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ABSTRACT Causal models including genetic factors are important for understanding the presentation mechanisms of complex
diseases. Familial aggregation and segregation analyses based on polygenic threshold models have been the primary approach to
fitting genetic models to the family data of complex diseases. In the current study, an advanced approach to obtaining
appropriate causal models for complex diseases based on the sufficient component cause (SCC) model involving combinations of
traditional genetics principles was proposed. The probabilities for the entire population, i.e., normal-normal, normal-disease,
and disease-disease, were considered for each model for the appropriate handling of common complex diseases. The causal
model in the current study included the genetic effects from single genes involving epistasis, complementary gene interactions,
gene-environment interactions, and environmental effects. Bayesian inference using a Markov chain Monte Carlo algorithm
(MCMC) was used to assess of the proportions of each component for a given population lifetime incidence. This approach is
flexible, allowing both common and rare variants within a gene and across multiple genes. An application to schizophrenia data
confirmed the complexity of the causal factors. An analysis of diabetes data demonstrated that environmental factors and gene—
environment interactions are the main causal factors for type Il diabetes. The proposed method is effective and useful for
identifying causal models, which can accelerate the development of efficient strategies for identifying causal factors of complex

diseases.
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OST complex diseases involve a large number of genes

and intricate patterns of inheritance. These heteroge-
neities result in difficulties in identifying genetic models
using segregation analyses (Demenais and FElston 1981;
Karunaratne and Elston 1998; SAGE 1994). The flexible
framework based on variance components has enabled
many extensions for fitting genetic models, with major
causal factors of additive genetic effects, shared envi-
ronment, and unique environment (Morton and MacLean
1974; Falconer and Mackay 1996; Rabe-Hesketh et al.
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2008). Genetic models based on familial aggregation us-
ing relative risk and covariance could provide partial as-
sessment of relevant parameters such as the number of loci
and/or the disease allele frequencies (Elston and Campbell
1970; McGue et al. 1983; Risch 1990; Lange 2002; Slatkin
2008).

These genetic models are based on linear models that
search the linear relationships between the trait and the
causal components. The linear models in genetics were
developed to be applicable to most kinds of genetics
problems (Mackay 2014). While genetic epidemiologists
have focused on the development of modern statisti-
cal technologies derived from Fisher’s variance compo-
nents (Fisher 1918), the focus of epidemiologists has
been the fundamental concept of causation. A cause is
an event, condition, or characteristic that results in an
effect (a disease), alone or in conjunction with other causes
(Rothman 1976; Rothman et al. 2008). A sufficient cause
is a minimal set of conditions and events that inevitably
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Figure 1 Typical sufficient component cause (SCC) mod-
els for a causation of disease Y. (A) A typical model with
more than two sufficient causes consisting of two genetic
components (Gy or Gs) with their causal partners (U, or
Us,, respectively) and the rest of sufficient causes (X). (B) A
model with five sufficient causes (two single genetic
causes (G, and G,), one environmental cause (E;), one
genetic interaction cause (causal partners: Gz and Gy),
and one gene—environment interaction cause (causal part-
ners: Gs and £5).

Diesease Y

produces the disease (Rothman 1976; Rothman et al. 2008).
Therefore, the sufficient component cause (SCC) model was
designed to explain a complete causal mechanism (Rothman
et al. 2008). Regarding causation in epidemiology, there are
other types of concepts of causation such as probabilis-
tic causation and counterfactuals (Parascandola and Weed
2001), which include elaborate efforts to apply genetic ep-
idemiology to studying causation based on directed acyclic
graphs (Pearl 2009a,b). Although there are debates about
the best model (Parascandola and Weed 2001), the SCC
model is useful for studying individual mechanisms of cau-
sation (Rothman et al. 2008).

To identify causal components, the SCC model in epide-
miology (Rothman 1976; Rothman et al. 2008) might be
more straightforward than the conventional approaches in
statistical genetics (Figure 1). Similar to the logic by Mackie
(1980), the SCC model is composed of several sufficiently
causal components, each of which is a set of minimal events
that inevitably produce disease (Rothman 1976; Rothman
et al. 2008; Madsen et al. 2011a). Therefore, each of the
minimal events in a sufficient causal component is neither
necessary nor sufficient. Several conventional genetic models,
including the two-locus heterogeneity model could corre-
spond to SCC models for certain circumstances (Madsen
et al. 2011b). The two-locus heterogeneity model indicates
that an individual is affected if one has a mutation in any two
loci. Therefore, the two loci are parallel (or independent), as
described previously (Darroch 1997). Through expansions of
the conventional linear models in genetics (Yi et al. 2011),
each sufficient cause could correspond to each component in
genetic models, such as additive genetic components, shared
environments, gene interactions, and others; however, the
original framework of the SCC model, rather than the linear
models, should be investigated in advance to minimize the
parameter assumptions.

