Whether plastic genotypes with high
VE or stable genotypes with small VE are better capable
of handling unpredictable environments is under debate.
In livestock little is known about trade-offs between VE

and means of other traits, except that uniformity of birth
weight in litter-bearing animals does increase the survival
of the offspring, e.g., in pigs (Kapell et al. 2011) and rab-
bits (Garreau et al. 2008).

Genetic variation in VE of a trait has been shown analyt-
ically to lead to a nonlinear relationship between the breed-
ing value of VE and the phenotypic deviation from the mean
(Mulder et al. 2007). Therefore, if there is a genetic corre-
lation between the mean of one trait and VE of another,

which we term an M-V genetic correlation between traits,
the phenotypic relationship between them is expected to be
nonlinear. Nonlinear parent–offspring regression and non-
linear regression of one trait on another within half-sib
groups have been employed to explore nonlinearity between
traits by Sölkner and Fuerst-Waltl (1996) and Fuerst-Waltl
et al. (1997, 1998), who assumed this was caused by non-
linearity between additive genetic effects of different traits.
They also showed that phenotypic relationships were often
more linear than the genetic relationships due to dilution
with environmental covariance. Nonlinear relationships
might also be expected when one of the traits, for example
fitness, has an optimum value (Lande and Arnold 1983;
Falconer and Mackay 1996; Kingsolver et al. 2001, 2012).
Such nonlinear relationships are often observed or hypoth-
esized in natural populations, typically as “fitness profiles”
between trait values and fitness (e.g., Falconer and Mackay
1996) that show whether phenotypes on one side of the
distribution (directional), in the middle (stabilizing), or at
extremes (disruptive) have highest fitness. If there is an
optimum phenotype, a maximum would imply a negative
covariance between VE and fitness; i.e., families with small
variance would have selective advantage if there is stabiliz-
ing selection, and correspondingly families with a large var-
iance would have an advantage if there is disruptive or
strong directional selection (Hill and Zhang 2004; Mulder
et al. 2007). Examples of nonlinear trait relationships in-
clude that between birth weight and survival of infants in
humans in historic data when medical care was less opti-
mized (Karn and Penrose 1951 in Schluter 1988), survival
and size in house sparrows (Schluter and Smith 1986;
Schluter 1988), and between litter size and birth weight
in piglets (Varona and Sorensen 2014). These nonlinear
relationships might be due in part to a nonnormality of at
least one of the traits such as survival (binomial). To our
knowledge no studies have yet been undertaken of the de-
gree to which nonlinearity between traits is caused by an
M-V genetic correlation between them. It is possible that
low VE may yield better fitness in some environments (a
conservative bet-hedging strategy) or high VE in others
(a coin-flipping strategy) (Olofsson et al. 2009). Therefore,
while insight into the nonlinear relationships between
traits should increase understanding of the existence and
if so of the position of phenotypic and genetic optima, no
framework is available to study the role of M-V genetic
correlations between traits and the consequent effects of
selection.

The objectives this article are to (1) derive mathemati-
cally nonlinear relationships between traits when one
exhibits genetic variance in VE; (2) predict responses to se-
lection in mean and variance of both traits, (3) predict ge-
netic and phenotypic optima, (4) predict changes in genetic
parameters consequent on selection shifting the population
mean toward the fitness optimum, and (5) investigate the
relationship between piglet birth weight and survival in
pigs as a practical application of the theory. We assumed
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multivariate normality for deriving the expressions, whereas
survival is binomially distributed. Therefore, we extended
the predictions toward assuming that survival has an un-
derlying normal distribution and predictions can be trans-
formed to the observed binomial scale.

Quantitative Genetic Model

Consider two traits for which the phenotypic deviations
from the mean are the sum of additive genetic and envi-
ronmental effects, with no dominance or epistasis (Falconer
and Mackay 1996). The first trait, with phenotypic value
P1; is also subject to additive genetic differences in its envi-
ronmental variance, so-called genetic heterogeneity of envi-
ronmental variance (SanCristobal-Gaudy et al. 1998),
whereas the second trait (phenotypic value P2) has homo-
geneous environmental variance. Here we assume the ex-
ponential model for environmental variance (SanCristobal-
Gaudy et al. 1998; Hill and Mulder 2010), because of its
statistical tractability, as the environmental variance can-
not be negative and the model appears linear on the log
scale. Different models to model genetic differences in
environmental variance appear similar when genetic var-
iance in VE is small. Further discussion and comparison of
models for genetic analysis of the environmental variance
are given elsewhere (Hill and Mulder 2010). The genetic
model is

P1 ¼ m1 þ Am;1 þ E1 ¼ m1 þ Am;1

þ x exp
�
1
2

�
ln
�
s2
e1

�
þ Av;1

��
(1)

P2 ¼ m2 þ Am;2 þ E2; (2)

where mi is the population mean, Am;i is the breeding value,
and Ei is the environmental deviation for trait i. The envi-
ronmental variance for trait 2 is assumed constant, s2

e2 ;

whereas s2
e1 is the expected environmental variance for trait

1 when Av;1 ¼ 0; but varies among individuals according to
their breeding value Av;1: The standard normal deviate x is
the standardized environmental deviation for trait 1. The
breeding values Am;1; Av;1; and Am;2 are assumed to be the
sum of effects of an infinite number of additive loci and are
multivariate normally distributed,24Am;1
Av;1
Am;2

35� N

0B@0
0
0
;

264 s2
Am;1

covAm;1;Av;1 covAm;1;Am;2

s2
Av;1

covAv;1;Am;2

symmetric s2
Am;2

3755A

1CA;

where A is the additive genetic or numerator relationship
matrix; s2

Am;1
; s2

Av;1
; and s2

Am;2
are the additive genetic varian-

ces in Am;1; Av;1; and Am;2; and covAm;1;Av;1 ; covAm;1;Am;2 ; and
covAv;1;Am;2 are the corresponding additive genetic covarian-
ces. The environmental effects E1ð¼ x exp½ð1=2Þ ðlnðs2

e1Þþ
Av;1Þ�Þ and E2 are bivariate normally distributed,

�
E1
E2

�
� N

0B@ 0
0
;

264s2
e1exp

�
Av;1

�
rese1exp

�
1
2
Av;1

�
se2

symmetric s2
e2

375
1CA;

where s2
e2 is the environmental variance of trait 2 and re is

the environmental correlation.

Methodological Framework for Nonlinear Relationships

Multiple-regression framework

We used a multiple-regression framework to predict the
nonlinear relationship between traits caused by M-V ge-
netic correlations between them and to predict responses
in mean and variance due to selection, following the meth-
odology of Mulder et al. (2007). In Mulder et al. (2007),
breeding values and selection responses for mean and vari-
ance were predicted using linear, quadratic, and cubic re-
gression on the phenotypic deviation of an individual
phenotype. This methodology formally requires multivariate
normality, which holds only approximately because genetic
variance in VE for P1 causes small deviations from normality
(Mulder et al. 2007). We also used selection index theory
(Hazel 1943), which is essentially an application of multiple
regression assuming that fixed effects are known without
error.

