Skip to main content
. 2015 Apr 9;10(4):e0123628. doi: 10.1371/journal.pone.0123628

Table 1. List of models associated with their respective hypotheses.

Model group Model Parameters
G1 Local vegetation
y = β 0 + β 1 LV 3
G2 Proximal landscape structure
y = β 0 + β 1 PPA + β 2 PLC + β 3 PLD 5
y = β 0 + β 1 PPA + β 2 PLC 4
y = β 0 + β 1 PPA + β 2 PLD 4
y = β 0 + β 1 PLC + β 2 PLD 4
y = β 0 + β 1 PPA 3
y = β 0 + β 1 PLC 3
y = β 0 + β 1 PLD 3
G3 Broad landscape structure
y = β 0 + β 1 BPA + β 2 BLC + β 3 BLD 5
y = β 0 + β 1 BPA + β 2 BLC 4
y = β 0 + β 1 BPA + β 2 BLD 4
y = β 0 + β 1 BLC + β 2 BLD 4
y = β 0 + β 1 BPA 3
y = β 0 + β 1 BLC 3
y = β 0 + β 1 BLD 3
G4 Multi-level combined effect
y = β 0 + β 1 LV + β 2 PPA + β 3 BPA 5
y = β 0 + β 1 LV + β 2 PPA + β 3 BLC 5
y = β 0 + β 1 LV + β 2 PPA + β 3 BLD 5
y = β 0 + β 1 LV + β 2 PLC + β 3 BPA 5
y = β 0 + β 1 LV + β 2 PLC + β 3 BLC 5
y = β 0 + β 1 LV + β 2 PLC + β 3 BLD 5
y = β 0 + β 1 LV + β 2 PLD + β 3 BPA 5
y = β 0 + β 1 LV + β 2 PLD + β 3 BLC 5
y = β 0 + β 1 LV + β 2 PLD + β 3 BLD 5
y = β 0 + β 1 LV + β 2 PPA 4
y = β 0 + β 1 LV + β 2 PLC 4
y = β 0 + β 1 LV + β 2 PLD 4
y = β 0 + β 1 LV + β 2 BPA 4
y = β 0 + β 1 LV + β 2 BLC 4
y = β 0 + β 1 LV + β 2 BLD 4
y = β 0 + β 1 PPA + β 2 BPA 4
y = β 0 + β 1 PPA + β 2 BLC 4
y = β 0 + β 1 PPA + β 2 BLD 4
y = β 0 + β 1 PLC + β 2 BPA 4
y = β 0 + β 1 PLC + β 2 BLC 4
y = β 0 + β 1 PLC + β 2 BLD 4
y = β 0 + β 1 PLD + β 2 BPA 4
y = β 0 + β 1 PLD + β 2 BLC 4
y = β 0 + β 1 PLD + β 2 BLD 4
Null model No effect
y = β 0 2

G1—Local vegetation; G2—Proximal landscape structure; G3—Broad landscape structure; G4 Multi-level combined effect; Null model—no effect; β 0—intercept; β 1, β 2 and β 3—parameters associated with the respective variables; LV—local vegetation; PPA—Proximal landscape proportion of agricultural cover; PLC—Proximal landscape configuration; PLD—Proximal landscape diversity; BPA—Broad landscape proportion of agricultural cover; BLC—Broad landscape configuration; BLD—Broad landscape diversity; The number of parameters presented at the table are for the normal distribution used for interaction strength asymmetry and nestedness analysis; considering that the Poisson’s distribution was used for the number of links, in this case it is necessary to subtract one from the number of parameters for each model.