To identify causal models, an advanced framework based
on the SCC model using the disease concordances of relative
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pairs with four causal components was proposed (Figure 2A),
i.e., single genetic factors (G), complementary gene interactions
(G X G), gene-environment interactions (G X E), and envi-
ronmental factors (E). The four causal factors are parallel
(Darroch 1997), as are the disease loci in the G component.
The parallelism (independency) among the disease loci
indicates that each disease genotype in the G component
is epistatic, masking the effect of other genotypes based
on the original Bateson definition (Phillips 2008). There-
fore, the G component are composed of many parallel loci,
each of which has rare or de novo mutations (Gratten et al.
2013) that are fully penetrant. Due to the existence of
other sufficient components, each gene is sufficient, yet
unnecessary, to the disease presentation.

Each G X G and G X E are composed of a set of minimal
events, each of which is a disease gene or an causal environ-
ment. The events of G X G (or G X E) are synergistic, mean-
ing that all of the events in G X G (or G X E) should occur for
the disease presentation (Darroch 1997). Therefore, the par-
tial concept of statistical gene interaction, defined as any
statistical deviation from the additive combination of
two loci in their effects on a phenotype (Phillips 2008),
was applied to the G X G component, which is denoted by
the term “complementary interaction” in this study (Strachan
and Read 2004). Part of the genetics follows numerical ex-
pressions that were presented previously (Elston and Campbell
1970; Risch 1990). A standard Bayesian MCMC was imple-
mented on the genetic model with four major causal fac-
tors to infer the proportion of these causal factors in disease
presentation.

Materials and Methods
Reformulation of the concordance of relative pairs

In the SCC model, there are sufficient causal factors,
each of which is independent. Figure 1A indicates one of
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Figure 2 (A) Causal components and the population distribution of com-
plex traits (the shaded region indicates the affected population). (B) A
causal Venn diagram with two components of G and E.

the general SCC models (Rothman et al. 2008; Madsen
et al. 2011a). If the disease Y is considered as a breast
cancer as indicated in a previous example, G; could be
causal mutations in BRCAI, with U, as the causal partner
that causes a breast cancer in combination with G,
(Madsen et al. 2011a). G, could be causal mutations in
BRCA2, with U, as the causal partner of G,, and X in-
dicates all other sufficient causal factors of the breast
cancer, as in the previous example (Madsen et al. 2011a).
As indicated in the Introduction, the possible causal fac-
tors of complex diseases are G, E, G X G, and G X E. In
Figure 1B, a complex disease (Y) having five sufficient
causal factors is presented. G, G,, and E; can solely cause
the disease by itself, yet the G3 and Gs can cause the
disease only when their causal partner exists. In Figure 1,
each event happens separately; however, in reality, two
or more sufficient causal factors happen coincidently as
shown in Figure 2B. Assuming that causal factors are in-
dependent, the population with no disease during their
lifetime is represented as 1-PLI (population lifetime in-
cidence), which is the same value obtained when all
fractions of the population without the risk factor are
multiplied. If 2; indicates the proportion of a causal fac-
tor for k risk factors, the generalization of the population
with no disease is expressed as follows for four causal
factors:

k
1-PL=][](1-2). €Y

i=1

Considering the entire population, the normal-normal
pairs were included in addition to the normal-disease
and disease—disease pairs. For relative pairs, the proba-
bility of normal-normal (Pyy), normal-disease (Pyp), and
disease-disease (Ppp) pairs for each relative pair can be
expressed as

[T X Pi(X1,X2) =1, K={1,2,3,4}
ieK

Piy =Pi(X1 = 0,X; = 0) X PG, i=2,3,4; P! = P1(X1,X2)
Pip =Pi(X1 = 0,X; = 0) X P} + {Pi(X7 = 0,X, = 1)

. 1.
+Pi(X1 =1, = 0)} X (P + 5P\ )-

Pip =Pi(X1 = 0,Xp = 0) X Pt + {P;(X1 = 0,X, = 1)