Monte Carlo simulation

To check the accuracy of derived relationships and predicted
responses to selection, we simulated 1000 replicates each
with 1 million animals according to the genetic models in
Equations 1 and 2 and calculated the expected value of trait
2 given trait 1 by calculating the average P2 given P1 within
601 successive intervals of 0.01sP;1 between 23 and 3sP;1:

Selection responses to directional mass selection on P1 and
P2 were calculated as the mean Am;1; Av;1; and Am;2 of all
selected animals with P$ x in each replicate and averaged
over replicates, where x is the truncation point.

Deriving the phenotypic relationship between P2 and P1

The phenotypic relationship between P2 and P1 was derived
as the multiple regression of P2 on P1 and P21; because ge-
netic variance in VE causes genetic variance in P21 (Mulder
et al. 2007). The regression can be written as

E
�
P2

		 P1; P21� ¼ b1P1 þ b2P21; (3)

where �
b1
b2

�
¼ P21c; (4)

P ¼
�

varðP1Þ cov
�
P1; P21

�
cov

�
P1; P21

�
var

�
P21

� �
;

and
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c ¼
�
covðP2; P1Þ
cov

�
P2; P21

� �:
The elements of P and c were derived using the higher-order
moments of the normal distribution (Stuart and Ord 1994)
and using the laws of total (co)variance and standard vari-
ance–covariance rules (see Appendix A for full derivations),

varðP1Þ ¼ s2
Am;1

þ s2
e1exp

�
1
2
s2
Av;1



¼ s2

P1
(5)

cov
�
P1; P21

� ¼ 3  covAm;1; Av;1s
2
e1exp

�
1
2
s2
Av;1



(6)

var
�
P21

� ¼ 2s4
P1

þ 6  cov2Am;1; Av;1
s2
e1exp

�
1
2
s2
Av;1



þ 3s4

e1exp
�
s2
Av;1

��
exp

�
s2
Av;1

�
2 1

� (7)

covðP2; P1Þ ¼ covAm;1;Am;2
þ cove1e2 (8)

cov
�
P2; P21

� ¼ covAv;1;Am;2
s2
e1exp

�
1
2
s2
Av;1



þ cove1e2covAm;1;Av;1 ; (9)

where cove1e2 ¼ rese1exp
�ð1=4Þs2

Av;1

�
se2 : Note that Equation

3 is about the relationship between single observations of P2
and P1: In Equation 7, the two rightmost terms are related to
the skewness (Equation 6) and kurtosis of the distribution,
respectively. All elements of P and c (equal to Equations 5–
9) were checked using Monte Carlo simulation. The multi-
ple-regression prediction of P2 from P1 shows very good
agreement with the Monte Carlo simulation (Figure 1 and
Figure 2), with R2 . 0.995 for all cases evaluated. Appendix
C shows a natural extension to multiple random effects, such
as permanent and common environmental effects.

Deriving response to mass selection

Deterministic predictions: Response to selection ðRÞ is
predicted as the mean deviation of offspring from the
population mean regressed on the selection differential of
the parents R ¼ bS; which is equal to the regression of the

breeding value ðAÞ on the selection differential ðSÞ DA ¼ bS
(Falconer and Mackay 1996). We showed previously that
response to selection in Am;1 and Av;1 could be predicted
for different kinds of mass selection, e.g., directional, stabilizing,
or disruptive (Mulder et al. 2007). Here we extend this
framework to the correlated responses in (1) P2 from mass
selection on P1 and (2) Am;1 and Av;1 from mass selection on
P2: In both cases, the general equation to predict selection
responses in

Da ¼
24DAm;1
DAv;1
DAm;2

35
in terms of selection differentials ðDxÞ is

Da ¼ P21GDx ¼ B9Dx; (10)

where P is the variance–covariance matrix among selection
differentials in Dx; because selection differentials are ran-
dom variables under the quantitative genetic model as-
sumed; G is the covariance matrix between Da and Dx;
and B is a matrix of regression coefficients. First, if mass
selection on P1 is performed, then the selection differentials
on P1 and P21 are

Dx ¼
�
P1;s2m1

P21;s2s2
P1

�
¼

"
P1;s2EðP1Þ�

P1;s2EðP1Þ
�2

2E
n
ðP12EðP1ÞÞ2

o#
:

(11)

If it is assumed that m1 ¼ 0;24DAm;1
DAv;1
DAm;2

35 ¼ B9P1

�
P1;s

P21;s2s2
P1

�
¼ B9P1

�
isP1

ixs2
P1

�
; (12)

where B9P1 is the transpose of BP1 ¼ P21GP1 ; P is the same as
in Equation 3, and
GP1

¼

2664
s2
Am;1

covAm;1 ;Av;1 covAm;1 Am;2

covAm;1 ;Av;1s
2
e1 exp

�
1
2
s2
Av;1



s2
Av;1

s2
e1 exp

�
1
2
s2
Av;1



covAv;1Am;2s

2
e1 exp

�
1
2
s2
Av;1



3775;

i.e., the covariance matrix between

Figure 1 (A and B) The relationship between P2 and P1
either assuming no genetic correlation (rAv;1 ;Am;2 ¼ 0) be-
tween environmental variance in P1 and the mean of P2
using Monte Carlo simulation (MC_lin) and multiple regres-
sion (MR_lin) or assuming a negative genetic correlation
(rAv;1 ;Am;2 ¼ 20:5) between them (MC_nonlin, MR_nonlin)
when rAm;1 ;Am;2 ¼ 0:1 (A) or when rAm;1 ;Am;2 ¼ 0:5
(B) (s2

Am;1
¼ s2

Am;2
¼ 0:3;s2

Av;1
¼ 0:05;s2

e1 expðð1=2Þs2
Av;1

Þ ¼
0:7; s2

e2 ¼ 0:7; rAm;1 ;Am;2 ¼ 0:1; rAm;1 ;Av;1 ¼ 0; re ¼ 0).
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�
P1;s

P21;s2s2
P1

�
and

24DAm;1
DAv;1
DAm;2

35;
i is the selection intensity when selecting the best p animals,
and x is the truncation point corresponding to p based on
a normal distribution (Mulder et al. 2007).

Second, if mass selection is on P2; Equation 10 becomes

24DAm;1
DAv;1
DAm;2

35 ¼ b9P2

�
P2;s

� ¼ b9P2   isP2 (13)

where bP2 ¼ varðP2Þ21 gP2
and gP2

¼
h
covAm;1Am;2   covAv;1Am;2

s2
e1expðð1=2Þs2

Av;1
Þ s2

Am;2

i
; the covariance vector between P2;s

and

24DAm;1
DAv;1
DAm;2

35:
Evaluation of predictions: Genetic selection differentials in
Am;1; Av;1; and Am;2 with directional mass selection on either
P1 (Equation 12) or P2 (Equation 13) were shown by Monte
Carlo simulation to be very accurately predicted, with differ-
ences only at the third decimal (Table 1). Correlated
responses in both Av;1 and Am;2 are expected following mass
selection on P1, even if genetic correlations between Am;1

and Av;1 or Am;2 are zero, provided that the genetic
correlation between Av;1 and Am;2 is nonzero. This is be-
cause, with strong directional selection (e.g., P $ 20%),
animals with higher Av;1 (i.e., environmental variance in
P1) have a higher probability of selection (Hill and Zhang
2004; Mulder et al. 2007). In other words, with directional
selection genotypes with a higher variance are more likely to
be parents of the next generation than genotypes with a low
variance.