P N
+ Pi(X1 = 1,X2 = 0)} X (P +§Pi\m1)
+Pi(X1 =1,X = 1)

(2

P; indicates the probability of disease concordance for the ith
causal factor, and P! indicates the probability of disease con-
cordance at the ith iteration including up to ith causal factor.
Because there are four causal factors, the number of itera-
tions is three, starting from Py, P'np, and Plpp, for the first
causal factor to yield the final probability of Pyy, Pyp, and
Ppp. In P; of each causal factor i, X; indicates the causal
status of individual j due to the corresponding causal factor
i. For a G factor, X; indicates the genotype of individual j,
where 1 is the disease genotype and O is the normal geno-
type. Therefore, X; = 0 means that the individual has normal
genotypes for all of the disease loci of the G factor. For an E
factor, X; is 0 when the individual has a normal environment
for one’s entire life, and 1 otherwise. For a causal factor of
G X G, X; is 1 when the individual has the disease genotypes in
all of the corresponding pathway genes, and it is O otherwise.
For a causal factor of G X E, X; is 1 when the individual has
a disease genotype (or disease genotypes) and experienced
an interacting causal environment. Each gene is either dom-
inant or recessive, and allelic heterogeneity in a gene is dealt
with by considering a haplotype with any disease allele(s) as
a disease allele.

The probabilities of P(X;,X,) must be derived, of which
there are four, i.e., P(X; = 0,X, = 0), P(X; = 1,X, = 0),
P(X; =0,X, =1),and P(X; = 1,X, = 1). The sum of all four
probabilities is one. For the G factor, due to epistasis, when
two or more disease genes are present, at least one disease
genotype would result in the presentation of the disease. All
possible combinations of genotypes were considered, and
the probability, P(X;,X,) for n disease genes of the G factor,
was obtained by
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1
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where G; indicates the genotype j of the first individual,
among which GN indicates normal genotypes; I indicates
the probability of the identical-by-descent (IBD) status, k
(0, 1, or 2), between two individuals; and P(X,|k,G;) indi-
cates the probability of the disease genotype status of the
second individual for a given IBD and a given genotype of
the first individual.

For P(X1,X5) for G X G with n disease genes, all of the genes
should have their disease genotypes when an individual is
affected. G; indicates the genotype of gene, j. For each gene,
there are two types of genotypes, normal and disease. GP is the
probability vector of disease genotypes, and G is the probability
vector of all genotypes. For instance, if a gene is dominant with
a disease allele (D) and a normal allele (d), GP of gene, j, is
a probability vector of DD and Dd genotypes and G is a prob-
ability vector of DD, Dd, and dd genotypes. If ID; indicates the
probability that the second individual has a disease genotype
based on the IBD status of the first individual with the geno-
type, Gj, each probability can be expressed as

ID; = Xk:IkP(XZJ = 1|k, Gj)

P(X; =1,X;=1) = (®"GP)+(®"IDP)
P(X1 =1,X2 =0) = (®"G)+[1— (®"IDP)]
PX; =0,X; = 0) = ((®"G))*[1 — (®"ID)]
~ (©"67)+[1- (®"IDY)]
PX1=0,X;=1)=1-(®"GP)*1 - P(X; = 0,X; = 0).
4)

Here, ID is the probability vectors corresponding to G, and
IDP is the probability vector corresponding to GP. X, ; indi-
cates the disease genotype status of the second individual
for gene, j. The Kronecker power (®") indicates the n times
of the Kronecker product of the following vector. For exam-
ple, ®3G indicates G ® G ® G. Because equal frequencies
were assumed in the current study, all Gs (or GPs) for dom-
inant genes are identical, as are those for recessive genes.
The vectors are indicated as boldface letters.
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For a causal factor of gene-environment interactions
(G X E), the calculation of the genetic component (Gg)
interacting with the environment is identical to the calcula-
tion of the single genetic components (G) in Equation 3. In
this case, however, an individual is affected only when the
individual has the disease genotype (Gg) and is exposed to
the environmental factor (E;) that interacts with the disease
genotype. The models can be extended to include the com-
plementary gene interactions as the Gg component. In this
case, the P(X,,X;) is based on Equation 4. Additional exten-
sions for both single genetic components (G) and complemen-
tary gene interactions (G X G) interacting with environments
are also possible.