Response to selection on estimated breeding value

In animal breeding, selection is often on predicted breeding
values rather than on raw phenotypes. For instance, if the
breeding goal is to increase trait 2, then the predicted
breeding value Âm;2 using information of P1 and P21 is

Âm;2 ¼ b9a2

�
P1 2m1
P21 2s2

P1

�
; (14)

where ba2 ¼ P21ga2 ; P is given in Equation 3, and

ga2 ¼

264 covAm;1;Am;2

covAv;1;Am;2s
2
e1exp

�
1
2
s2
Av;1


375:
The expected response to selection would be equal to that
using the generalized form of the breeders equation (Hazel
1943):

DAm;2 ¼ ib9a2ga2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9a2P

21ba2
q : (15)

An alternative to using squared phenotypic deviations is to
use squared residuals of P1 corrected for its leverage (l),
which is the diagonal element of the “hat matrix” for each
observation (Hoaglin and Welsh 1978) as used in the double-
hierarchical generalized linear model (DHGLM) (Rönnegård
et al. 2010):

e21
ð12 lÞ ¼

h��
12bAm;1

�
P1

�2i
½12 l� : (16)

In the absence of any fixed effects, 12 l ¼ 12 bAm;1 ; Equa-
tion 16 reduces to e21=ð12 lÞ ¼ ð12 bAm;1ÞP21 and

Âm;2 ¼ b9a2e

�
P1

e21
�ð12 lÞ

�
; (17)

where ba2e ¼ P21
e ga2e;

Pe ¼
�

varðP1Þ cov
�
P1; e21

�ð12 lÞ�
cov

�
P1; e21

�ð12 lÞ� var
�
e21
�ð12 lÞ�

�
¼ WPW;

and ga2e ¼ Wga2 ; where

W ¼
�
1 0
0

�
12 bAm;1

� �
(see derivation in Appendix B). Use of either P21 or e21=ð12 lÞ
would yield identical accuracy of prediction Âm;2 and of

Figure 2 (A and B) The relationship between P2 and P1;
using Monte Carlo simulation (MC) and multiple regression
(MR) either with positive genetic correlation (A: rAv;1 ;Am;2 ¼
0:5; re ¼ 0) between environmental variance in P1 and the
mean of P2 or with negative genetic correlation (B: when
rAv;1 ;Am;2 ¼ 20:5; re ¼ 0:1) (s2

Am;1
¼ s2

Am;2
¼ 0:3;s2

Av;1
¼

0:05;s2
e1 expðð1=2Þs2

Av;1
Þ ¼ 0:7, s2

e2 ¼ 0:7; rAm;1 ;Am;2 ¼
0:1; rAm;1 ;Av;1 ¼ 0).
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response to selection DAm;2 in this case where only their
own phenotypes provide information and there are no fixed
effects; otherwise squared residuals corrected for leverages
are expected to give higher accuracy and response than us-
ing squared phenotypic deviations.

Determining whether the parabola have a maximum
or a minimum

The multiple-regression Equation 3 is quadratic and there-
fore has a parabolic shape. Such quadratic relationships may
indicate a biological optimum, for instance birth weight and
survival in humans prior to modern medical intervention
(Karn and Penrose 1951 in Schluter 1988). Expressions for
b1 and b2 (from Equation 3) are given by

b1¼
�
var

�
P21

�
c1 2 cov

�
P1; P21

�
c2
�

detðPÞ (18)

b2¼
�
2cov

�
P1; P21

�
c1 þ varðP1Þc2

�
detðPÞ ; (19)

where c1 ¼ covðP2; P1Þ (Equation 8) and c2 ¼ covðP2; P21Þ
(Equation 9) and P is shown below Equation 4. Whether
there is a maximum or a minimum depends on the sign of
the quadratic regression coefficient (b2), i.e., P21: If b2 . 0; it
has a minimum and if b2 ,0; it has a maximum. The sign of
the regression coefficient depends on multiple parameters
(Equations 18 and 19). As Figure 3 shows, b2 is linear in
rAv;1;Am;2 because it is a linear function of c2 (Equation 19)
and c2 is the genetic covariance between Av;1 and Am;2:

When rAv;1;Am;2 ¼ 0 and other correlations are zero, b2 ¼ 0;
i.e., when the straight-line relationship between P2 and P1
passes through (0, 0). If other correlations are nonzero,
b2 ¼ 0 shifts to a point dependent mainly on rAv;1;Am;2 ; with
other parameters having less influence on b2: In summary,
a moderate to strong negative M-V genetic correlation be-
tween traits (rAv;1;Am;2) yields a parabola with a maximum,
e.g., animals with phenotypes close to the optimum have

maximum fitness, a fitness optimum; while a moderate to
strong positive genetic correlation yields one with aminimum;
e.g., animals with phenotypes largely deviating from the
minimum have the highest fitness.

Similarly, Equation 14 shows whether the genetic parab-
ola has a maximum or a minimum. The regression coef-
ficients now are

ba21¼
�
var

�
P21

�
ga21 2 cov

�
P1; P21

�
ga22

�
detðPÞ (20)

ba22¼
h
2cov

�
P1; P21

�
ga21 þ s2

P1
ga22

i
detðPÞ ; (21)

where ga21 and ga22 are the elements of ga2 (just below Equa-
tion 14). Equations 20 and 21 differ from Equations 18 and
19 only in ga21 and ga22: If re ¼ 0; then ga21 ¼ c1 and ga22 ¼ c2
and consequently ba21 ¼ b1 and ba22 ¼ b2:

Can phenotypic and genetic parabolas have different
shapes?

The interest here is in whether there are conditions when the
phenotypic parabola has a maximum and the genetic parabola
a minimum or vice versa. Because re affects only the phenotypic
parabola, it determines the relative shapes of the parabolas, and
so it is helpful to calculate the magnitude of re when b2 ¼ 0
and switches to a different sign than that of ba22: The most
obvious situation is when the environmental correlation re
and the genetic correlation rAm;1;Am;2 have opposite signs, but
b2 ¼ 0 only when covAm;1;Av;1 6¼ 0: Calculations show that,
for the parabolas to be of different shape, re has to be strong,
in which case the regression is almost linear. So in practice,
parabolas of opposite sign are likely to occur only rarely, if at all.