Bayesian inference

For the Bayesian inference, the relative pairs with at least
one affected individual are considered. The relative types
include monozygotic twins (MZT), parent-offspring (P-O),
dizygotic twins (DZT), siblings (sib), second-degree relative
pairs (grandparent-grandchild and avuncular pairs), third-
degree relative pairs (cousins), etc. The model contains four
distinctive and independent causal factors to model disease
presentations: E, G, G X G, and G X E. The Dirichlet distri-
bution was used to model the proportions of four causal
factors. Without any prior information, an uninformative
prior is a common choice. By assuming a1 = ay = a3 =
a4 = 1, an uninformative prior on the causal factors was
used, which was proper in the current situation,

Q= (PE7PG7P(G X G)7p(G X E)) ~ Dir(a17a27a37a4)

Posterior « Likelihood X Priors o HP(Yi |N;, 0;)P(a)P(K).
i

)

Y; is the number of pairs with disease concordance in the N;
pairs of the ith relative type, and 6; is the concordance rate
of the relative type i. In this equation, P(Y;|N;,6;) is the bi-
nomial density function. If a cohort family data set is avail-
able, the multinomial density function for NN, ND, and DD
pairs can be used instead. Based on «, the rest of the latent
parameters were determined to be the same as the MCMC
update described below. K is a vector of gene numbers for
each genetic component for which an uninformative prior
(a uniform distribution from 0 to the maximum number of
genes for each component) is also applied.

The MCMC simulations are performed based on the
model (Figure 3). Because the differences in concordance
rates between models with different numbers of genes ap-
proach a rapid convergence to 0 as the number of genes
increases, a large number of genes is neither necessary nor
efficient. Therefore, the number of genes in each causal
factor is set to be uniformly distributed between O and 8,
which, in Equations 2—4, is the maximum number of a matrix
computation in regular 32-bit computing facilities. All other
variables, except Q and K, are latent variables and are
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Figure 3 Graphical representation of the hierarchical mixture model («,
prior parameters; K, number of genes; Q, proportions of causal factors; 0;,
concordance rate of relative pair i; Y,, concordance data of relative pair /).

denoted as Z. Z includes each component of the dominant
(Gp) and recessive (Gr) genes in the G X G term, each
component of the genetic (Gg) and environment (Eg) frac-
tions in the G X E term, and the frequencies of genes in each
genetic component. For convenience, equal frequencies of
variants in the same genetic component are assumed. The
rest of unmentioned parameters were automatically deter-
mined on the basis of these parameters. If the model has
distinctive concordance rates, the posterior means of latent
variables also localize to the correct values.

A detailed MCMC update proceeds as follows. For the
proper usage of Dirichlet distribution, log transformations are
applied to Equation 1. Let ¢ represent an arbitrary constant,
and « is a vector of 1 with a length that corresponds to the
matched parameters. For the genetic component (G) and the
genetic component that interacts with the environment (Gg),
there is at least more than one disease gene, either dominant
or recessive. The terms fp, and fp|g x g represent the frequency
of dominant genes in the genetic (G) and gene-environment
interaction (G X E) components, respectively. For the gene
interaction component, pGp and pGg are the proportions of
dominant genes and recessive genes, respectively.

K is a vector that lists the number of recessive genes for
the G, Gg, and Gg terms and the number of dominant genes
for the Gp term. In this model, because the concordance
rates depending on the number of dominant genes are in-
distinguishable, except for the G X G component, it is as-
sumed that there is one dominant gene for the G and Gg
components. Because the model should contain the G X G
term, the sum of the number of dominant genes and re-
cessive genes should be more than zero in the G X G com-
ponent. If one of the values is zero, then the responsible
value is considered to be zero, and all of the G X G terms
are considered to be the remainder. The detailed MCMC
algorithm is described below:

Step 1. Sample Q! from Pr(Q|Qt~1):
QQ"! ~ Dir(a + Q! Xc)

Step 2. Sample Z¢ from Pr(Z|QY:
pGp,pGr|Q" ~ Dir(agx);

PG, PEG|Q" ~ Dir(ag xr);
folpG ~ uniform(O, 1-4/1 —pG);
foiexE|PGE ~ uniform(O, 1-4/1 —pGE);
K ~ uniform(0, 8).

Derive @* from the sampled parameters based on Equation 2.

Step 3. Accept and update all parameters with the probability

o (1 TLP(Yi]0) /(6 167)
mln(17 HiP(Yiwi)/Jf(‘gﬂef_l) .