Determining the phenotypic and genetic stationary
points

The maximum (minimum) phenotype P2 can be found at
the stationary point of P1 (P1stat ). The stationary point is

Table 1 Genetic selection differentials in Am;1; Av;1; and Am;2 when selecting on P1 or on P2 for different selected proportions (p) and when
rAm;1 ;Av;1 and rAm;1 ;Am;2 are the same (0 or 0.5)

Am;1 Av;1 Am;2

Selection rAm;1 ;Av;1 ¼ rAm;1 ;Am;2 p MR MC MR MC MR MC

P1 0 0.80 0.105 0.105 20.005 20.005 0.006 0.006
0.50 0.239 0.242 0.000 0.000 0.000 0.000
0.20 0.420 0.421 0.020 0.020 20.024 20.025

0.5 0.80 0.104 0.103 0.017 0.017 0.063 0.061
0.50 0.239 0.241 0.048 0.049 0.123 0.121
0.20 0.422 0.430 0.099 0.102 0.180 0.179

P2 0 0.80 0.000 0.000 20.021 20.021 0.105 0.105
0.50 0.000 0.000 20.049 20.049 0.239 0.239
0.20 0.000 0.000 20.086 20.086 0.420 0.420

0.5 0.80 0.052 0.052 20.021 20.021 0.105 0.105
0.50 0.120 0.120 20.049 20.049 0.239 0.239
0.20 0.210 0.210 20.086 20.086 0.420 0.420

Values were obtained analytically [multiple regression (MR): Equations 12 and 13] and with Monte Carlo simulation (MC) (s2
Am;1

¼ s2
Am;2

¼ 0:3;  s2
Av;1

¼ 0:05;
s2
e1 exp

�ð1=2Þs2
Av;1

� ¼ 0:7; s2
e2 ¼ 0:7; rAv;1 ;Am;2 ¼ 2 0:5; re ¼ 0).

1260 H. A. Mulder, W. G. Hill, and E. F. Knol



mathematically the point where the first derivative is zero,
e.g., a minimum or maximum. The stationary point of
the quadratic relationship of P2 as a function of P1 can be
calculated as

P1stat ¼
2b1
2b2

¼ 2var
�
P21

�
c1 þ covðP1; P21Þc2

22  cov
�
P1; P21

�
c1 þ 2s2

P1
c2

: (22)

If we assume for simplicity that covðP1; P21Þ ¼ 0 when
covAm;1;Av;1 ¼ 0; then P1stat ¼ 2 varðP21Þc1=2s2

P1c2: The popula-
tion mean is at a stationary point of zero when c1 ¼
rAm;1;Am;2 ¼ 0: A positive (negative) stationary point implies
that the current population mean is lower (higher) than it is.
In general, P1stat = 0 if varðP21Þc1 ¼ covðP1; P21Þc2:

The genetic stationary point can be determined similarly:

P1g_stat ¼
2ba21
2ba22

¼ 2var
�
P21

�
ga21 þ covðP1; P21Þga22

22  cov
�
P1; P21

�
ga21 þ 2s2

P1
ga22

: (23)

The genetic and phenotypic stationary points differ unless
re ¼ 0: They are shown in Figure 4 as functions of rAv;1;Am;2

(Figure 4A) and rAm;1;Am;2 (Figure 4B), and although they differ,
their shapes do not. Both are near zero when rAv;1;Am;2 is close
to 21 or 1, but large in absolute terms when rAv;1;Am;2 � 0
(Figure 4A), i.e., a hyperbolic form, because rAv;1;Am;2 largely
determines the curvature of the parabolas; and both increase
linearly with rAm;1;Am;2 (Figure 4B). These phenotypic and ge-
netic stationary points can be interpreted as phenotypic and
genetic optima in the case of stabilizing selection.

Effects of selection on genetic parameters

Both natural and artificial selection may bring the popula-
tion mean to a fitness optimum. As shown in Figure 4, there
is a relationship between the distance between the station-
ary point and the current population mean and the genetic
correlations, such that the genetic correlations may change
as selection shifts the population toward the stationary
point. The formulas underlying Figure 4 can also be ex-
pressed to show how genetic correlations depend on the

distance between the current population mean and the sta-
tionary point, e.g., a fitness optimum (V), assuming that the
parabola has fixed shape. The regression equation can be
written as

P2 ¼ b2ðP12VÞ2 þ d; (24)

where d is a constant. If we assume d ¼ 0 and covðP1; P21Þ ¼ 0;
then b2 ¼ c2=varðP21Þ: From Equation 22, b1¼ 2 2b2V;

substituting b2 ¼ c2=varðP21Þ and equating to the expression
for b1 in Equation 18 assuming covðP1; P21Þ ¼ 0;

b1¼ 22c2V
var

�
P21

� ¼ c1
s2
P1

: (25)

The change in genetic correlation rAm;1;Am;2 can be predicted
as the population mean moves to the stationary point. For
instance, if all other parameters stay equal,

c1¼
22s2

P1
c2V

var
�
P21

� (26)

rAm;1 ;Am;2

¼ 22s2
P1 c2V

var
�
P21

�
sAm;1sAm;2

¼
22s2

P1V
�
covAv;1 ;Am;2

s2
e1 exp

�
ð1=2Þs2

Av;1

�
þ cove1e2 covAm;1 ;Av;1

�
var

�
P21

�
sAm;1sAm;2

:

(27)

Equation 27 shows that rAm;1;Am;2 and V are linearly related.
Similarly, for the genetic correlation between rAv;1;Am;2 ;

c2 ¼ c1var
�
P21

�
22s2

P1
V

(28)

rAv;1;Am;2 ¼
c1var

�
P21

�
22s2

P1
VsAv;1sAm;2

2
cove1e2covAm;1;Av;1

sAv;1sAm;2

; (29)

showing that rAv;1;Am;2 has a hyperbolic relationship with V

(Figure 4A).

Example: index selection with changing genetic
correlation rAm;1;Am;2

If index selection is applied to improve trait 2 using the
phenotypic deviation of trait 1 and its square, i.e., Equations
14 and 15, the mean of trait 1 will tend to move to the
optimum value (Figure 5). If only rAm;1;Am;2 changes according
to Equation 27, the genetic correlation will become
smaller as the population mean approaches the optimum.
The response in trait 1 is nearly linear up to generation
seven and becomes almost zero after generation eight,
whereas the response in trait 2 is curvilinear. The response
in trait 2 in the first seven generations is due mainly to
bringing the population mean for trait 1 to the optimum
and subsequently is due to reducing the phenotypic variance
in trait 1.

Figure 3 The quadratic regression coefficient b2 as a function of the
genetic correlation rAv;1 ;Am;2 for different values of rAm;1 ;Av;1 and rAm;1 ;Am;2

(s2
Am;1

¼ s2
Am;2

¼ 0:3;  s2
Av;1

¼ 0:05;s2
e1 expðð1=2Þs2

Av;1
Þ ¼ 0:7; s2

e2 ¼ 0:7;
re ¼ 0).
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Deriving the phenotypic relationship between P2 and P1
when P2 is a binary trait

Until now, we assumed multivariate normality but nonlinear
relationships between traits occur when one of the traits is
not normally distributed, such as survival or presence/
absence of disease. Therefore we extend the prediction of
P2 on P1 (Equation 3) when P2 is a 0/1 binomial trait. We
assume that P2 is normally distributed on the underlying/
liability scale (P2;liabÞ (Gianola 1982; Foulley 1992) and
therefore,bP2;liab can be predicted using Equation 3. On the
observed scale (P2;obs), the proportion of animals that sur-
vive (dead = 0; alive =1) is predicted as

P2;obs ¼ psurvival ¼
Z N

x2dP2;liab

fðtÞdt; (30)

where x is the truncation point of the normal distribution
corresponding to the average survival in the population
(psurvival), x2bP2;liab represents the predicted truncation point
given P1; and fðtÞ is the standard normal density function.
Using Equation 30 together with Equation 3 to predict P2;obs
from P1 shows very good agreement with results from
Monte Carlo simulation (Figure 6), with R2 . 0.995 for all
cases evaluated. (Fortran scripts for all theoretical predic-
tions and Monte Carlo simulations are provided in Support-
ing Information, File S3).