From factorization, the sampling of Q! is dependent only on
Q' 1, and the sampling of Z is dependent on Q. The con-
ventional Gibbs sampling of each variable depends on all of
the other variables and updates each variable separately. In
the current study, updates that depend on all of the other
variables result in restrictions to each update. These restric-
tions provide slightly skewed posterior distributions with
inflated rejection rates. Therefore, to minimize the restric-
tions from the latent variables, the sampling procedure is
performed as described above, and the acceptances of the
sampled variables are decided after all of the samplings of
each variable are conducted simultaneously. The sampling
Q' is based on the Dirichlet distribution dependent on the
value at the previous time, Q‘~!, where the Dirichlet distri-
bution is not symmetric. Therefore, the Metropolis—Hastings
algorithm is used for the update.

The jumping rule at the current time, t, is indicated as J,.
Most parameters are canceled out, leaving the likelihood
function and the jumping rule. The jumping rule follows
the Dirichlet distribution, as indicated in step 1. MCMC
was conducted in two stages: a mixing stage and a data
collection stage. In the mixing stage, the sampling of Q¢
was conducted using the Dirichlet distribution with 1500
iterations of the parameter, « = 1. The parameter was grad-
ually increased with ¢ in Dir(a + Q=1 X ¢) from 2 to 17 for
1500 iterations. After the mixing stage, 4000 iterations of
the data were collected with a constant c. The convergence
was diagnosed using the Gelman and Rubin diagnostics pro-
vided by the “coda” package for the R statistical package
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Table 1 The probabilities of NN, ND, and DD pairs before and after age adjustment

After age adjustment

Before age adjustment

NN ND DD No. pairs NN ND DD
MZT 0.6267 0.3110 0.0623 496 0.9395 0.0363 0.0242
P-O 0.6165 0.3301 0.0534 2026 0.7804 0.2058 0.0138
DZT 0.6367 0.3224 0.0408 119 0.9496 0.0504 0.0000
Sibs 0.6266 0.3262 0.0472 2237 0.9061 0.0881 0.0058
Avuncular 0.6916 0.2811 0.0273 159 0.9623 0.0377 0.0000

The diabetes data were obtained from the Korean Healthy Twin Study, and the adjustment was based on the Korean National Health and Nutrition Survey (NN, normal—

normal pair; ND, normal-disease pair; DD, disease—disease pair).

(http://cran.r-project.org/web/packages/coda/index.html).
To reduce the estimating time, parallel computing was per-
formed with ‘Rmpi’ by distributing each MCMC chain to
each computing node (http://cran.r-project.org/web/packages/
Rmpi/index.html).

Schizophrenia data

Data from the pooled results of relevant twin and family
studies of schizophrenia in western Europe were used in the
current study (Gottesman and Shields 1982; McGue et al
1983). In the result table of the previous study (McGue et al.
1983; Risch 1990), the relative risks were presented for differ-
ent types of relative pairs, i.e., MZT, P-0O, DZT, sibs, grand-
parents and grandchildren pairs, uncle-niece pairs, and
cousins. The relative risks were transformed into the concor-
dance rates of each relative pair, with a population lifetime
incidence of 0.0085 (Rao et al. 1981; McGue et al. 1983; Risch
1990). The concordance rates of available relative pairs were
as follows: MZT, 0.44285 (106); P-O, 0.085 (1679); DZT,
0.1207 (149); sibs, 0.0731 (7523); grandparents and grand-
children pairs, 0.02805 (740); uncle-niece pairs, 0.02635
(3966); and cousins, 0.0153 (1601), where the numbers inside
of the parentheses are the age-corrected sample sizes with
a definite diagnosis (McGue et al. 1983; Risch 1990).

Diabetes data

Cohort-subject diabetes data were kindly provided by the
Korean Healthy Twin Study team. The Korean Healthy Twin
Study is a cohort of adult twin pairs (ages =20) and their
family members who have been recruited since 2005 by
advertisements at government health agencies and partici-
pating hospitals. The overall methodology and protocol of
this multicenter survey were described previously (Sung
et al. 2006). Of a total of 3800 participants, 3518 individuals
who were 30 or older were included in the analysis. The
type II diabetes subjects included 496 MZTs, 2026 P-O’s,
119 DZTs, 2237 sibs, and 159 avuncular pairs (Table 1).
The other relative pair types with small numbers were ex-
cluded from the analysis. Individual twins and their families
who were willing to participate in the Healthy Twin Study
completed a questionnaire and visited one of the centers to
undergo physical examinations, clinical tests, biochemical
tests, and body measurements. Written, informed consent
was obtained from all participants. The study protocol was
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approved by the ethics committees at the Samsung Medical
Center and the Busan Paik Hospital.