Application to Birth Weight and Stillbirth in Pigs

The theoretical framework developed above shows that an
M-V genetic correlation between traits leads to a nonlinear
relationship between their phenotypes. The subsequent
analyses demonstrated that the genetic and phenotypic
optima could differ in position, but that selection could
bring the population mean to the genetic optimum. As
a practical example, we investigate such a nonlinear re-
lationship between birth weight and stillbirth in pigs. We
used 32,450 birth weight records from 2129 litters from
813 sows. Piglets were crossbred whereas the sows were
purebred Landrace pigs from TOPIGS. Piglet survival at
birth was recorded for each piglet as one (alive) or zero
(dead). More details on the data are given elsewhere

(Sell-Kubiak et al. 2015). Data are provided in Supporting
Information, File S2.

Statistical analysis

We analyzed piglet birth weight, its environmental variance
(VE), and piglet survival at birth as three traits with
a DHGLM in ASReml4 (Rönnegård et al. 2010; Felleki et al.
2012; Gilmour et al. 2014). For piglet survival we assumed
a linear model with homogeneous residual variance because
combining a logistic model for piglet survival with DHGLM
for birth weight is not yet feasible and indeed outside the
scope of this article. Fixed effects fitted were herd–year–
season, parity of the sow, and sex of the piglet for all three
traits. The random effects included were maternal genetic
effects, litter effects, and residuals for all three traits, with each
random effect trivariate normally distributed. The model is264 ym;1

yv;1
ym;2

375¼

264X 0 0

0 X 0

0 0 X

375
264bm;1

bv;1
bm;2

375þ

264Z 0 0

0 Z 0

0 0 Z

375
264 am;1

av;1
am;2

375

þ  

264W 0 0

0 W 0

0 0 W

375
264 cm;1

cv;1
cm;2

375þ

264 em;1

ev;1
em;2

375;
(31)

where ym;1; yv;1; and ym;2 are the vectors of observations for
piglet birth weight, the response variable for VE of birth
weight, and piglet survival; and X, Z, and W are the
incidence matrices relating fixed effects ðbÞ; random breeding
values, and random litter effects to observations. The vectors
am;1; av;1; and am;2 are maternal breeding values for birth
weight, its VE; and survival

264am;1

av;1
am;2

375� N

0BB@
2640

0

0

375;
2664

s2
Am;1

covAm;1 ;Av;1 covAm;1 ;Am;2

s2
Av;1

covAv;1;Am;2

symmetric s2
Am;2

37755A

1CCA;

cm;1; cv;1; and cm;2 are the corresponding vectors for random
litter effects24 cm;1

cv;1
cm;2

35�N

0B@
240
0
0

35;
264 s2

Cm;1
covCm;1;Cv;1 covCm;1;Cm;2

s2
Cv;1

covCv;1;Cm;2

symmetric s2
Cm;2

3755I

1CA;

Figure 4 (A and B) Phenotypic and genetic optima as func-
tions of rAv;1 ;Am;2 (A) and rAm;1 ;Am;2 (B) when re ¼ 0:5 ðs2

Am;1
¼

s2
Am;2

¼ 0:3; s2
Av;1

¼ 0:05;s2
e1 expðð1=2Þs2

Av;1
Þ ¼ 0:7; s2

e2 ¼
0:7; rAm;1 ;Av;1 ¼ 0; A, rAm;1 ;Am;2 ¼ 0:5; B, rAv;1 ;Am;2 ¼ 20:2).
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where I is the identity matrix; s2
Cm;1

; s2
Cv;1

; and s2
Cm;2

are the
litter variances; and covCm;1;Cv;1 ; covCm;1;Cm;2 ; and covCv;1;Cm;2 are
the corresponding covariances of cm;1; cv;1; and cm;2: Al-
though sows had repeated observations, at the risk of bi-
asing estimates of genetic covariance estimates, permanent
sow effects were excluded from the model because their
inclusion yielded estimates at the lower boundaries. Subse-
quently, these estimates of parameters were used to predict
the regression of piglet survival on birth weight and were
compared to the averages of survival rate for each of 20
ranked bins with equal numbers of piglet birth weight
records. Because the statistical model included litter effects,
the extension in Appendix C was used to predict the regres-
sion equation when the residual covariances between VE and
birth weight and survival are ignored.

Results

The parameter estimates (Table 2 and Table 3) indicate that
the genetic correlation between mean piglet birth weight
and survival is negative, as is that between VE of birth
weight and survival, the M-V genetic correlation between
traits. This implies that lower birth weight or lower VE is
genetically associated with a higher survival rate and, im-
portantly, that uniform litters have higher mean survival
rates. The multiple-regression equation based on the esti-
mated variance components describes the nonlinear rela-
tionship between individual survival rate and individual
birth weight quite well (Figure 7). Because a linear model
for survival is used, the regression equation goes beyond
a survival rate of 1.0. Accounting for the binomial nature
of survival, using Equation 30, solves the problem of predicting
a survival rate beyond 1.0, but the goodness of fit was slightly
worse (R2 = 0.78) than for the regression assuming multi-
variate normality (R2 = 0.79). The relationship between
individual birth weight and individual survival rate is,

however, almost linear because the residual covariance between
birth weight and survival substantially dilutes the nonlinear
genetic relationship. Similarly Sölkner and Fuerst-Waltl
(1996) found that environmental or residual correlations
can greatly reduce the nonlinearity of the genetic relation-
ship such that the phenotypic relationship is almost linear.
From a biological point of view, a nonlinear relationship
between piglet birth weight and survival rate at litter level
can arise because extremely small piglets decrease survival
rate, as also do very large piglets but to a lesser extent,
because the very large piglets induce early farrowing.

Discussion

Methodological framework and quantitative genetic
aspects of nonlinear relationships

This study shows that a genetic covariance between the
environmental variance of one trait and the mean of another
trait, i.e., an M-V genetic correlation between them, can lead
to nonlinear relationships between these traits and pre-
sented a framework based on multiple regression to inves-
tigate the consequences of selection in the presence of such
an M-V genetic correlation. Although all relationships be-
tween breeding values are assumed to be linear, the pheno-
typic relationship between traits becomes curvilinear
because the breeding value for environmental variance for
the first trait Av;1 is associated with the squared phenotype
P21 and its covariance to the mean of trait 2. Most quantita-
tive genetic machinery is based on multivariate normality
and thus linear relationships (Bulmer 1980), but we show
that it can be extended to incorporate nonlinear relation-
ships using methods of Mulder et al. (2007) for predicting
breeding values and selection responses when there is
genetic variation in VE: Mulder et al. (2007) used the
additive model for genetic heterogeneity of VE; but here

Figure 5 Population mean for traits 1 and 2 and the phenotypic variance
of trait 1 as a function of generation when applying index selection for
trait 2 using the phenotype deviation of trait 1 and the squared phenotypic
deviation of trait 1 in the index (starting values are as follows: selected
proportion is 5%, s2

Am;1
¼ s2

Am;2
¼ 0:3; s2

Av;1
¼ 0:05; s2

e1 expðð1=2Þs2
Av;1

Þ ¼
0:7; s2

e2 ¼ 0:7; rAm;1 ;Am;2 ¼ 0:5; rAm;1 ;Av;1 ¼ 0:1; re ¼ 0; rAv;1 ;Am;2 ¼ 20:5).