The raw probabilities of NN, ND, and DD pairs were
obtained and adjusted on the basis of the age-dependent
population lifetime incidence, as indicated in a previous
study (Robertson et al. 1996). The age-dependent popula-
tion lifetime incidence was derived from the diabetes prev-
alence in the Korean National Health and Nutrition Survey
for subjects who were 30 or older (Statistics Korea, 2011),
assuming a lack of complete recovery. The population life-
time incidence was assumed to be 0.22 in this study, which
was the peak prevalence that occurred among people in
their sixties (Statistics Korea, 2011). The raw and adjusted
probabilities for five relative pairs (MZTs, P-O’s, DZTs, sib-
lings, and avuncular pairs) are shown in Table 1.

The original diabetes data showed larger ND and DD
probabilities and a smaller NN probability of MZT than
the probabilities derived by the genetic models with a PLI
of 0.22. One possible reason for this difference is that
individuals with the disease can be recruited more easily
than normal twins. To avoid the discordance between data
and PLI, the concordance rates were used in the Bayesian
inference. The concordance rates of the diabetes data for
MZT, P-0, sibling, and avuncular pairs were 0.167, 0.139,
0.126, and 0.0885, respectively. The rate of P-O pairs was
slightly higher than the rate of sibling pairs, indicating the
effect of parental care.

Results
Simulation results

The Bayesian MCMC method was applied to simulated data
sets. For the data sets, the proportions of each causal factor
were based on, but not limited to, the initial studies of simple
causal models with G and E factors for schizophrenia and
Type II diabetes (unpublished data). Simulated parameters of
more complicated models with more causal factors have been
based mostly on these initial values. Representative ones
were summarized in Table 2. For most of the simulations,
including those summarized in Table 2, PLI was set to 0.01,
similar to schizophrenia. Numerous proportions were tested
for the model containing E, E X G, G, and G X G, including
those with one or more zero proportions. In addition, various
numbers of genes were tested for each model. Disease
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Table 2 Posterior means of variable models with causal components: E, G, G X E, and G X G

True ratio Posterior means Gelman & Rubin diagnostics
E G GXE GXG E G GXE GXG E G GXE GXG Rejection rate
1 1 1 7 0.079 0.297 0.115 0.509 1.021 1.023 1.019 1.021 0.593
1 4 2 3 0.106 0.385 0.162 0.347 1.006 1.070 1.117 1.034 0.612
2 2 3 3 0.191 0.272 0.212 0.325 1.004 1.008 1.007 1.015 0.459
3 2 3 2 0.227 0.246 0.294 0.233 1.014 1.076 1.072 1.022 0.462
5 2 2 1 0.303 0.210 0.330 0.156 1.033 1.015 1.016 1.003 0.447

concordances of nine relative pairs were derived from
Equations 1-4 based on each model, and it was assumed
that 1000 pairs were available for each relative pair.

The method worked well when the actual model con-
tained E, G, and G X G components or simpler combinations
of these three components regardless of the number of
genes; the posterior distributions clearly were localized to
the original model parameters with an excellent concor-
dance to the parameters. In the models, the posterior means
of most latent variables also were localized exactly to the
original parameters. However, when both G X E and E terms
were included in the model, the posterior distributions
showed much more dispersed distributions. In comparing
concordance rates between the three-component models of
E, G, and G X E with the various ratios of causal compo-
nents, models with different ratios of causal components
showed almost identical concordance rates (supporting in-
formation, Table S1). These characteristics resulted in dis-
persed posterior distributions, as the updated parameters in
the MCMC oscillated between these states. However, the
posterior means of the four causal factors were represented
of the original parameters with acceptable Gelman and
Rubin diagnostics (Table 2).

The real model for a complex disease might not include
one or more causal factors. In this case, serial deductions of
causal factors could be used to infer the correct genetic
model for a certain disease. For example, for a certain
disease, there are only two causal factors, genetic and
environmental factors. Because the causal factors affecting
the disease presentation are unknown, the full model with
all four causal factors should be examined first. If the
model is overparameterized, the posterior distribution of the
nonexisting causal factor will be localized close to zero. By
eliminating the causal factors localized to zero, a better
model that is closer to the real model can be derived. By
repeating this elimination procedure until no causal factors
are localized to zero, the actual model for a certain disease
can be obtained. A relevant public program is available as
an R package, IFP (identifying functional polymorphisms:
http://cran.r-project.org/web/packages/IFP/index.html).

Bayesian inferences on schizophrenia and diabetes data

The proposed method was applied to the data of schizo-
phrenia, which is one of the well-studied diseases that
displays obvious heritability (McGue et al. 1983). The pos-
terior means of causal factors were indicated in Table 3,

which shows that the Gelman and Rubin diagnostics ap-
peared to be accurate. In the results, all four causal factors
had substantial proportions, supporting the strong heteroge-
neity in schizophrenia causation. For the genetic factors, the
total dominant gene frequency converged to ~0.0008. If
there are numerous dominant genes, many of them could
have de novo mutations. Based on the frequencies of the
dominant genes, the frequencies of the recessive genes were
between 0.01 and 0.003, depending on the number of
genes. These results were in agreement with the previous
studies that indicated that schizophrenia could be caused by
rare variants (McClellan et al. 2007; Malhotra and Sebat
2012; Gratten et al. 2013).

In addition to rare variants, the common variants are at
least a contributing causal factor (Manolio et al. 2009; Ripke
et al. 2011), possibly having multiple disease variants within
a gene (Fellay et al. 2010; Thompson et al. 2010). In Table
3, the sum of G X G and G X E proportions is >50% of the
total causal factors, indicating that there might be many
common variants interacting with other genes or environ-
ments. A relatively large G X G proportion, including a large
proportion of dominant genes compared to other factors,
indicates that schizophrenia may be caused by several com-
plementary genetic pathways that consist of mostly domi-
nant genes. A study of a two-hit model in neuropsychiatric
diseases supported this prediction (Girirajan et al. 2010).
The sum of G and G X G was 0.543, which was smaller than
the heritability estimate, 0.668 with a definite diagnosis
(McGue et al. 1983); however, considering that G X E was
0.227 in Table 3, adding G¢ would provide a similar number
to the heritability estimate.

Bayesian inference of the diabetes data showed the
importance of environmental factors in the presentation of
type II diabetes. Using the full model with four causal
factors, the posterior distribution converged poorly, and
both the G X G and G terms were localized to zero. After
eliminating the G and G X G components from the full
model, the model with E and G X E showed a good conver-
gence of posterior distributions, suggesting that the presen-
tation of type II diabetes was influenced mostly by two
causal factors: the environmental factor and gene-environment
interactions.

The posterior means of the fractions of causal factors are
indicated in Table 3. The fraction of the environmental
causal component was 0.132, corresponding to Z; in Equa-
tion 1, which indicated that the probability that a person
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Table 3 Posterior means of the model with the environmental and gene-environment components in the diabetes data

Schizophrenia Diabetes
Mean (+ SD) Conversion to true value Diagnostics Mean (+ SD) Conversion to true value Diagnostics
E 0.230 (+0.136) 0.00196 1.007 0.568 (+0.263) 0.132 1.02
GXE 0.227 (+0.150) 0.00194 1.011 0.432 (+0.263) 0.102 1.02
G 0.198 (+0.097) 0.00169 1.023 ~0
GXG 0.345 (*£0.143) 0.00294 1.007 ~0
Conversion to true value (z)): the proportion of disease causation by the causal factor in the whole population; z;= 1 — exply; X log(1 — PLI)], in which y; is the proportion of

the causal factor / in PLI.

could be exposed to the causal environmental factor during
one’s lifetime was 0.132. The fraction of the causal factor
due to gene—environment interactions was 0.102, which was
a bit lower than the E component. In the fraction of gene—
environment interactions, the fraction of the environmental
factor interacting with the genetic factor was 0.28, and the
fraction of the genetic factor interacting with the environ-
mental factor was 0.461. The multiplication of these two
factors does not yield the exact number of 0.102, probably
because these are posterior means and there are slight inac-
curacies. The substantial proportion of genetic factors that
interact with the environment was not surprising consider-
ing that genome-wide association studies have found many
loci associated with type II diabetes (Hanis et al. 1996; Zeggini
et al. 2008).