Figure 6 The relationship between the proportion of surviving animals
P2;obs and P1 using Monte Carlo simulation (MC_lin) and multiple regres-
sion (MR_lin) either with no genetic correlation (rAv;1 ;Am;2 ¼ 0) or with
a negative genetic correlation (rAv;1 ;Am;2 ¼ 20:5) (MC_nonlin, MR_nonlin)
between environmental variance in P1 and the mean of P2;liab on the
underlying scale (s2

Am;1
¼ s2

Am;2
¼ 0:3;s2

Av;1
¼ 0:05;s2

e1 expðð1=2Þs2
Av;1

Þ ¼
0:7; s2

e2 ¼ 0:7; rAm;1 ;Am;2 ¼ 0:2; rAm;1 ;Av;1 ¼ 0; re ¼ 0; average proportion
for P2;obs = 0.9).
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the exponential model was used because of its statistical
tractability and implementation in the DHGLM methodology
to estimate genetic variance in VE: The additive and exponential
models are similar, assuming that the genetic variance in VE is
small and parameters can be converted from one model to the
other (Mulder et al. 2007; Hill and Mulder 2010). Here the
focus is on the principles rather than the details and therefore
the choice of model does not have a major impact on the non-
linear relationships caused by M-V genetic correlations between
traits.

We extended the DHGLM methodology to estimate
genetic and environmental variances and the correlations
between piglet birth weight, its VE; and survival. The current
algorithm can be run in ASREML4 (code provided in Sup-
porting Information, File S1). It could, for example, also be
used to estimate the trade-offs between VE and other traits
and thereby help further unravel the biological mechanisms
and causes of genetic differences in VE: Genetic correlations
may change due to selection, as predicted in this study,
even under infinitesimal model assumptions, and therefore
reestimation of genetic parameters seems important if there
are curvilinear relationships between traits. Large family
sizes are required to get accurate estimates for genetic
variance in VE (Hill 2004; Hill and Mulder 2010), and con-
sequently very large data sets are required for estimating
M-V genetic correlations between traits with sufficient precision
(inferred from Robertson 1959).

The regression in Figure 1 shows substantial nonlinearity,
but in our examples the coefficient of determination (R2)
would not be greatly reduced if a linear regression was
applied even though the true relationship is quadratic be-
cause of an M-V genetic correlation between traits. The lin-
ear regression would generally explain $90% of the
variation, except when the phenotypic correlation between
the traits is close to zero (i.e., 20.15 , phenotypic correla-
tion , 0.15) (Figure 8). Therefore, a linear regression be-
tween traits is sufficient when the population is far from the

optimum, but if there is a nonzero M-V genetic correlation
between them and the population mean is close to the op-
timum, quadratic regression should be used.

A related question is how much of the nonlinearity
observed is due to an M-V genetic correlation between the
traits. In the pig example, the quadratic relationship im-
proved R2 only from 0.787 to 0.793, whereas the best-fitting
quadratic regression R2 would explain 0.794. Assuming that
the true relationship is equal to the best-fitting quadratic
regression, it can be concluded that the genetic covariance
between VE of birth weight and survival is the main driver
for the quadratic relationship, and no other factors need to
be invoked. The environmental correlations seem to have
a dominant influence on diluting the nonlinearity, which
accords with findings of Sölkner and Fuerst-Waltl (1996)
who investigated the effect of nonlinear relationships be-
tween traits due only to nonlinearity of their breeding values
for trait means. If the environmental relationship between
traits is approximately linear, the phenotypic relationship
will also be approximately linear, especially when the herit-
abilities are small.

In this study, we investigated the contribution of M-V
genetic correlations between traits to nonlinearity between
them. Nonnormality of at least one of the traits can cause
a nonlinear relationship between them (Varona and Sorensen
2014). Survival is binomially distributed, although we as-
sumed multivariate normality of birth weight and survival,
but estimates of additive genetic correlations on the linear
scale are expected to be equal to those on the underlying
scale (Vinson et al. 1976; Gianola 1982) and therefore not
biased by the current procedure. Furthermore, we showed
that the prediction assuming multivariate normality fitted
the observed survival rates better than when assuming that
survival is binomially distributed. Nevertheless, Equation 30
is a useful extension of the framework to predict phenotypes
of traits that are not normally distributed, but have an
underlying liability scale that is normally distributed. More

Figure 7 The phenotypic relationship between survival and individual
piglet birth weight (kg) when averages were calculated for 20 bins after
sorting on birth weight (obs), regression based on Equation 3 assuming
multivariate normality (regress_MV), and regression based on Equations 3
and 30 to account for the binomial nature of survival (regress_bin).

Figure 8 The coefficient of determination (R2) of a linear regression
when the true relationship is quadratic as a function of the phenotypic
correlation (¼ rAm;1 ;Am;2 ¼ re) between trait 1 and trait 2 for different values
of rAv;1 ;Am;2 (s2

Am;1
¼ s2

Am;2
¼ 0:3; s2

Av;1
¼ 0:05; s2

e1 expðð1=2ÞÞs2
Av;1

Þ ¼
0:7; s2

e2 ¼ 0:7; rAm;1 ;Av;1 ¼ 0).
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research is needed to explore the effects of nonnormality on
estimation of such M-V correlations.

The focus in the present study was on understanding the
nonlinear relationship between traits caused by M-V corre-
lations between traits and its consequences for artificial and
natural selection. We focused on mass selection, but the
same framework could be used to predict responses to
selection when using information of relatives, e.g., sibs or
offspring as shown by Mulder et al. (2007, 2008). With
progeny testing, accuracy will be greatly improved, espe-
cially for the breeding value for VE: In Mulder et al. (2008)
we showed that when profit has an optimum value, arti-
ficial selection will first bring the population mean to the
optimum and subsequently selection will be to reduce the
variance, similar to that in Figure 5. It should be noted
that current calculations as well as those in Mulder et al.
(2007, 2008) do not take into account reduced genetic
variance due to gametic phase disequilibrium (Bulmer
1971).

The framework provides estimates of positions and
heights of phenotypic and genetic optima, which are func-
tions of genetic and nongenetic (co)variances. As standard
errors, particularly on genetic (co)variances, are moderate
to high, those on optima are also likely to be large, espe-
cially when the M-V genetic correlation between traits is
close to zero (Figure 5). The calculated location of optima
gives insight into where the current population mean is
compared to the optimum. The piglet example shows that
phenotypic and genetic optima may be very different: the
current population mean is far from the phenotypic opti-
mum (�13 phenotypic SD), because higher birth weight
still yields higher survival on average based on the regres-
sion, although observed survival rate flattens at �1.8–2.0
kg. The high prediction for the phenotypic optimum is
likely due to neglecting the binomial nature of survival.
In contrast, the genetic optimum is �6 phenotypic SD
below the current population mean, with the discrepancy
between the phenotypic and the genetic optimum due to
the opposite signs of the genetic vs. litter and environ-
mental correlations between birth weight and survival.
Yoshimura and Shields (1995) indicate that environmen-
tal uncertainty is the driver between differences in op-
tima. If genetic/nongenetic (co)variances differ among
environments, the optima, i.e., fitness profiles, would also
differ among environments (e.g., Dewitt and Yoshimura
1998).