Discussion

The current study provides an advanced framework for
identifying major causal components and their fractions.
This framework is flexible for handling both rare and
common variants in a gene and across multiple genes.
Based on this new formula, conventional Bayesian MCMC
was used to obtain the fractions of each component in
a model of a certain disease. Simulation studies showed
that the method worked well but needed improvements
for certain circumstances. Application to real data of
schizophrenia and type II diabetes demonstrated excel-
lent agreements with the molecular and clinical studies of
these diseases.

Applying the models to schizophrenia data reinforced the
complex causation of schizophrenia. All four causal factors
showed substantial proportions in the population lifetime
risk, suggesting the importance of all four causal factors in
the presentation of schizophrenia. The G component in this
study included many rare variants or de novo mutations in
dominant and recessive genes. The substantial G component
was in accordance with previous studies that indicated the
genetic heterogeneity of schizophrenia and the contribu-
tions of many rare (possibly dominant) variants in schizo-
phrenia (McClellan et al. 2007; Malhotra and Sebat 2012;
Gratten et al. 2013). Consanguinity induces neuropsycho-
logical disorders due to homozygosity (Kurotaki et al.
2011), possibly suggesting many recessive genes for the
causation of schizophrenia. From the posterior distributions
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of latent variables, the multiple-hit model with a majority
of dominant genes, similar to the previous two-hit model
(Girirajan et al. 2010), was the most likely explanation for
the gene-gene interaction component of schizophrenia
presentation.

In the type II diabetes data, the main causal factor was
the environment, showing a proportion of 0.568. The remain-
ing proportion of causation was due to gene-environment
interactions, which had a proportion of 0.432, indicating
that the causal factors of genetic or gene interactions
could be minimal. This result was in agreement with
previous findings indicating that the heritability esti-
mate of type II diabetes mellitus is 0.26, and nongenetic
factors are suspected to play a predominant role (Poulsen
et al. 1999). The known causal environmental factors for
diabetes include obesity, physical inactivity, and diet (Van
Dam 2003). The genome-wide association studies (GWAS)
successfully identified loci associated with type II diabetes;
however, the effect sizes of these loci were very modest,
ranging from 1.05 to 1.35, suggesting that common disease
polymorphisms are weak risk predictors (Willems et al.
2011). In the current study, the gene interaction or gene—
environment interactions increased the corresponding dis-
ease allele frequencies and decreased the effect sizes of
the disease alleles. Therefore, the previous results from
GWAS support the conclusion in this study that type II di-
abetes is primarily a result of environmental factors and
gene—environment interactions. It should be noted that the
current result does not completely exclude the existence of
G and G X G components in the causations of type II di-
abetes, but the result emphasizes that the major players in
type II diabetes are E and G X E components.

The current method requires several improvements, such
as the incorporation of various environmental factors. The
shared environmental factor and the childhood environ-
mental factor could be applied, as indicated previously
(Czene et al. 2002). Of the possible independent environ-
mental components, the prenatal environment was separately
examined in the current study. The common prenatal envi-
ronment was numerically obtained when the NN, ND, and
DD probabilities of MZTs were given. In the diabetes data,
the assessment of the prenatal environmental component
had a small and negative effect; therefore, it was excluded
from this study. The exclusion of shared environmental
components might result in inflated genetic factors. Further



studies are required to conduct a comprehensive assess-
ment of various environmental components. With the im-
provements described above, the framework also could
be applicable to the extension of traditional linear models
of genetics (Yi et al. 2011). Among causal inferences in
epidemiology, the causal diagrams based on directed acy-
clic graphs were previously applied to the linear models
in genetic epidemiology (Pearl 1995; Pearl 2009a). Cur-
rently, involving direct causal relationships in the current
study provides too many complexities to identify actual
models; however, in the future, the direct causal relation-
ships could be studied with more information including
environmental causation, as suggested previously (Pearl 1995;
Pearl 2009a).

Based on the genetic models derived from the method
described in this study, more suitable strategies for identi-
fying genetic and environmental factors can be developed
for each complex disease. For example, the genetic model of
schizophrenia suggested that genetic studies on the rare
single genetic factors and the complementary gene interac-
tion factors should be conducted separately. In addition, the
genetic factors that interact with the environment should be
detected independently of the pure genetic factors. In the
case of type II diabetes, efforts to find single or complemen-
tary gene interaction factors may fail. A better approach to
understanding the presentation of type II diabetes might be
to examine interactions between the environmental factors
and the disease polymorphisms identified from GWAS.
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