Phenotypic variability and fitness in natural populations

Nonlinear relationships are often observed or hypothesized
in natural populations, typically as “fitness profiles” between
trait values and fitness (Lande and Arnold 1983; Falconer
and Mackay 1996; Kingsolver et al. 2001, 2012). If the op-
timum phenotype is intermediate, there would be a negative
covariance between VE and fitness, such that families with
small variance would contribute more survivors, and corre-
spondingly families with a large variance would have an
advantage with disruptive or strong directional selection
(Hill and Zhang 2004; Mulder et al. 2007). The strength
of natural selection (i.e., the selection gradient) can be de-
termined by regressing relative fitness on phenotypic value
if it is directional or on the squared deviation of phenotypic
value from the mean if it is stabilizing or disruptive (Lande
and Arnold 1983). Thus if fitness is taken as trait 2, the
regression coefficients in Equation 3 indicate the strength
of selection. For instance, the strength of stabilizing selec-
tion is obtained as VS¼ 2 1=2b2 (Falconer and Mackay
1996), where b2 is the regression of fitness on the squared
deviation of the trait under selection, i.e., trait 1 in this
study. Applying this to our study and assuming rAm;1Av;1 ¼ 0;
re ¼ 0; rAm;1Am;2 ¼ 0; i.e., the population mean is at the op-
timum, the strength of stabilizing selection (expressed as
the “variance” of the fitness profile standardized by VE on
trait 1, so small values imply strong selection) would
be VS ¼ 21=2b2 ¼ ½2s4

P1 þ 3s4
e1expðs2

Av;1
Þðexpðs2

Av;1
Þ2 1Þ�=

½22covAv;1;Am;2s
4
e1expðs2

Av;1
Þ� (Falconer and Mackay 1996).

The estimate of VS ðVS¼21=2b2Þ for the example of piglet
survival and piglet birth weight is 435VE:

Based on early estimates of the strength of stabilizing
selection, Falconer and Mackay (1996) suggested that strong
selection would be VS = 10 and weak selection VS = 100,
with “typical” estimates of the order of 20–25 (Falconer and
Mackay 1996; Zhang and Hill 2005). Kingsolver et al. (2001,
2012), however, reviewed selection gradients estimated in
a range of natural populations and found that in only a few
studies negative quadratic regression coefficients (b2) were
actually obtained, indicating that strong stabilizing selection
is rarely detected. The value obtained here for the piglet data
implies very weak stabilizing selection. Indeed, as fitness
typically has a low heritability (,0.1) and s2

Av;1
, 0:1

(GCVVE ffi sAv;1 , 0:32) in most recent estimates using DHGLM
or MCMC (Felleki et al. 2012; Mulder et al. 2013a; Rönnegård
et al. 2013), the stabilizing selection driven by the M-V

Table 2 Estimates of genetic, litter, and residual variance for birth
weight (kg) (BW), its environmental variance VE (BWv), and
survival rate (SU) in pigs (standard error in parentheses)

Variance component BW (31023) BWv (31023) SU (31023)

Genetic variance 16.4 (1.51) 46.5 (7.55) 0.968 (0.22)
Litter variance 15.0 (0.80) 75.0 (7.53) 2.74 (0.26)
Residual variancea 74.9 (0.61) 1803 (14.7) 63.4 (0.50)
a Residual variance for BW is based on a model with homogeneous residual
variance.

Table 3 Estimates for traits as in Table 2 of genetic correlations
(above diagonal) and litter correlations (below diagonal) in pigs
(standard errors in parentheses)

Trait BW BWv SU

BW 0.51 (0.08) 20.24 (0.11)
BWv 0.20 (0.05) 20.19 (0.14)
SU 0.35 (0.05) 0.06 (0.07)

Note that residual correlation between BW and SU was 0.18.
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genetic correlation between VE and fitness is likely to be
weak (examples in Table 4).

Implications and applications in agriculture

In agriculture, a frequent objective is to increase uniformity
of animals and plants for some traits because these may
have an optimum with respect to profit, for instance for
slaughter traits in livestock because slaughterhouses prefer
low variability in carcass weight and meat quality to op-
timize processing and to provide homogeneous products to
retailers (Hennessy 2005). Some conformation traits such as
udder depth or front teat placement may have a nonlinear
relationship with respect to fitness traits, such as longevity
(Larroque and Ducrocq 2001), or with milk production
(Fuerst-Waltl et al. 1998). In contrast, there is also concern
that animals with small VE would not have the capacity to
react to unpredictable environments, i.e., lack robustness, so
it is likely to be worthwhile to explore the relationship be-
tween VE and fitness traits in different environments. While
very little is known about trade-offs between VE and means
of traits, the current study provides insight in showing that
a negative genetic covariance between VE and fitness is ad-
vantageous for piglet survival and birth weight. Further-
more, selection on VE can increase accuracy of selection
provided the population is at the optimum and the genetic
correlation between trait means is close to zero. Therefore,
inclusion of VE in index selection is mainly of interest for
traits that have a direct economic value for uniformity or
where VE has a strong genetic correlation with an econom-
ically important trait that has a low heritability and is not
strongly correlated to other economic traits.

In conclusion, this study provides a framework to study
nonlinear relationships between traits caused by M-V ge-
netic correlations between them and to assess the effects of
artificial and natural selection on their means and variances.
It is shown that phenotypic and genetic optima may differ;
that genetic relationships are often more curvilinear than
phenotypic relationships, especially for environmentally
correlated traits; and that genetic correlations may change
when population means change relative to the optimal
phenotypes. The analysis of piglet birth weight and survival
shows that the nonlinearity can be partly explained by such

an M-V genetic correlation between VE of birth weight and
survival.
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Appendix A

Derivation of Elements in the Multiple-Regression Equation of P2 on P1 and P1
2

The elements of the P matrix and the c vector were derived as follows for the genetic model in Equation 1
ðP1 ¼ m1 þ Am;1 þ E1Þ; in which E1 ¼ x exp½ð1=2Þðlnðs2

e1Þ þ Av;1Þ� and Eðx2 expðAv;1Þ ¼ expðð1=2Þs2
Av;1

Þ; where the roman E
denotes expectation.

The elements of P are

EðP1Þ ¼ 0

E
�
P2
1
� ¼ E

�
A2
m;1

�
þ 2E

�
Am;1E1

�þ E
�
E21

� ¼ s2
Am;1

þ s2
e1exp

�
1
2
s2
Av;1



¼ s2

P

E
�
P3
1
� ¼ E

�
A3
m;1

�
þ 3E

�
A2
m;1E1

�
þ 3E

�
Am;1E

2
1

�
þ E

�
E31

�¼ 3  covAm;1;Av;1s
2
e1exp

�
1
2
s2
Av;1




E
�
P4
1
� ¼ E

�
A4
m;1

�
þ 4E

�
A3
m;1E1

�
þ 6E

�
A2
m;1E

2
1

�
þ 4E

�
Am;1E31

�þ E
�
E41

�
¼ 3s4

Am;1
þ 6  cov2Am;1;Av;1

s2
e1exp

�
1
2
s2
Av;1



þ 3s4

e1exp
�
2s2

Av;1

�
;

where

E
�
A2
m;1E

2
1

�
¼ 2  cov2

�
Am;1E1

� ¼ ð2Þ
�
1
2



cov2Am;1;Av;1

s2
e1exp

�
1
2
s2
Av;1



;

and 1=2 comes from the coefficient of Av;1 in E1 ¼ xexp½ð1=2Þðlnðs2
e1Þ þ Av;1Þ�;

varðP1Þ ¼ E
�
P2
1
�
2 ½EðP1Þ�2 ¼ s2

P

cov
�
P1; P2

1
� ¼ E

�
P3
1
�
2EðP1ÞE

�
P2
1
� ¼ 3  covAm;1;Av;1s

2
e1exp

�
1
2
s2
Av;1




var
�
P2
1
� ¼ E

�
P4
1
�
2
�
E
�
P2
1
��2 ¼ 2s4

P1
þ 6  cov2Am;1;Av;1

s2
e1exp

�
1
2
s2
Av;1



þ 3s4

e1exp
�
s2
Av;1

��
exp

�
s2
Av;1

�
2 1

�
:

The elements of c are

covðP2; P1Þ ¼ E
�
Am;2Am;1

�þ EðE2E1Þ ¼ covAm;1;Am;2 þ cove1e2

cov
�
P2; P2

1

� ¼ E
�
Am;2A2

m;1

�
þ 2E

�
Am;2Am;1E1

�þ E
�
Am;2E21

�þ E
�
E2A2

m;1

�
þ 2E

�
E2Am;1E1

�þ E
�
E2; E21

�
¼ covAv;1;A2s

2
e1exp

�
1
2
s2
Av;1



þ covAm;1;Av;1cove1e2 :

Appendix B

Derivation of Elements of P and g When Using Squared Residuals Corrected for Leverages

Instead of using P2
1 directly, squared residuals of P1 corrected for its leverage (l) can be used to predict breeding values for

the second trait Am;2 (see Equation 17 in main text). The leverage is the diagonal element of the hat matrix for each
observation (Hoaglin and Welsh 1978) as used in the DHGLM (Rönnegård et al. 2010).

Assuming that only information of the animal itself is used for breeding value estimation and in the absence of fixed
effects, bAm;1 ¼ l and hence the elements of Pe in Equation 17 are
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var
�

e21
12 l



¼ var

��
12 bAm;1

�
P21

�
¼ �

12bAm;1

�2var�P21�

cov
�
P1;

e21
12 l



¼ cov

�
P1;

�
12 bAm;1

�
P21

� ¼ �
12 bAm;1

�
cov

�
P1; P21

�
and similarly the elements of ga2e are

cov
�
Av1;

e21
12 l



¼ �

12 bAm;1

�
cov

�
Av1; P21

�

cov
�
Am;2;

e21
12 l



¼ �

12 bAm;1

�
cov

�
Am;2; P21

�
:

If ð12 bAm;1Þ is put into a scaling matrix

W ¼
�
1 0
0

�
12 bAm;1

� �;
the derived elements in Appendix A can be used together with the scaling matrix (see main text below Equation 17). It can be
shown that the accuracy of the estimated breeding value dAm;2

�
r
Am;2;cAm;2

�
is the same as with using squared phenotypic

deviations instead of squared residuals corrected for leverages:

r
Am;2;dAm;2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW21P21W21WgÞ9Wg

q
sAm;2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP21gÞ9g

q
sAm;2

:

Appendix C

Generalization of Equations Involved in Multiple Regression with Multiple Random Effects

Assume the statistical model for trait 1 (= y), its VE; and trait 2 contains fixed effects and a number of random effects (n2 1)
in addition to the residual,

y ¼ Xbþ
Xn21

i¼1

Ziui þ e;

and P2 is predicted from P1 and P21: The (co)variances in the P matrix are V11 ¼ Pn21
i¼1 vci11 ; V12 ¼ V21 ¼ Pn21

i¼1 vci12 ;
V22 ¼ Pn21

i¼1 vci22 ; where vci11 (vci22 ) is the variance for random effect i for trait 1 (VE of trait 1) and vci12 is the covariance
for random effect i between trait 1 and its VE :

varðP1Þ ¼ V11 þ s2
e1exp

�
1
2
V22




cov
�
P1; P21

� ¼ 3V12s2
e1exp

�
1
2
V22




var
�
P21

� ¼ 2
�
V11 þ s2

e1exp
�
1
2
V22



2

þ 6V2
12s

2
e1exp

�
1
2
V22



þ 3s4

e1expðV22ÞðexpðV22Þ2 1Þ:

The covariances in c are V13 ¼ Pn21
i¼1 vci13 ; V23 ¼ Pn21

i¼1 vci23 ; where vci13 is the covariance for random effect i for trait 1 and
trait 2 and vci23 is the covariance for random effect i between trait 1 and its VE :

covðP2; P1Þ ¼ V13 þ cove1e2

cov
�
P2; P21

� ¼ V23s2
e1exp

�
1
2
V22



þ V12cove1e2 :
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File S1 

ASReml file for analysis piglet birth weight and survival 

!WORKSPACE 1800 !NOGRAPHICS !DEBUG !LOGFILE !RENAME !ARGS  1 2  // !DOPART  $1 

DHGLM model of birth weight and survival 

    animal 32450 !I 

    litter 2129  !I 

    parity 10    !I 

    sex 2        !I 

    farm 15      !I 

    ys 22        !I 

    sow 7415         !I 

    bw            !M ‐99 

    surv          !M ‐99 

    Gval !=bw !‐1.19 !*V10 

    Ywt !=1. Gwt !=1. survW !=1. 

 

Ainv.giv 

phenotype3.txt !maxit 1000 !skip 1 !DOPART $1 

 

!PART 1 # normal model 

bw ~ mu parity sex farm.ys !r giv(sow,1) litter 

residual units 
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!Part 2 

!ASUV !EXTRA 100 !SLOW 

 

# in odd iterations, we use the predicted weights for the primary response 

!IF ODD !CALC W1=EXP(R2‐Y2) #redefine weights for Y1 

 

!IF EVEN !CALC S1=1./W1; H0=MIN(H1/S1, .9999); Z2=MAX(R1*R1,.0001)/(1‐H0) 

!IF EVEN !CALC Y2=LOG(S1)+(Z2‐S1)/S1 #redefine Y2 

!IF EVEN !CALC W2=(1‐H0)/2 #redefine weights for Y2 

 

!ASSIGN gen 0.016 0.005 0.05 0.00 0.00 5.0 

!ASSIGN lit 0.015 0.0 0.08 0.0 0.0 5.0 

bw Gval surv !Weight Ywt !WT Gwt !WT survW ~ Trait Trait.parity Trait.sex Trait.farm.ys !r us(Trait,$gen).giv(sow,1) 

us(Trait,$lit).litter !f mv  
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